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Abstract: Browning and lignification often occur in fresh-cut apple processing, leading to quality
deterioration and limiting the shelf life of products. In this study, 0.8% (v/v) phytic acid was used to
improve the quality and shelf life of fresh-cut apples. From the results, the browning was inhibited
by the phytic acid treatment and the browning index (BI) of the control fruit was 1.62 times that of
phytic acid treatment at 2 d of storage. The lignin content in phytic acid-treated fruit significantly
decreased at 2, 4, and 6 d of storage compared to the control. Phytic acid treatment also reduced
H2O2 and malonaldehyde (MDA) contents, which may indicate lighter membrane damage to apples.
Compared with the control, the polyphenol oxidase (PPO) and peroxidase (POD) activities decreased
while superoxide dismutase (SOD) and catalase (CAT) activities increased in phytic acid-treated
fruit. Consistent with the lignin content, the activities of phenylpropane metabolism-related enzymes
phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase
(4CL) were inhibited by phytic acid treatment. In conclusion, phytic acid alleviated the browning and
lignification of fresh-cut apples by reducing PPO and POD activities, maintaining cell membrane
integrity, and inhibiting phenylpropane metabolism.

Keywords: apple; phytic acid; fresh-cut; browning; lignification

1. Introduction

Apple is widely produced and consumed in many countries and contains abundant
nutrients, dietary fibers, and bioactive metabolites [1,2]. Fresh-cut apples are prepared for
ready-to-eat food, packaged, and stored at low temperatures, thus providing convenience
for consumers. However, the browning and lignification that occurred during fresh-cut
processing greatly shortened the shelf life of the products. Previous reports indicated that
the browning of fresh-cut apples mainly resulted from the oxidation of phenols catalyzed
by polyphenol oxidase (PPO) and peroxidase (POD) [3,4]. Moreover, the lignin was found
to accumulate in the wound area of fresh-cut apples [5], which led to the lignification of
apple slices. Phenylpropane metabolism is involved in the formation of lignin. In phenyl-
propane metabolism, the phenylalanine ammonia-lyase (PAL) can catalyze phenylalanine
deamination to generate trans-cinnamic acid [6]. The cinnamate 4-hydroxylase (C4H) and
4-coumarate: CoA ligase (4CL) respectively catalyze the conversion of trans-cinnamic acid
and the synthesis of p-coumarate coenzyme-A to provide precursor substances for lignin
synthesis [7,8]. In addition, fresh-cut apples exited other quality problems such as water
loss and softening. Thus, it is a challenge to improve the preservation technologies for the
fresh-cut apple industry.
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Many technologies such as cold storage, aqueous ozone treatment [9], UV-C treat-
ment [10], atmospheric gas plasma treatment [11], sulfites treatment, ascorbic acid treat-
ment [12], γ-aminobutyric acid treatment [4], thyme oil-alginate-based coating [13], and
lysozyme treatment [14] have been used on fresh-cut apples to prolong shelf life. However,
some of them need specific devices and may cause allergic reactions if people use them
frequently [15–17]. Therefore, there is a need to find an alternative method for preserving
fresh-cut apples.

Phytic acid is a highly phosphorylated molecule abundant in plants [18], and is
generally recognized as safe according to U.S. Food and Drug Administration [19]. It has
been used in the food industry to reduce the browning of fruit and vegetables by inhibiting
the activities of POD and PPO enzymes [20]. The litchi pulp quality and pericarp color were
maintained intact, and the preservative life was up to 40 d by phytic acid treatment [21].
Phytic acid, as a natural antioxidant, can restrain lipid peroxidation by decreasing the
accumulation of iron-catalyzed hydroxyl radical [22]. It can improve the oxidative stability
in both raw and cooked meat at refrigerated temperatures [23]. In addition, the composite
preservative of phytic acid and ascorbic acid could reduce weight loss rate, cell permeability,
and PPO activity and maintain the sensory quality of mushrooms [24]. For now, phytic
acid has been reported to maintain moisture and chlorophyll content in fresh-cut red
cabbage [25]. However, there is little research on the phytic acid application in fresh-cut
apples, and its preservation mechanism is unclear.

This study aims to investigate the storage quality and preservation mechanism of
fresh-cut apples by phytic acid treatment. The parameters including color, total phenol
content, lignin content, membrane damage, and related enzyme activities were measured.
This work will provide a choice for the food industry on fresh-cut apple preservation.

