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Abstract: Organic acids and soluble sugars are the major determinants of fruit organoleptic quality.
Additionally, DNA methylation has crucial regulatory effects on various processes. However, the
epigenetic modifications in the regulation of organic acid and soluble sugar accumulation in apple
fruits remain uncharacterized. In this study, DNA methylation and the transcriptome were compared
between ‘Honeycrisp’ and ‘Qinguan’ mature fruits, which differ significantly regarding soluble sugar
and organic acid contents. In both ‘Honeycrisp’ and ‘Qinguan’ mature fruits, the CG context had the
highest level of DNA methylation, and then CHG and CHH contexts. The number and distribution
of differentially methylated regions (DMRs) varied among genic regions and transposable elements.
The DNA methylation levels in all three contexts in the DMRs were significantly higher in ‘Honey-
crisp’ mature fruits than in ‘Qinguan’ mature fruits. A combined methylation and transcriptome
analysis revealed a negative correlation between methylation levels and gene expression in DMRs
in promoters and gene bodies in the CG and CHG contexts and in gene bodies in the CHH context.
Two candidate genes (MdTSTa and MdMa11), which encode tonoplast-localized proteins, potentially
associated with fruit soluble sugar contents and acidity were identified based on expression and
DNA methylation levels. Overexpression of MdTSTa in tomato increased the fruit soluble sugar
content. Moreover, transient expression of MdMa11 in tobacco leaves significantly decreased the pH
value. Our results reflect the diversity in epigenetic modifications influencing gene expression and
will facilitate further elucidating the complex mechanism underlying fruit soluble sugar and organic
acid accumulation.

Keywords: Malus domestica; DNA methylation; transcriptomics; transcript profiling; fruit acidity;
soluble sugar content

1. Introduction

Fruit taste is influenced by the content of organic acids, soluble sugars, and volatile
compounds, which also affects the overall fruit organoleptic quality [1,2]. The concentration
of soluble sugars and organic acids in ripening fruits depend on the balance between
biosynthesis, degradation, and vacuolar storage. Furthermore, different sugars, such as
sucrose, fructose, and glucose, impart significantly different sweetness [3,4]. Similarly,
the acidity varies substantially among citric, malic, and tartaric acids. Therefore, the
type, content, and relative proportion of organic acids and soluble sugars in mature fruits
determine the taste of the fruit. Accordingly, optimization of the organic acids and soluble
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sugars compositions has become a primary objective of fruit tree breeding programs
worldwide [5].

Apple (Malus domestica Borkh.) is an economically important fruit tree species in
temperate regions, and its fruits contain many components that are beneficial for human
health [6]. In apple fruit cells, most of the imported carbohydrates (sucrose and sorbitol)
arrive and are released from the companion cell–sieve element complex of the phloem [7].
Sucrose transporter (SUT) and sorbitol transporter (SOT) are used to transport sucrose
and sorbitol into the cytosol of parenchyma cells, respectively [7,8]. Additionally, cell wall
invertase can cleave the sucrose into fructose and glucose, which are then transported into
parenchyma cells based on the hexose transporter (HT) [9]. The soluble sugars entered into
parenchyma cells are fed into the Suc-Suc cycle or undergo ‘futile Suc recycling’ [10]. The
excess carbohydrates are converted into starch that is then stored in plastids or transported
into vacuoles [7]. The fructose 6-phosphate (F6P) derived from sugar metabolism is used
in glycolysis and in the tricarboxylic acid (TCA) cycle to produce energy and intermediates
used in other processes [7]. Malic acid, which is the predominant organic acid in mature
apple fruits, is mainly synthesized by malate dehydrogenase (MDH) in the cytosol and
degraded by MDH and the NADP-malic enzyme (NADP-ME) [2]. Malic acid is also
generated by the TCA cycle in the mitochondria and the glyoxylate cycle in glyoxysomes,
in which NAD-MDH and malate synthase are the crucial enzymes controlling malate
synthesis [11]. Malate can be degraded by two enzymes, namely NAD-ME in mitochondria
and NADP-ME in chloroplasts or the cytoplasm [12]. Most organic acids and soluble
sugars are stored in vacuoles [13]. The uptake of soluble sugars and organic acids by
vacuoles requires many transporters and proton pumps located in the tonoplast, including
the tonoplast sugar transporter (TST), vacuolar glucose transporter (vGT), and sugar will
eventually be exported transporter (SWEET), SUT, aluminum-activated malate transporter
(ALMT), P3-ATPase, and vacuolar ATPase (V-ATPase) [14]. The transient silencing of
PpTST1 significantly decreased the sugar content of peach fruits [15]. The SUT, vGT,
SWEET, and early response to dehydration 6-like transporter (ERDL6) genes also play roles
in soluble sugar transport across the tonoplast [8,16–18]. Furthermore, genes controlling
fruit acidity have been identified in apple including the Ma1 [19,20], SAUR, PP2C [21],
and Ma10 [22]. There is increasing evidence that transcription factors (i.e., MdMYB1 and
MdMYB73) also contribute to the regulation of fruit acidity [23,24]. While study in fruit of
these homologs first discovered in other species has begun, the mechanisms controlling
organic acid and soluble sugar synthesis, degradation and accumulation in apple fruits is
complex and remains unclear.

