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Abstract: This study investigates the morphological and rheological properties of blended gelatin
(GA; a cooling-induced gel (cool-gel)) and hydroxypropyl methylcellulose (HPMC; a heating-induced
gel (thermo-gel)) systems using a fluorescence microscope, small angle X-ray scattering (SAXS),
and a rheometer. The results clearly indicate that the two biopolymers are immiscible and have
low compatibility. Moreover, the rheological behavior and morphology of the GA/HPMC blends
significantly depend on the blending ratio and concentration. Higher polysaccharide contents decrease
the gelling temperature and improve the gel viscoelasticity character of GA/HPMC blended gels. The
SAXS results reveal that the correlation length (ξ) of the blended gels decreases from 5.16 to 1.89 nm
as the HPMC concentration increases from 1 to 6%, which suggests that much denser networks are
formed in blended gels with higher HPMC concentrations. Overall, the data reported herein indicate
that the gel properties of gelatin can be enhanced by blending with a heating-induced gel.

Keywords: gelatin; HPMC; gel; phase transition; compatibility

1. Introduction

Gelatin, derived from the partial hydrolysis of collagen, has a wide range of application
in the food, pharmaceutical, cosmetic, and photographic fields [1–4]. The food products
made from gelatin gel are commonly consumed by children and adults due to their special
texture and mouthfeel [5]. Considering its thermal reversible property, gelatin gel can melt
at a relatively low temperature (melt-in-mouth), which renders it the preferred gelling
agent in yoghurt products, sugar confectioneries, and the coating films of nuts [6–10].
Unfortunately, under certain conditions, the gel strength, gelling temperature, and gel
thermal stability of gelatin might be too low. For example, the hot weather in summer
destroys gelatin gels due to their weak gel thermal stability. As a result, the consumers
of these gels may experience an unpleasant impression and poor taste. Moreover, the
food shelf life will be shortened. Therefore, the question of how to improve the gelatinous
properties of gelatin has attracted great attention, and research efforts have been focused on
using other food hydrocolloids, such as starch and carrageenan, to improve these properties,
particularly the thermostability of gelatin under relatively high temperatures.

Interestingly, the physiochemical properties of hydrogels can be improved simply
by blending a cooling-induced gel (cool-gel) with a heating-induced gel (thermo-gel).
This processing method is relatively easy and does not require any chemical crosslinking
agent to enhance product performance, which renders it important on both scientific and
commercial levels. The most popular and widely available thermo-gel used to improve
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the properties of hydrogels is hydroxypropyl methylcellulose (HPMC) [11]. In particular,
HPMC improves the tensile properties of cool-gel films such as collagen [12], surimi [13–15],
and starch [16–21]. Meanwhile, gelatin and hydroxypropylated starch, both of which are
cool-gels, are commonly used to enhance the processibility and moisture permeability of
HPMC [16,22,23]. In a study conducted on surimi protein-HPMC blending, Chen et al. [15]
showed that the structural geometry of the combined gel matrix depends on the processing
time, and that longer times lead to variations in rigidity, thermal stability, and gel strength.
Moreover, HPMC enhances the mechanical strength and thermal stability of fish gelatin [24].
Liu et al. [25] used chemical mapping techniques to study the phase composition of com-
posites of polysaccharides and proteins. Our previous study also studied the effect of pH
gelation behavior and morphology of gelatin/HPMC blends, and found that the molecular
conformation of gelatin chains was altered by the pH in the surrounding environment,
subsequently leading to the changes in gel strength and stability of composite gels [26].
The unique phase transition behavior of the cool-thermo gel system provides a good oppor-
tunity to further explore the relationship between microstructures and the performance of
polymeric materials, particularly hydrogels. Unfortunately, previous research has mostly
focused on the influence of the HPMC additive on the rheological properties of gelatin (or
gelatin product), and there is no systemic report on how phase separation and gelation
behaviors affect gel performance.