2. Materials and Methods
2.1. Sample Preparation and Treatments

Fresh ‘Fuji’ apple (Malus domestica) was bought from the Xinfadi market in Beijing,
China, and stored at 4 ◦C before the experiments. Fruits of uniform size and color without
the physiological disorder, infection, or mechanical damage were selected. A total of
80 apples were rinsed gently by hand, using distilled water, and were dried at room
temperature. Then apples were peeled, cored, and cut into 12 pieces with an apple slicer.
All the slices were soaked in 5 g L−1 sodium chloride (Sinopharm Chemical Reagent
Co. Ltd., Beijing, China) solution to inhibit browning before phytic acid treatment. The
slices were used for the following treatments: the control (soaked in distilled water) and
0.8% (v/v) phytic acid (Shanghai Source Leaf Biotechnology Co., Ltd., Shanghai, China)
solution treatments. Soak time was 10 min, then they were drained with blotting paper.
After treatments, samples in two groups were packaged in plastic boxes with lids and the
headspace volume was about 20% of the volume of the box. Then, samples were stored at
4 ◦C and taken at 0, 2, 4, 6, and 8 d of storage. The apple slices were cut into small cubes,
frozen immediately with liquid nitrogen, and stored at −80 ◦C for further analysis.

2.2. Sensory Evaluation

Sensory evaluation was performed at 0, 2, 4, 6, and 8 d of storage according to
Table 1 [26,27]. A panel of 8 assessors (4 males and 4 females, 25~40 years old) was selected
and trained. Five key attributes, including color, smell, texture, taste, and acceptability,
were selected for evaluation. A scale of 0 to 20 was used for each attribute in the sensory
evaluation. The sensory score for each sample was calculated as the mean value. Fresh-cut
apples with a sensory score below 60 are considered unacceptable.

2.3. Total Bacterial Count

The total bacterial count of fresh-cut apples was measured at 0, 2, 4, 6, and 8 d of storage
and calculated according to the Chinese GB standard (GB4789.2-2016). The determination of
total bacterial count was carried out in triplicate, and the result was expressed as log10 CFU g−1.
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Table 1. Indexes for the sensory evaluation in fresh-cut apples.

Item Evaluation Index Score

Color
The surface is clear and bright, uniform color. ≥14, <20

The surface is slightly darker, with dark fibrous streaks. ≥8, <14
The surface is dark, with brown spots. <8

Texture
The surface does not shrink. ≥14, <20
The surface slightly shrinks. ≥8, <14
The surface severely shrinks. <8

Smell
It is intensely fruity and sweet. ≥14, <20

It is lightly fruity. ≥8, <14
It is not fruity. <8

Taste
The flesh is crisp, tender, and juicy. ≥14, <20
The flesh is not crisp and less juicy. ≥8, <14

The flesh is soft and not juicy. <8

Acceptability
Fully acceptable. ≥14, <20

Basically acceptable. ≥8, <14
Unacceptable. <8

2.4. Color Parameters

The pictures of apple slices were taken at each sampling point. Flesh color param-
eters of fresh-cut apples were measured using a colorimeter (CS-200, Hangzhou Caipu
Technology Co., Ltd., Hangzhou, China) equipped with an 8 mm diameter measuring area.
Before measurement, the colorimeter was calibrated with a black and white calibration
plate. The results were based on CIELAB (L*, a*, b*) color space. ‘L*’, ‘a*’, and ‘b*’ represent
respectively dark-lightness, red-greenness, and blue-yellowness. ‘L*’, ‘a*’, and ‘b*’ values
of apple flesh were measured on each sampling day. Each treatment had three replicates.
Six apple pieces were measured for each replicate. The browning index (BI) indicating the
intensity of brown color was calculated using Equation (1) according to Liu et al. [3]:

BI =
100

0.172
×

(
a∗ + 1.75L∗

5.645L∗ + a∗ − 3.012b∗
− 0.31

)
(1)

2.5. Weight Loss Rate

Weight loss was assessed by the weight difference of six apple slices after storage using
an electronic balance (YP6001, Shanghai Youke Instrument Co., Ltd., Shanghai, China) with
an accuracy of 0.1 g, and measured every 2 days. Each treatment had three replicates. ‘m0’
represents the weight at 0 d, and ‘m1’ represents the weight at each sampling day. The
weight loss rate was calculated through Equation (2) according to Chen et al. [28]:

Weight loss rate =
m0 − m1

m0
× 100% (2)

2.6. Total Phenol Content and Lignin Content

The total phenol content was measured according to Ge et al. [29] with some modifica-
tions. 1 g of frozen powder was homogenized with 5 mL pre-cooled 1% (v/v) HCl-methanol,
then centrifuged at 12,000× g at 4 ◦C for 20 min. The supernatant was collected and placed
on ice for measurement. The 1% HCl-methanol solution was used as a blank reference to
zero, and the absorbance value of the supernatant was measured by a spectrophotometer
(T6 new century, Beijing Pgeneral Instrument Co., Ltd., Beijing, China) at 280 nm wave-
length, repeated three times. The total phenol content was expressed as optical density
(OD)280 kg−1.