DNA methylation, which represents an epigenetic mark that is ubiquitous among eu-
karyotic species, can activate or silence gene transcription to regulate various processes [25].
In plants, DNA methylation occurs almost exclusively at cytosine residues [26]. Unlike
in animals, where DNA methylation often occurs in the CG context, the methylation in
plants occurs in the CG, CHG, and CHH (H = A, T, or C) contexts within various genomic
regions [27]. There are three major DNA transferases that transfer a methyl group to
cytosine: domain rearranged methyltransferase (DRM), methyltransferase 1 (MET1), and
chromomethylase (CMT) [28]. The methylation of CG and CHG is carried out by MET1
and CMT3, respectively [29,30], whereas DRM2 and CMT2 are responsible for methylation
of CHH [31]. De novo DNA methylation is mainly mediated by the RNA-directed DNA
methylation (RdDM) pathways, including the canonical and noncanonical RdDM path-
ways in plants. The RdDM pathways are highly complex, requiring additional key factors,
including RNA polymerase V and II [32]. During the plant life cycle, multiple processes
are regulated by DNA methylation, including vegetative phase transitions [33], embryo-
genesis [34], fruit peel coloration, and anthocyanin biosynthesis [35,36]. However, little is
known about methylation associated with organic acid and soluble sugar accumulation in
apple fruits.

In this study, the transcriptome and DNA methylome were analyzed in conjunction
with changes in the contents of soluble sugars and organic acids in the ‘Honeycrisp’ (HC)
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and ‘Qinguan’ (QG) apple cultivars. Analyses of global methylation and transcription
revealed a correlation between gene expression levels and methylation states across the
genomes. Two candidate genes, MdMa11 and MdTSTa, were identified that influence
organic acid and soluble sugar accumulation, respectively. The results revealed some of
the complex gene network involved in the regulation of organic acid and soluble sugar
accumulation in apple fruits.

2. Materials and Methods
2.1. Plant Materials and Treatment

Apple cultivars ‘HC’ and ’QG’ were grown at the Horticultural Experimental Station
of Northwest A&F University (Xianyang, Shaanxi Province, China) with annual mean
temperature 12.8 ◦C, average annual rainfall 699.4 mm and mean annual sunshine duration
1734.7 h. Mature fruits were collected at 90 days after full bloom (DAB) in 2019. Apple fruit
maturity was determined based on the seed color and starch iodine test results [37]. Fruit
samples were mechanically peeled, the fresh pulp was sliced into smaller pieces that were
immediately frozen in liquid nitrogen and then stored at −75 ◦C.