It is well known that the properties of a blending system depend on its morphology,
which is mainly controlled by compatibility and phase separation behavior. In a system
containing two opposite thermo-reversible gels, compatibility and phase separation are
complex and strongly dynamic. For example, the phase behavior of a gelatin/HPMC
composite gel depends on the concentration, blending ratio, and temperature. Considering
that HPMC is a thermo-gel and gelatin is a cool-gel, the gelation and phase separation
behaviors of the gelatin/HPMC composite gel are expected to reach equilibrium at different
temperatures. In this work, we focus on how the compatibility and phase behaviors of
the cool-gel (gelatin) and thermo-gel (HPMC) affect their solution and gel properties, in
particular the effects of the blending ratio and solution concentration. The phase diagram of
the GA/HPMC blends was established based on blending ratio and solution concentration.
Rheometers, fluorescence microscopes, and SAXS were used to characterize the blending
system, and the relationship between microstructures and gel performance was determined.

2. Materials and Methods
2.1. Materials

Food-grade gelatin (type A, from porcine skin, Bloom 250) (GA) was supplied by
Rousselot Company, Giangzhou, China, and pharmaceutical-grade hydroxypropyl methyl
cellulose (HPMC) (29% methoxyl content on dry basis, and 8.45% hydroxypropyl content
on dry basis) was purchased from Hopetop Pharmaceutical Company, Huzhou, China.
Analytical-grade NaN3, NaOH, fluorescein 5(6)-isothiocyanate, and DMSO chemicals were
bought from Aladdin, Shanghai, China, and they were used as received.

2.2. Preparation of Stock Solutions

GA and HPMC stock solutions of varying concentrations (2, 4, 6, 8, 10, 12, and 14 wt%)
were prepared with a pH5 according to the previous study [26]. GA (different amounts)
was first dispersed in cold deionized water and left to swell for 2 h. Then, the solutions
were heated to 60 ◦C with continuous stirring to achieve complete dissolution. Before
heating, 0.02% sodium azide (NaN3) was added to the GA solutions to inhibit the growth
of microorganisms. As for the HPMC solutions, they were prepared by dispersing HPMC
powder in hot water and stirring for 30 min. Afterward, the solutions were cooled to
ambient temperature with continuous stirring to achieve complete dissolution. All the
solutions were stored in a refrigerator at 4 ◦C prior to use.
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2.3. Determination of Phase Diagram

To determine the phase diagram of the GA/HPMC system, a series of GA/HPMC
blends of varying concentrations (1, 2, 3, 4, 5, 6, and 7 wt%) were prepared by mixing 0, 2, 4,
6, 8, 10, 12, and 14 wt% gelatin stock solutions with 0, 2, 4, 6, 8, 10, 12, and 14 wt% HPMC
stock solutions, respectively. The solutions were mixed at 55 ◦C with a continuous stirring
for 1 h. Subsequently, 5 g of each blended solution were transferred to plastic centrifuge
tubes that were sealed to prevent water evaporation. The tubes were held in a water bath
at 25 ◦C for 24 h to determine whether phase transition (from gel to liquid state) or phase
separation would occur. The different phase behaviors of the mixed systems were recorded.

2.4. Microstructure Observation

The micro-networks of 6/0, 6/1 6/2, 6/3, 6/4, 6/5, and 6/6 GA/HPMC blends
(labelled G6H0, G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6, respectively, were observed
using an IX 53 fluorescence microscope (Olympus, Tokyo, Japan) equipped with a color and
monochrome camera (DP 73, Olympus, Tokyo, Japan). GA was covalently labelled with
fluorescein isothiocyanate (FITC) before mixing with HPMC solutions. First, 10 mg of FITC
were dissolved in 10 mL DMSO solution. Then, 100 µL of the FITC solution were added to
100 mL of the GA stock solution (5 wt%, pH 10). The mixture was allowed to react for 1 h
at 40 ◦C with continuous stirring. Then, the reaction was stopped by adding ethanolamine.
Finally, the mixture was dialyzed against deionized water for 48 h to remove unreacted
FITC, and NaN3 (0.02 wt%) was added to inhibit the growth of bacteria. The deionized
water was changed every 2 h during dialysis. The FITC-labeled GA was lyophilized, and
the yellow powder obtained was mixed with HPMC. The sample solutions were poured
onto glass slides, covered with cover slips, and hermetically sealed with oil, then they
were observed at the excitation wavelength of 460–495 nm. The emission of samples was
recorded between 510 and 550 nm.