The lignin content was detected by BC4205 kit (Beijing Solarbio Science and Technol-
ogy Co., Ltd., Beijing, China) following the manufacturer’s instructions. Perchloric acid
(Sinopharm Chemical Reagent Co. Ltd., Beijing, China) and glacial acetic acid (Fuchen
(Tianjin) Chemical Reagent Co., Ltd., Tianjin, China) were used in this method. The
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lignin content was measured at 280 nm by a microplate reader (Spark, Tecan Group Ltd.,
Männedorf, Switzerland) and expressed as a percentage.

2.7. H2O2 and Malonaldehyde (MDA) Contents

The H2O2 and MDA contents were detected by BC0025 and BC3595 kits respectively
(Beijing Solarbio Science and Technology Co., Ltd., Beijing, China) following the manufac-
turer’s instructions. Acetone (Sinopharm Chemical Reagent Co. Ltd., Beijing, China) and
chlorhydric acid (Beijing Chemical Works Co., Ltd., Beijing, China) were used to measure
H2O2. The H2O2 content was measured at 415 nm by a microplate reader and expressed
as mmol kg−1. The MDA content was measured at 450, 532, and 600 nm by a microplate
reader and expressed as µmol kg−1.

2.8. Enzyme Activity

The PPO and POD activities were detected using G0113W and G0107W kits respec-
tively (Suzhou Grace Biotechnology Co., Ltd., Suzhou, China). PAL, superoxide dismutase
(SOD), and catalase (CAT) activities were detected using BC0215, BC0175, and BC0200 kits
respectively (Beijing Solarbio Science and Technology Co., Ltd., Beijing, China). C4H and
4CL activities were detected using TE0407 and TE0411 kits, respectively (Beijing Leagene
Biotechnology Co., Ltd., Beijing, China). The measuring steps were performed following
the manufacturer’s instructions. The PPO, POD, PAL, SOD, CAT, C4H, and 4CL activities
were respectively measured at 420, 470, 290, 560, 240, 290, and 333 nm by a microplate
reader. One unit of SOD activity was defined as the amount of enzyme that caused 50%
inhibition of nitro blue tetrazolium reduction. One unit of CAT activity was defined as the
amount of enzyme that decomposed 1 µmol H2O2 per minute. One unit of PPO, POD, PAL,
and 4CL activities was respectively defined as a change of 0.01, 1, 0.1, and 0.01 units in
absorbance value per minute. One unit of C4H activity was defined as a change of 0.01 units
in absorbance value per hour. The activities of these enzymes were expressed as U kg−1.

2.9. Statistical Analysis

The determination of each indicator was repeated at least three times. The data
were analyzed via one-way analysis of variance (ANOVA) in Microsoft Office Excel 2019
(Microsoft, Redmond, WA, USA) and SPSS Statistics 20 (IBM, Armonk, NY, USA). Duncan’s
test at the 0.05 level was used to compare the mean averages. Origin Pro 8.6 (Microcal
Software, Northampton, MA, USA) was used for graph drawing.

3. Results
3.1. Sensory Evaluation

As shown in Figure 1, the sensory scores of fresh-cut apples showed a downward
trend in the control and phytic acid groups during storage. On the first day, it was lower
in the control than that in phytic acid treatment due to rapid browning. Moreover, the
sensory score of phytic acid treatment was significantly higher than that of the control
during storage. At 4 d of storage, the sensory score of fruit in the control was lower than 60,
while that in the phytic acid was close to 80. The above results suggested that phytic acid
can prevent the deterioration of the sensory quality in fresh-cut apples.