2.2. Measurement of Organic Acid and Soluble Sugar Contents

The organic acid and soluble sugar contents were determined using an HPLC system
according to previously reported [2,22]. All of the standards used in this study were
purchased from Sigma Chemical Company (St. Louis, MO, USA) and then dissolved in
ddH2O.

2.3. Bisulfite Sequencing (BS) Library Construction and Data Analysis

Genomic DNA was extracted from samples using a modified CTAB method. A total
of 5.2 mg genomic DNA was mixed with 26 ng lambda DNA and then sonicated with
the Covaris S220 ultrasonicator, which fragmented the DNA in to 200–300 bp segments.
Cytosine-methylated barcodes were ligated to the sonicated DNA, after which the DNA
fragments were treated twice with bisulfite using the EZ DNA Methylation-Gold kit (Zymo
Research, Orange, CA, USA). The methylated cytosines would be unmodified, whereas the
unmethylated cytosines were converted to uracil. A PCR was performed to construct the BS
sequencing library. The insert size was estimated using the Agilent Bioanalyzer 2100 system
(Agilent Technologies, Palo Alto, CA). Finally, the Illumina HiSeq 2500 platform (Novogene,
Beijing, China) was used for the paired-end sequencing of the BS library.

The quality of the raw reads was evaluated using FastQC (version 0.11.5). After
removing the low-quality reads and reads containing adapters from the raw reads, the
remaining clean reads were aligned to the GDDH13 apple draft genome [38]. The bisulfite-
converted versions (C-to-T and G-to-A) of the reference genome and sequencing reads
were obtained in a directional manner, and the bisulfite-converted apple reference genome
was indexed using Bowtie 2. The reads with a unique best alignment revealed by the
two alignment processes were then compared with the non-converted genomic sequence.
Based on these sequence comparisons, the methylated cytosine positions were determined.

To calculate the methylation level (ML), the reads were divided into multiple bins
(10 kb), and the sum of read with and without methylation counts in each bin was
calculated. The ML in each C site or bin was calculated using the following formula:
ML (C) = reads (mC)/reads (mC + C). Furthermore, the calculated ML was corrected as
follows: ML(corrected) = (ML − r)/(1 − r); r was considered as the bisulfite nonconversion
rate as previously described [39].

The DSS software was applied to identify the differentially methylated regions
(DMRs). A region at least three methylated cytosine sites in the CG, CHG, and CHH
contexts were considered ‘methylated’ with a threshold less than 10−5. The bases ex-
ceeding 99.9% coverage were removed to minimize errors. The RepeatMasker program
(http://www.repeatmasker.org/, 9 April 2019) was used to identify and annotate transpos-

http://www.repeatmasker.org/
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able elements (TEs) in the apple reference genome. Fisher’s exact test was used to detect
the differentially methylated TEs.

2.4. RNA Sequencing (RNA-Seq) and Identification of Differentially Expressed Genes (DEGs)

The NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA)
was used to construct RNA-seq libraries from 1 µg RNA. The libraries were sequenced
using the Illumina HiSeq 2000 platform (Illumina, San Diego, CA, USA) to produce 150-bp
paired-end reads. Clean reads were obtained after removing low-quality reads as well as
reads with adapters and poly-N sequences from the raw reads. The HISAT2 (version 2.0.5)
software was used for indexing the apple draft genome (GDDH13, https://iris.angers.inra.
fr/gddh13/) and for aligning the paired-end clean reads to the apple draft genome.

Gene expression levels were estimated according to the fragments per kilobase of tran-
script per million mapped reads (FPKM) values. The DEGSeq2 R package was performed
to analyze differential gene expression. The adjusted p-value was used to control the false
discovery rate (FDR).