2.5. Viscosity Measurements

A rheometer (HR-2 Discovery Hybrid Rheometer, Co. TA, New Castle, DE, USA) with
a concentric cylinder cell (28 mm inner diameter) was used to investigate the gel property
of GA/HPMC blends (G6H0, G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6) by analyzing
the variation of viscosity as a function of temperature. The solution was first heated from
25 to 85 ◦C at the rate of 2 ◦C/min. Then, the temperature was decreased back to 25 ◦C at
the same rate. The rotor speed was set to 25 rad/s during the entire heating and cooling
process.

A parallel-plate geometry with a diameter of 40 mm was used to measure the flow
pattern and study the effect of shear rate on the viscosity of the pure and blending solution
at 25 ◦C. The shear rate was increased from 0 to 1000 s−1 in 1 min.

2.6. Rheological Properties
2.6.1. Temperature Sweep

The dynamic rheological properties were explored using small-amplitude oscillatory
shear test. The frequency was set at 1 Hz and the strain at 1% (this value lies within the
linear range of viscosity). To evaluate the effect of temperature on the mixed systems,
temperature ramps were implemented at the scan rate of 2 ◦C/min, with heating from 5 to
85 ◦C, followed by holding at 85 ◦C for 5 min, then cooling back to 5 ◦C with the same scan
rate of 2 ◦C/min. The samples were placed between parallel plates, and a small amount of
silicone oil was spread over the periphery of each sample to prevent moisture evaporation.
Changes in the storage modulus (G′) and loss modulus (G′′) were recorded as a function of
temperature. The gelation and melting temperatures of GA and HPMC are defined as the
temperature at which G′ is equal to G′′ (the G′/G′′ crossover point) [22,23].



Foods 2022, 11, 128 4 of 13

2.6.2. Frequency Sweep

To assess the dynamic mechanical behavior of GA/HPMC blends, 6% gelatin and
6% HPMC were prepared according to Section 2.2, and then a dynamic frequency sweep
was performed at 25 ◦C and 1% strain (this value lies within the linear range of viscoelas-
ticity, which was determined by the strain sweep presented in Figure S1). Within the
identified linear viscoelastic region, the frequency oscillated between 0.1 and 100 rad/s.
Changes in storage modulus (G′) and loss modulus (G′′) were recorded for H0–H6 blends,
and the frequency-dependence of G′ was determined based on the following power
law equation [27]:

G′ = Sωn (1)

where S is the gel strength,ω is the angular frequency, and n is the viscoelastic exponent.

2.7. Small-Angle X-ray Scattering (SAXS)

A SAXSess small-angle X-ray scattering system (Anton-Paar GmbH, Glaz, Austria)
equipped with a PW3830 X-ray generator (PANalytical) was used to study the gel structure.
Measurements were performed according to a previously described method [28,29]. Sam-
ples were measured at 50 mA and 40 kV using a Cu Kα radiation source (λ = 0.1542 nm).
Each gel sample was stored at 4 ◦C for 24 h prior to analysis. The data recorded using
an image plate were analyzed by the IP Reader software with a Perkin Elmer storage
phosphor system. All data were normalized, and the background and smeared intensities
were removed using the SAXS quant 3.0 software for further analysis.

The relationship between q and θ was determined according to the following
equation [30]:

q = 4πsinθ/λ (2)

where θmeans the scattering angle.

3. Results and Discussion
3.1. Phase Diagram of GA/HPMC Blends

Figure 1 shows the phase diagram of the GA/HPMC blends that were held at 25 ◦C for
24 h. It is shown that the compatibility and phase behavior of the mixed systems exhibited
strong dependence on concentration and blend ratio. Moreover, the blends containing a
very low polymer concentration yielded homogeneous solutions at 25 ◦C, and when the
GA to HPMC ratio was less than 1, phase separation occurred. The gelatin-rich lower layer
was in the gel state, whereas the HPMC-rich upper layer was in a liquid-like state. The
blends composed of 3% gelatin formed yellow gels with no apparent (macroscopic) phase
separation after storage at 25 ◦C. However, based on the transparency of the mixtures,
microscopic phase separation occurred. Near the gelation temperature of gelatin, it is
expected that the HPMC phase would be captured and immobilized by the gel network
during phase separation, resulting in a uniform gel. To test this theory, mixtures containing
6 wt% GA and 1–6 wt% HPMC were tested.