3.2. Total Bacterial Count

The total bacterial counts of fresh-cut apples increased gradually during the whole
storage period, and there was no significant difference between the control and the phytic
acid-treated apples (Supplementary Figure S1). For safe consumption, the Spanish legal
limit (RD 3484/2000, 2001) for microbial populations on fresh-cut fruit is 7 log10 CFU g−1.
In our study, the total bacterial counts of fresh-cut apples in two treatments at 8 d of storage
were lower than 7 log10 CFU g−1.
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3.3. Flesh Color

Phytic acid-treated fruits maintained their original flesh color at 4 d of storage, greatly
prolonging their shelf life. However, the apples in the control turned brown at 0 d of storage
(Figure 2A). Consistent with the pictures, phytic acid treatment can significantly restrain
the changes in color parameters. The ‘L*’ value was higher while the ‘b*’ value was lower in
phytic acid-treated apples than those in the control (Figure 2B,C). The BI value of the control
fruit was significantly higher compared to the phytic acid-treated apples. At 2 d of storage,
the BI value of the control fruit was 1.62 times that of phytic acid treatment (Figure 2D).
The total phenol content of apples decreased in both treatments at the beginning of storage,
however, phytic acid treatment delayed the increase of total phenol content in the late
storage period (Figure 2E). These results indicated that phytic acid may inhibit browning
by decreasing phenol content accumulation in fresh-cut apples.

3.4. Flesh Lignification

The weight loss rate of fresh-cut apples increased gradually in phytic acid treatment
and the control during storage, but no significant difference was observed between the two
treatments (Supplementary Figure S2). In both phytic acid treatment and the control, the
lignin content of apples showed an increasing trend during storage. The lignin contents in
phytic acid-treated fruit were significantly decreased at 2, 4, and 6 d of storage compared to
the control (Figure 3). At 4 d of storage, the lignin contents in phytic acid-treated fruit and
the control were 27.75 and 35.38%, respectively. Thus, phytic acid delayed the lignification
of apple slices.

3.5. H2O2 and MDA Contents

H2O2 and MDA are associated with membrane damage. The accumulation of H2O2
in fresh-cut apples gradually increased during storage, however, phytic acid treatment
reduced its content during storage compared with that in the control (Figure 4A). The H2O2
content of the control fruit before 4 d of storage was significantly higher than that in phytic
acid treatment. The MDA content in both treatments increased during the whole storage
period and phytic acid treatment inhibited the accumulation of MDA (Figure 4B). These
results implied that phytic acid treatment was conducive to reducing membrane damage
of apple slices.
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3.6. Browning-Related Enzymes Activities

PPO activity first increased and then decreased at 6 d of storage in both treatments, and
phytic acid suppressed its activity compared to that in the control (Figure 5A). Meanwhile,
the POD activity of apple slices showed an increasing trend in the control while being
maintained at a low level in phytic acid-treated fruits. Moreover, it was significantly lower
in phytic acid-treated apple slices during the whole storage period compared to the control
(Figure 5B). The SOD activity of fruit increased at the beginning of storage and declined at
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4 d of storage in both treatments. Compared to the control, the SOD activity of fresh-cut
apples treated with phytic acid was enhanced during storage. And its activity in treatment
was 1.55 times that of the control at 6 d of storage (Figure 5C). In addition, phytic acid
treatment increased the CAT activity of fresh-cut apples during storage (Figure 5D). The
above results indicated that phytic acid inhibited browning in apple slices.
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3.7. Phenylpropane Metabolism-Related Enzymes Activities

The activities of three phenylpropane metabolism-related enzymes, PAL, C4H, and
4CL, in fresh-cut apples, increased and then decreased during storage (Figure 6). The
PAL activity significantly decreased after phytic acid treatment compared to the control
during the whole storage period (Figure 6A). The C4H activity in phytic acid-treated apples
fluctuated little and decreased compared with the control during the whole storage period
(Figure 6B). 4CL activity increased to a high level in the control fruit while it was more
stable in phytic acid treatment. Moreover, its activity in phytic acid-treated fruit was 73.1%
of that in the control at 4 d of storage (Figure 6C). The above results showed that phytic
acid restrained phenylpropane metabolism in apple slices.
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Figure 6. Phenylpropane metabolism-related enzyme activities of fresh-cut apples during storage
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significant differences at p < 0.05.

4. Discussion

The acceptability of fresh-cut fruit and vegetables is related to their appearance and
texture [30]. During processing and storage, apple flesh gradually turned brown, which greatly
affected the sensory quality and storage time of fresh-cut apples. The decrease in the ‘L*’ value
and increases in the ‘b*’ and BI values of apple flesh occur in the browning process [12]. Adding
phytic acid to meats, aquatic products, fruit, vegetables, and other foods could maintain color
and prolong preservation time [31]. From our results, the phytic acid-treated apple slices
showed higher ‘L*’ values and lower ‘b*’ and BI values compared with the control, indicating
phytic acid can inhibit the browning of fresh-cut apples during storage.