2.5. Subcellular Localization of MdTSTa and MdMa11 in N. benthamiana Leaf Epidermal Cells

The full MdTSTa and MdMa11 coding sequences were amplified from the cDNA
template derived from ‘HC’ fruits, and then inserted into the pMDC83 vector for the
subsequent expression under the control of dual cauliflower mosaic virus (CaMV) 35S
promoters. The resulting constructs for the constitutive expression of the MdTSTa-GFP
and MdMa11-GFP fusion proteins were separately introduced into cells of Agrobacterium
tumefaciens strain GV3101 via electroporation, and then transiently transformed into N. ben-
thamiana leaves by infiltration of A. tumefaciens [20]. The infiltrated plants were cultivated in
a growth chamber at 24 ◦C with a 16-h light/8-h dark cycle. Vacuoles were extracted from
the transformed leaves. The GFP signal and chlorophyll autofluorescence were detected at
488 and 750 nm, respectively, using a Leica TCS SP8 confocal laser scanning microscope
(Leica, Weltzlar, Germany).

2.6. Functional Analysis of MdTSTa and MdMa11

The full MdTSTa coding sequence was inserted into the pHellsgate 2 expression vector.
The pHellsgate 2-MdTSTa recombinant plasmid was inserted into cells of A. tumefaciens
strain EHA105 via electroporation, and then transformed into the tomato (Solanum lycoper-
sicum L.) cultivar ‘Micro-Tom’ using by leaf disc infiltration [18]. The transgenic plants were
verified based on their kanamycin resistance and PCR sequencing analysis. Mature fruits
were randomly harvested from each line, with three replicates comprising approximately
10 fruits each. Fruit juice was collected, filtered through gauze, and centrifuged at 5000 × g
for 15 min. The supernatants were used to determine the fruit soluble sugar contents. The
full MdMa11 coding sequence was inserted into cells of the pMDC83 expression vector. The
pMDC83-MdMa11 recombinant plasmid was inserted into A. tumefaciens strain GV3101 via
electroporation for the transient transformation of tobacco described by Wang et al. [40].
Details regarding the primers used in this study are listed in Table S1.

3. Results
3.1. Phenotypic Difference between ‘HC’ and ‘QG’ Mature Apple Fruits

Mature ‘HC’ and ‘QG’ apple fruits were harvested at 90 DAB. The phenotypic charac-
teristics of the fruits are presented in Figure 1. The ‘HC’ and ‘QG’ mature fruits were similar
in size, including the longitudinal and transverse diameters (Figure 1A). However, there
were significant differences in the organic acids and soluble sugars contents (Figure 1B).
The fructose, sucrose, sorbitol, and total sugar contents were higher in ‘HC’ mature fruits
than in ‘QG’ mature fruits. Additionally, ‘HC’ mature fruits were significantly more acidic
than ‘QG’ mature fruits, with the average malic acid content of ‘HC’ mature fruits more
than 1.9-times greater than that of ‘QG’ mature fruits.

https://iris.angers.inra.fr/gddh13/
https://iris.angers.inra.fr/gddh13/
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3.2. Genome-Wide Methylation Profiles in ‘HC’ and ‘QG’ Mature Fruits

To investigate the methylation patterns in ‘HC’ and ‘QG’ mature fruits, Bisulfite se-
quencing (BS) libraries were constructed and sequenced using the Illumina HiSeq 2500 plat-
form. A total of 109,036,039 and 83,861,672 raw reads (approximately 32.71 and 25.16 Gb
of data) were obtained for the ‘HC’ and ‘QG’ mature fruits, respectively (Table S2). After
removing reads with low-quality and the adapters, 107,405,734 and 82,887,115 clean reads
(approximately 29.52 and 22.77 Gb of data) remained for the ‘HC’ and ‘QG’ mature fruits,
respectively. The datasets provided more than 20× deep coverage and a 99.8% bisulfite
conversion rate.