Figure 1. Phase diagram of the GA/HPMC blends quenched to 25 ◦C. � indicates a single liquid
phase; o corresponds to a single gel system, and N represents a phase separation system that includes
a liquid phase (HPMC) as the top layer and a gel phase (GA) as the bottom layer.
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3.2. Fluorescence Micrographs of Macrostructure

The light and black zones that appear in the fluorescence micrographs shown in
Figure 2 correspond to protein-rich and polysaccharide-rich areas, respectively. As ex-
pected, the micrograph of pure gelatin solution (G6H0) exhibited a uniform light color.
However, the proportion of light to dark areas in the micrographs corresponding to G6H1–
G6H6 blends varied depending on the blending ratio. The diversity in the microstructures
and phase-separated networks of the blended systems (Figure 2) is attributed to the in-
compatibility between the two biopolymers. The size of polysaccharide-rich areas and the
degree of connection between them increased with increasing polysaccharide concentration.
For a fixed gelatin concentration, the gel microstructure changed from emulsion-like (with
the HPMC-rich phase being the dispersed droplet phase) (e.g., Figure 2 G6H1, G6H2, and
G6H3) to bi-continuous (e.g., Figure 2 G6H4, G6H5) to extensive phase-separated networks,
where the GA-rich phase clearly lost continuity (Figure 2 G6H6) as the HPMC concentration
was increased.

Figure 2. Fluorescence micrographs of GA/HPMC mixed systems observed at room temperature.
The clear zones (yellow) correspond to the fluorescence of the labeled protein (covalently stained by
FITC), and the dark ones correspond to the polysaccharide-rich regions.

The phase separation of the gels was induced by the immiscibility of the two polymers,
similar to many other protein-polysaccharide systems [31–33]. Significant phase separation
occurs when the gel microstructure exhibits a bi-continuous organization of the protein- and
polysaccharide-rich phases, leading to phase organization at the interphase (continuous
region between the separated phases where distinct particles can be observed). Gelation
kinetics play an important role in capturing this particular microstructure and in the final
organization of the polymer-rich phase.

3.3. Viscosity of Solutions

The viscosity of GA/HPMC solutions of varying blending ratios was studied at dif-
ferent temperatures and a specific shear rate. As shown in Figure 3, the viscosity of pure
gelatin (G6H0) decreased with increasing temperature, as expected. Similar trends were
observed for the GA/HPMC mixed systems, and the systems having higher HPMC con-
tents exhibited larger viscosity values during both increasing and decreasing temperature
regimes. At a fixed shear stress, the viscosity of GA/HPMC blends first decreased with in-
creasing temperature due to the destruction of the gel network formed by gelatin molecules.
Then, a slight shoulder (peak) was observed at ~65 ◦C for blends with HPMC contents
≥3% (see the enlarged part in Figure 3). This viscosity shoulder is attributed to the for-
mation of a crosslinked network of HPMC molecules by the association of hydrophobic
groups, on the one hand, and the association of hydroxyl groups, on the other hand, at
high temperatures [22,34,35]. The peak viscosity value shifted to lower temperatures as the
concentration of HPMC was increased. This was probably due to the increased interactions
between HPMC molecules. The viscosity peaks observed during the cooling process were
much more pronounced than those detected during heating, and they shifted to lower
temperatures (~45 ◦C) due to the hysteresis [36] and/or condensation of chains at a lower
temperature [23,34]. The final viscosity of the GA/HPMC blends after cooling was much
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lower than the initial viscosity measured at the beginning of the heating stage. The variation
between the initial and final viscosity values is related to the fact that the blend solutions
with no shear stress exhibit a 60 s equilibrium stage at 25 ◦C. Due to the absence of shear
stress, the blend solution can form gels that are much stronger than those formed under
shear stress, resulting in asymmetrical temperature-viscosity curves.

Figure 3. Effect of temperature on the viscosity of GA/HPMC mixed systems.