The browning of fresh-cut apples is mainly due to enzymatic browning. PPO and
POD, two major enzymes of browning, catalyze the oxidation of phenols in plant tissues
in the presence of oxygen, resulting in the accumulation of melanin, which is a brown
or black pigment related to ‘browning’ [4,30,32]. From our results, the phytic acid could
delay browning and inhibit PPO and POD activities, which was consistent with previous
research [33,34]. In addition, phytic acid treatment reduced total phenol content, resulting
in the alleviation of enzymatic browning. The total phenol content of fresh-cut apples
decreased at the beginning of storage, which may be due to lower phenol synthesis rates
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than oxidation rates [28]. These results indicated phytic acid could suppress the browning
of fresh-cut apples by reducing phenols content and restraining PPO and POD activities.

It is well known that membrane disruption due to cutting brings the enzymes into con-
nection with their substrates, thus browning occurs [35]. In addition, many studies showed the
accumulation of reactive oxygen species (ROS) resulted in the oxidation of the cell membrane
and the damage to cell membrane structure [36,37]. In fresh-cut apples, the accumulation of
H2O2 during cutting may stimulate membrane lipid peroxidation, destroy cellular membrane
structure and produce MDA, which results in the browning of apple slices [38]. MDA has been
reported as an indicator of cell membrane integrity [35]. In this study, the MDA content of the
control fruits was higher than that of fruits in phytic acid treatment, indicating that phytic acid
maintained the cell membrane structure of fresh-cut apples.

The antioxidant enzymes, SOD and CAT, are involved in alleviating cell membrane
damage in plants. SOD catalyzes the dismutation of superoxide anion to H2O2, which
can be decomposed by CAT, thus reducing ROS content and relieving membrane lipid
peroxidation [6,38]. According to Mahunu et al. [39], the synergistic effect of phytic acid
and yeast on CAT activity was regarded as the ability to scavenge excessive ROS and
maintain low ROS concentration. Moreover, phytic acid supplementation provided higher
levels of SOD and CAT activities in the diet [40]. Our results showed that phytic acid
increased the activities of SOD and CAT, thus maintaining the cell membrane integrity of
fresh-cut apples.

The mechanical injury during the processing of fresh-cut apples gives rise to the
generation of a wound-healing response and the structural barrier such as lignin [41].
The phenylpropanoid pathway is an important step in the synthesis of lignin, causing
the lignification of fresh-cut apples. PAL catalyzes the first step of phenylpropanoid
metabolism, which is directly relevant to the synthesis of lignin [7]. High-pressure argon
and xenon mixed treatment increased PAL activity and enhanced the accumulation of
lignin in fresh-cut apples [5]. C4H involves in the second step of the phenylpropanoid
pathway, catalyzing the conversion of cinnamic acid to coumaric acid, and 4CL regulates
the synthesis of different types of lignin monomers [42]. Sodium nitroprusside effectively
enhanced the activities of PAL, C4H, and 4CL, and increased the accumulation of lignin in
apple fruit [43]. Zhou et al. [8] found ascorbic acid treatment inhibited the wound healing of
fresh-cut potato strips by inhibiting PAL, C4H, 4CL, and POD activities. POD can catalyze
the polymerization of lignin monomer in the last step of lignin biosynthesis [44]. From
our results, it can be inferred that phytic acid reduced the accumulation of lignin and
lignification by suppressing PAL, C4H, 4CL, and POD activities.

5. Conclusions

A phytic acid concentration of 0.8% was used to improve the quality and prolong the
shelf life of fresh-cut apples. Phytic acid could alleviate the sensory quality deterioration,
color changes, and lignin accumulation of apple slices during storage. Meanwhile, phytic
acid was able to maintain cell membrane integrity by reducing the accumulation of H2O2
and MDA. In addition, PPO, POD, PAL, C4H, and 4CL activities were inhibited while SOD
and CAT activities were increased by phytic acid treatment to inhibit the browning and
lignification of apple slices. In general, the shelf life of apple slices in phytic acid treatment
was extended to 4 days. It was concluded that phytic acid promoted the quality of fresh-cut
apples by alleviating the browning and lignification during storage.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11101470/s1, Figure S1: The total bacterial count of fresh-
cut apples during storage after treatment with phytic acid or the control. Vertical bars represent
standard errors of the means of three replicates. The different letters indicate significant differences
at p < 0.05; Figure S2: The water loss rate of fresh-cut apples during storage after treatment with
phytic acid or the control. Vertical bars represent standard errors of the means of three replicates. The
different letters indicate significant differences at p < 0.05.
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