Figure 1. Phenotypes of ‘Honeycrisp’ (‘HC’) and ‘Qinguan’ (‘QG’) mature fruits. (A) Morphological
characteristics of ‘HC’ and ‘QG’ mature fruits. (B) Soluble sugar and malic acid contents of ‘HC’ and
‘QG’ mature fruits. Double asterisks (**) represent significant differences between ‘HC’ and ‘QG’
mature fruits (t-test, p < 0.01).

Approximately 90.64% and 93.65% of the sequenced bases had a quality score greater
than Q30. The GC contents of the sequenced bases for ‘HC’ and ‘QG’ were 23.03% and
23.87%, respectively (Table S2). Of the clean reads from ‘HC’ and ‘QG’ mature fruits, 46.47%
(49,911,444) and 56.22% (46,599,136) respectively, were uniquely aligned to the GDDH13
apple draft genome. Details regarding genome coverage, the accumulative fraction of
CX (%), the depth and proportion of covered bases, and the insert size distribution are
presented in Table S3 and Figure S1.

The whole-genome DNA methylation patterns in CG, CHH and CHG context were
analyzed for the ‘HC’ and ’QG’ mature fruits (Figure S2). The chromosomal distribution of
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each context, the density of TEs or mClevels, and gene or mC densities for each chromosome
were evaluated (Figures S2A,B and S3A,B). Circos plots revealed significant differences
in various chromosomal regions (Figures S2A,B and S3A,B). The estimated methylation
rates in each context revealed that the methylation rate was higher for CHH (61.04% and
55.59% in ‘HC’ and ‘QG’ mature fruits, respectively) than for CG (21.07% and 24.13% in
‘HC’ and ‘QG’ mature fruits, respectively) or CHG (17.88% and 20.27% in ‘HC’ and ‘QG’
mature fruits, respectively) (Figure S2C). Additional details regarding the methylation
rates and distribution of methylation levels in each context among the chromosomes in
‘HC’ and ‘QG’ mature fruits are presented in Figures S2D and S4A,B. An analysis of the
methylation level and density in all three contexts indicated that, in both ‘HC’ and ‘QG’
mature fruits, the CG context had the highest methylation level (48.12% and 50.69% for
‘HC’ and ‘QG’, respectively), and then the CHG context (32.74% and 35.55% for ‘HC’ and
‘QG’, respectively). The mean methylation level in the CHH context was lowest (9.84% and
11.10% for ‘HC’ and ‘QG’, respectively) (Figures S2E and S4C). Similar variations were
detected for the methylation density (Figures S2E and S4D).

3.3. Distribution of DNA Methylation among Gene Features and TEs

The distribution of DNA methylation was analyzed in the ‘HC’ and ‘QG’ mature fruits.
Significant differences were detected among gene features [i.e., promoters, introns, exons, 3′

and 5′untranslated regions (UTRs), and repeats] based on a heat map analysis (Figure S2F).
The DNA methylation levels in CG, CHG, and CHH context were highest in the repeat
regions, and then in the promoter, intron, and exon regions (Figures S2F and S5A,B). The
DNA methylation levels in both CHG and CHH contexts were significantly lower in
the gene bodies than that in 2 kb downstream and upstream regions of gene bodies in
both fruit (Figure S5C,D). The differences in the DNA methylation between ‘HC’ and
‘QG’ mature fruits are presented in Figure 2. Circos plots revealed significant differences
between ‘HC’ and ‘QG’ mature fruits in all three contexts in various regions (Figure 2A).
Interestingly, the DNA methylation levels in all three contexts in the promoters were
significantly higher in ‘HC’ than in ‘QG’ (Figure 2B). Similar results were observed for
the CHH context in the repeat regions as well as for the CHG and CG contexts in the
intron (Figure 2B). Furthermore, the DNA methylation levels in each context in upstream
region of the transcriptional start site (TSS) and downstream region of the transcriptional
termination site (TTS) and in gene bodies were higher in ‘HC’ mature fruits than in ‘QG’
mature fruits (Figure 2C), especially in the CHH context in downstream region of the TTS
and upstream region of the TSS and in the CHG context in gene bodies (Figure 2C).