The effect of shear velocity on the viscosity of different blends at room temperature
was also investigated. As shown in Figure 4, all GA/HPMC mixtures exhibited Newtonian
behavior at low shear stress and pseudoplastic behavior at high shear rates. Under low
shear stress, all the samples showed a Newtonian plateau before they reached a critical
shear rate and their viscosity dropped, suggesting a dimensional stability related with a
firm network formed by gelatin and HPMC chains. Moreover, the apparent viscosity of pure
gelatin was higher than that of GA/HPMC mixtures, and the G6H6 system characterized
by the highest polymer concentration exhibited the largest viscosity values among the
investigated systems. Over the critical shear rate, the shear-thinning behavior observed
under high shear rates was related to the disentanglement and molecule rearrangement
of polymers under shear force, as described by Heyman et al. [37]. For pure gelatin, the
shear-thinning behavior was stronger than that detected for GA/HPMC mixtures. This
indicates that HPMC undermines the shear-thinning behavior of gelatin and narrows the
stable-value region of the blended samples in the low-shear stage.

Figure 4. Variation of viscosity as a function of shear rate for the GA/HPMC mixed systems at 25 ◦C.

3.4. Rheological Properties of GA/HPMC Blends
3.4.1. Gelling and Melting Temperatures

Figure 5 presents the storage modulus (G′), loss modulus (G′′), and tan δ profiles
recorded during the gel formation of GA and GA/HPMC blends (heating and cooling pro-
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files). The gel transition point of gelatin was detected at a relatively low temperature. How-
ever, HPMC led to thermal gels. All samples formed gels that were heat-reversible [22,38].
During the first plateau, the G′ values of GA and GA/HPMC systems were two orders of
magnitude higher than the corresponding G′′ values. This indicates that strong gels were
formed due to the building of triple helix networks between gelatin, and HPMC molecules
were trapped in them. The values of G′ for GA decreased with increasing temperature up
to 40 ◦C, which suggests that the gelatin network transitions from gel to sol. The decrease
in G′ was accompanied by an increase in tan δ, meaning that the elastic character of the
gel also decreased. Due to the association of hydrophobic groups, on the one hand, and
hydroxyl groups, on the other hand, all HPMC-containing blends gradually formed a
crosslinked network as the temperature was increased to 85 ◦C. The formation of the gel
network was confirmed by the occurrence of G′ and G′′ plateaus with higher values of
G′. By comparing our results (Figure 5) to those of previously published gel formation
studies of pure systems, it may be concluded that the thermally incompatible GA and
HPMC components in the blends form their own networks, resulting in a phase-separated
mixed gel [39]. The FTIR spectra presented in the study of Liu et al. [25] further verify
this conclusion.

The sol-gel transition points (G′ = G′′) for the GA/HPMC blends are listed in Table 1.
Each system was characterized by two gelling points and two melting points that corre-
spond to the melting temperature of the gelatin gel (Tmg) and the gelling temperature of
HPMC (Tgh) in the heating stage, and the melting temperature of the HPMC gel (Tmh)
and the gelling temperature of gelatin (Tgg) in the cooling stage. The sol-gel transition
points of gelatin and HPMC were ~30 and ~56 ◦C, respectively. Based on the data listed
in Table 1, the addition of 1–6% HPMC increased the melting point of gelatin (31–33 ◦C)
compared to the pure GA sample (Tmg = 31 ◦C), showing a slight increase. This may be
due to the fact that the protein aggregation induced by HPMC improved the gel network,
which can only be destroyed by high energy. Moreover, the increase in Tmg value at higher
HPMC content is likely associated with the higher local protein concentration resulting
from biopolymer phase separation [40], as described in Figure 2. Higher HPMC contents
also lead to greater entanglement between HPMC and GA chains, which strengthens the
gel network. Finally, the increase in total solution concentration is another factor that may
be responsible for improving gel network. As for the gelling temperature of HPMC (Tgh), it
was lower for the G6H0, G6H1, and G6H2 samples than for the G6H4, G6H5, and G6H6
samples. The increased Tgh at higher HPMC contents may be attributed to the complete
phase separation between GA and HPMC and the relatively low viscosity of HPMC at these
conditions. These phenomena promote the self-aggregation of HPMC molecules, resulting
in increased local HPMC concentration and lower gelling temperatures. In the cooling
stage, hysteresis [41] and/or condensation of chains occurs at lower temperatures [22,23].
Therefore, G′ and G′′ crossover (tan δ = 1) is shifted to lower temperatures, resulting in
reversed sequences of gel-sol regions. The increase in melting temperature implies that
HPMC addition improves the thermal stability of gelatin gels.

Table 1. Melting temperatures, gelling temperatures, n, and S of GA and GA/HPMC blends.