The methylation levels of TEs, including DNA, helitron, long interspersed nuclear
element (LINE), and long terminal repeat (LTR) sequences, were significantly different
between various regions (i.e., gene body, downstream and upstream regions) (Figure S6).
The methylation levels in the CG and CHG contexts in the DNA, LTR and LINE TEs in
the 2-kb flanking upstream and downstream regions were significantly higher in the ‘QG’
mature fruits than in the ‘HC’ mature fruits. The methylation levels in the CHG and CG
contexts in helitron TEs in the 2-kb flanking regions and the gene bodies were significantly
higher in the ‘QG’ mature fruits than in the ‘HC’ mature fruits (Figure S6). The methylation
levels in the CHH context in all TEs were significantly higher in ‘QG’ mature fruits than in
‘HC’ mature fruits (Figure S6).
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Figure 2. Comparison of the methylation in the CG, CHG, and CHH contexts in various genomic regions between ‘HC’
and ‘QG’ mature fruits. (A) Circos plots comparing the DNA methylation levels between ‘HC’ and ‘QG’ mature fruits.
(B) Comparison of the DNA methylation patterns in various genomic regions between the mature fruits of ‘HC’ (green
lines) and ‘QG’ (orange lines). (C) Comparison of the methylation levels in the upstream or downstream regions and gene
bodies between the mature fruits of ‘HC’ (green lines) and ‘QG’ (orange lines). Solid lines, mCG; dash lines, mCHG; mixed
line, mCHH. TSS, transcriptional start site; TES, transcriptional end site.

3.4. Identification and Analyses of the Distribution and Functions of the Differentially Methylated
Regions (DMRs) between ‘HC’ and ‘QG’ Mature Fruits

The DMRs were identified based on a comparison of the DNA methylation levels
between ‘HC’ and ‘QG’ mature fruits (‘HC’ vs ‘QG’) (Figures 3 and S7). The distribution of
DNA methylation in all three contexts in the ‘HC’ vs ‘QG’ comparison (Figures 3A and S3C)
exhibited significant differences among the whole genome. Venn diagrams were con-
structed to present the distribution of DMRs containing ‘HC’ vs ‘QG’ DMR genes and
promoters in all three contexts (Figure 3B). For the CG, CHG, and CHH contexts, a total of
3161, 1585, and 2495 DMRs in genes and 2547, 2852, and 2285 DMR promoters, respectively,
were identified in the ‘HC’ vs ‘QG’ comparisons. The DMRs and their methylation levels
in the CG, CHH and CHG contexts (FDR < 0.05) for the ‘HC’ vs ‘QG’ comparison group
were visualized as heat maps (Figure 3C). The methylation levels in all three contexts
in the DMRs were significantly higher in ‘HC’ mature fruits than in ‘QG’ mature fruits
(Figure 3D). An examination of the DMRs in all three contexts in various genic regions in-
dicated that the number of DMRs in the CG, CHH and CHG contexts differed significantly
in the promoter, TSS, TTS, exon, repeat, intron, 3′/5′-UTR, and other regions (Figure 3E).
In all genic regions, fewer hypermethylated DMRs than hypomethylated DMRs in all three
contexts were observed. There were more DMRs (hypomethylated/hypermethylated) in
the CG, CHH, and CHG contexts in the TSS, TTS, and 3′/5′-UTR regions than in the other
examined regions.
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Figure 3. DMRs between ‘HC’ and ‘QG’ mature fruts. (A) Circos plot presenting the hyper- and hypo-DMRs in the CG,
CHH, and CHG contexts between ‘HC’ and ‘QG’ mature fruits. (B) Venn diagrams of the DMRsin genes and DMRsin
promoters between ‘HC’ and ‘QG’ mature fruits. DMRs in the center would contain all three methylation types (CG, CHH,
and CHG). (C) Heat maps clustering the DMRs in the CG, CHH, and CHG contexts between ‘HC’ and ‘QG’ mature fruits.
(D) Violin plots comparing the DMRs in the CG, CHH, and CHG contexts between ‘HC’ and ‘QG’ mature fruits. (E) Number
of DMRs in the CG, CHH, and CHG contexts in various genomic regions in ‘HC’ and ‘QG’ mature fruits.

3.5. Analysis of the Association between the Transcriptome and DNA Methylation

To elucidate the relationship between DNA methylation and gene expression in ma-
ture apple fruits, the correlation between gene expression levels and the methylation levels
in all three contexts was analyzed. The fruit transcriptome analysis was completed using
the same ‘HC’ and ‘QG’ mature fruits that were used for the BS sequencing. Details regard-
ing the RNA-seq data for the ‘HC’ and ‘QG’ mature apple fruits are listed in Table S4. Heat
maps were constructed for the differentially expressed genes (DEGs) between ‘HC’ and ‘QG’
mature apple fruits (Figure S8A). A total of 22,657 (11,219 upregulated and 11,438 downreg-
ulated) DEGs in the ‘HC’ vs ‘QG’ comparison group were identified (p < 0.05) (Figure S8B).
Circos plots of the genome-wide methylation intensities and distribution of the whole
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transcriptome reads revealed significant differences between ‘HC’ and ‘QG’ mature apple
fruits (Figure S8C,D). The correlation between gene expression and DMR methylation
levels was analyzed (Figures S9 and S10). A negative correlation was detected in gene body
and promoter DMRs in all three contexts (Figure S9A–J). In contrast, a positive correlation
was detected in promoter DMRs in the CHH context (Figure S9K,L). Furthermore, the
gene expression levels were divided into the quartiles according to their FPKM values
(Figure S10A). High gene expression levels were accompanied by low methylation levels
in the CG and CHG contexts in the regions downstream of the TTS as well as in the CHG
and CHH contexts in the gene bodies in both the ‘HC’ and ‘QG’ mature fruits (Figure S10A).
However, the genes with high methylation levels were the most highly expressed genes in
the CG context in the downstream regions of the TTS and in the CHH context in the pro-
moter regions (upstream of the TSS) in both the ‘HC’ and ‘QG’ mature fruits. Interestingly,
the genes with the least methylation levels accompanied by the lowest expression levels in
the CG context in the gene body region in both ‘HC’ and ‘QG’ mature fruits (Figure S10A).

To further investigate the correlation between gene expression and methylation levels,
the methylated genes were divided into the five groups according to the methylation levels
of promoter and gene body (Figure S10B). The genes with the highest methylation levels
(group 5) in the CHG and CHH contexts (the bottom two rows of panels) in the gene
body regions (left two panels) had the lowest expression levels in both the ‘HC’ and ‘QG’
mature fruits, and the genes with the lowest methylation levels in the CG context in gene
body regions (group 1) had the lowest expression levels in both the ‘HC’ and ‘QG’ mature
fruits (Figure S10B). This indicated that the methylation level within genic regions in the
CHH and CHG contexts was negatively correlated with gene expression level, whereas
methylation level of gene body regions in the CG context was positively correlated with
gene expression level. A similar finding was obtained for the CHG and CG contexts in the
promoter regions. Thus, the gene expression and methylation levels were inversely related
in both the ‘HC’ and ‘QG’ mature fruits (Figure S10B). In contrast, genes which contained
highest methylation levels in the promoter regions in the CHH context (group 5), had the
highest expression levels, implying the gene expression level is positively correlated with
methylation level in promoter regions.