System
Heating Stage Cooling Stage Frequency Sweep

Tmg (◦C) Tgh (◦C) Tmh Tgg n S

G6H0 30.71 ± 0.16 a - - 20.06 ± 0.54 0.020 ± 0.000 5400 ± 5
G6H1 31.29 ± 0.37 56.18 ± 0.18 37.85 ± 0.13 22.49 ± 0.34 0.027 ± 0.001 385 ± 1
G6H2 32.08 ± 0.19 58.79 ± 0.12 41.54 ± 0.49 22.73 ± 0.27 0.021 ± 0.001 740 ± 1
G6H3 32.68 ± 0.29 58.60 ± 0.20 40.70 ± 0.23 22.92 ± 0.36 0.019 ± 0.000 810 ± 0
G6H4 33.10 ± 0.40 64.45 ± 0.08 43.96 ± 0.31 23.33 ± 0.12 0.019 ± 0.000 970 ± 0
G6H5 33.20 ± 0.19 65.88 ± 0.23 43.37 ± 0.44 24.13 ± 0.32 0.019 ± 0.000 915 ± 1
G6H6 33.51 ± 0.11 65.89 ± 0.22 42.54 ± 0.14 25.32 ± 0.17 0.021 ± 0.000 1119 ± 1

a Mean ± standard deviation; (-) texture unsuitable for measurements.
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Figure 5. Variation of storage modulus (G′), loss modulus (G′′), and tan δ as a function of temperature
for solutions of GA and GA/HPMC blends.

The increase in the gelation temperature and thermal stability of gelatin in GA/HPMC
systems compared to the GA system is related to phase distribution (Figure 2) and local
polymer concentration. Each one of the two regions produced upon phase separation
is rich in one biopolymer but depleted in the other. This causes an increase in the local
concentration of the predominant biopolymer. One may assume that the self-association of
abundant GA chains in definite areas of the protein-rich phase contributes to the rheology
of the mixed systems.

3.4.2. Dynamic Mechanical Properties

Frequency sweep analyses were conducted on the co-hydrogels at room temperature
(25 ◦C), in the frequency (ω) range of 0.1–100 rad/s. The G (ω) versus ω plots shown in
Figure 6 bear the characteristic signature of the gel concerned. The storage modulus G′

is a measure of the elastic energy stored in the network. Therefore, higher G′ values are
indicative of stronger elastic networks. Herein, all investigated samples exhibited typical
solid-like behavior (G′ > G′′), irrespective of the frequency, and G′ values did not vary
markedly with frequency. The gelatin gel formed in the presence of HPMC was obviously
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weaker than that formed in the absence of the polysaccharide. This suggests that HPMC
disturbs the continuity of the gelatin network (shown in Figure 2) and thus decreases its
strength. During the period of gel formation, the loss modulus G” increased, indicating
that the viscous part of the system increased. It means that the viscoelasticity of gelatin
gels increases in the presence of HPMC, whereas the rigidity decreases. Meanwhile, the
melting temperature of GA/HPMC gels were higher than that of pure gelatin gel (seen in
Table 1). The interaction between GA and HPMC increased the thermal stability of gelatin
gel on one hand. On the other hand, the stiffness of gelatin was decreased.

Figure 6. Storage modulus (G′) and loss modulus (G′′) variation as a function of frequency for
GA and GA/HPMC mixed gels at 25 ◦C. The closed and open symbols correspond to G′ and G′′,
respectively.

The variation in storage modulus at low frequencies follows the power law given by
G′ = Sωn. The n and S parameters are both sensitive to the crosslinking density inside the
gel, with higher S values signifying “harder” gels. The data presented in Table 1 show that
n was close to 0 for all investigated samples, which confirms their solid-like behavior [42].
The S value of pure gelatin was much larger than the values of GA/HPMC blends, which
suggests that pure gelatin behaves more like a solid than the blends. Moreover, the S of
GA/HPMC blends increased from 385 to 1119, with increasing HPMC content from 1 to
6%. This increase may be attributed to the effect of increased biopolymer concentration
in promoting the entanglement of GA and HPMC chains. It may also be attributed to the
sharp microscopic phase separation observed at higher HPMC contents, which leads to
larger local biopolymer concentrations. Therefore, after quenching to below the gelation
temperature of GA, a stronger, more stable gel network was formed, with a higher melting
temperature for gelatin at higher HPMC contents.

3.5. SAXS Analysis of Phase Separation

To investigate the structural differences between the GA/HPMC hydrogels investi-
gated herein, their SAXS profiles were recorded at room temperature. The gel network of
each sample was determined based on the viscosity measurements and rheology analysis.
As shown in Figure 7, the recorded profiles exhibited clear differences, and the highest
value of scattering intensity as observed for the pure gelatin gel (G6H0). Comparatively,
the SAXS scattering intensities of GA/HPMC composite gels were very small, and they
decreased with increasing HPMC content. This indicates that the HPMC addition reduced
the electron density difference between the gel clusters and the matrix. Similarly, Guestaw
et al. [43] showed that the SAXS scattering intensities of WPI-xanthan gum blended gels
decreased upon the addition of xanthan gum to WPI, which suggests that the protein
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globules of the gel undergo aggregation. The scattering profiles of GA/HPMC hydrogels
were fitted across the entire q-range using the correlation length model equation [44]:

I(q) =
I(0)

1 + (ξq)m + bkg (3)

where I(0) is the scattering intensity extrapolated to the scattering vector q = 0, and ξ is
the correlation length that describes the distance at which adjacent polymer chains tend to
interact (ξ reflects the density of the tangled network in a semi-dilute polymer solution).
The Porod exponent, m, provides information regarding the local polymer structure [44,45].
Based on the values summarized in Table 2, the correlation length of pure gelatin was
3.66 nm, and the length of the GA/HPMC mixed gels decreased from 5.16 to 1.89 nm
with increasing HPMC concentration from 1 to 6%. The correlation length of G6H1 (5.16)
and G6H2 (4.80) were larger than that of G6H0 (3.66), which may have been due to the
interruption of gel network connectivity under the low HPMC contents. However, a much
denser network was formed at higher HPMC contents (G6H3, G6H4, G6H5, and G6H6).
On the one hand, the formation of a denser network can be attributed to protein molecule
aggregation. On the other hand, it may be attributed to the interaction between GA and
HPMC, such as the chain entanglement, which lead to the decreased correlation length.
The Porod exponent, m, of the GA/HPMC mixed gels ranged between 1.60 and 1.64, which
agrees well with the typical values determined for physical gels [46].

Figure 7. SAXS profiles of different GA/HPMC blended gels. The data are fitted based on the
correlation length model.

Table 2. Fitted SAXS parameters of GA and GA/HPMC blending gels.

System ξ (nm) m

G6H0 3.66 ± 0.10 d 2.01 ± 0.04 b

G6H1 5.16 ± 0.28 f 1.60 ± 0.03 a

G6H2 4.80 ± 0.34 e 1.62 ± 0.05 a

G6H3 3.06 ± 0.10 c 1.61 ± 0.03 a

G6H4 2.63 ± 0.14 b 1.60 ± 0.05 a

G6H5 1.90 ± 0.06 a 1.64 ± 0.05 a

G6H6 1.89 ± 0.06 a 1.63 ± 0.05 a

Different lowercase letters within each column indicate significant differences (p < 0.05) among the
different groups.

4. Conclusions

In this work, the gelation and phase behaviors of blended gelatin (cool-gel) and HPMC
(thermo-gel) systems were assessed by analyzing the phase diagram of these blends. The
obtained results show that the behavior of binary GA/HPMC systems changes from water-
in-water emulsion-like to a bi-continuous network whose microstructure clearly depends
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on the ratio of the two polymers. The formation of phase-separated networks is attributed
to the incompatibility between gelatin and HPMC, as well as to their reversed gelation be-
havior. The solid character of the mixed gels is correlated with the component constituting
the continuous phase, and the gel stability of gelatin gels has no significant changes with
increasing HPMC concentration. Based on the SAXS results obtained herein, larger HPMC
concentrations lead to structural changes in GA/HPMC mixed gels at various length scales.
These structural differences probably induce variations in rheological properties. The
elucidation of GA/HPMC interactions is a key element in formulating and controlling the
quality of manufactured foods, as well as in developing novel food processes and edible
film materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11010128/s1, Figure S1: Strain sweep curves of (a) 6% GA
and (b) 6% HPMC solutions recorded at 1 Hz and 25 ◦C. The solid and hollow symbols represent G′

and G′′, respectively.
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