3.6. Differences in the Expression and Methylation Levels of Genes Involved in Soluble Sugar and
Organic Acid Metabolism between ‘HC’ and ‘QG’ Mature Fruits

To clarify the mechanisms underlying the organic acids and soluble sugars metabolism
in ‘HC’ and ‘QG’ mature fruits, the methylation and expression levels of related genes
were analyzed. The expression of 91 analyzed genes differed significantly (Figure S11A).
The expression levels of sugar metabolism-related genes (e.g., cell wall invertase and
fructokinase genes) were significantly higher in ‘QG’ mature fruits than in ‘HC’ mature
fruits (Figure S11A, Table S5). Many sugar transporters (e.g., SWEET and HT genes) were
also higher expressed in ‘QG’ mature fruits than in ‘MC’ mature fruits. The expression
levels of other sugar metabolism-related genes and sugar transporter genes, including
those encoding a sucrose synthase, hexokinase, sorbitol dehydrogenase, SUT, and SOT,
also differed between ‘HC’ and ‘QG’ mature fruits (Figure S11A, Table S5). There were
32 genes related to organic acid metabolism (four cytMDH, four mitMDH, four mitME,
three PDH, two CS, three ACO, and three IDH genes) expressed at lower levels in ‘HC’
mature fruits than in ‘QG’ mature fruits. However, the opposite pattern of expression
was detected for four cytME genes. Furthermore, six phosphoenolpyruvate carboxykinase
(PEPC) genes were differentially expressed between ‘HC’ and ‘QG’ mature fruits. Among
these six PEPC genes, lower expression levels of one PEPC3 and three PEPC1 genes in
‘HC’ mature fruits than in ‘QG’ mature fruits were observed, whereas two PEPC4 genes
were lower expressed in mature fruits of ‘QG’ than of ‘HC’. Similar results were obtained
for ATP-citratelyase (ACL) and chlME genes. Additionally, one gene encoding a plasma
membrane-localized ALMT and four genes encoding a chloroplast membrane-localized
ATPase were expressed at higher levels in ‘QG’ mature fruits than in ‘HC’ mature fruits
(Figure S11A, Table S5). Higher methylation levels in the CHH context in promoters and in
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the CG context in gene bodies were positively associated with gene expression in ‘HC’ and
‘QG’ mature fruits (Figure S11B–D). However, the methylation levels in the CHH context
in introns were negatively associated with gene expression in ‘HC’ and ‘QG’ mature fruits
(Figure S11C).

3.7. Vacuolar Transporter Genes: Differences in the Expression and Methylation Levels between
‘HC’ and ‘QG’ Mature Fruits

Organic acids and soluble sugars in fruit cells accumulate in vacuoles. The vacuolar
storage of organic acids and soluble sugars requires many transporters and proton pumps
in the tonoplast [e.g., SWEET, ALMT, V-ATPase, AVA, TST, vGT, SUT, and tonoplast di-
carboxylate transporter. A total of 64 genes related to soluble sugar transporters, organic
acid transporters, and proton pumps were differentially expressed between ‘HC’ and ‘QG’
mature fruits (Figure 4A). Among these 64 DEGs, all six TST-encoding genes involved
in sucrose, fructose, and glucose transport into vacuoles were more highly expressed in
‘HC’ mature fruits than in ‘QG’ mature fruits. The SUT and acid invertase genes were also
expressed at higher levels in ‘HC’ mature fruits than in ‘QG’ mature fruits. Additionally,
two vGT genes, one SWEET gene, and four ERDL6 genes were more highly expressed
in ‘HC’ mature fruits than in ‘QG’ mature fruits, whereas the opposite patterns were
detected for two vGT genes, one SWEET gene, and five ERDL6 genes. Furthermore, 31
DEGs related to organic acid transport and proton pumps were identified, of which one
gene (MD17G1155800) encoding a P3A-ATPase (designated as Ma11) and Ma1 gene were
expressed at significantly higher levels in ‘HC’ mature fruits than in ‘QG’ mature fruits. Pre-
vious research confirmed Ma1 as a major gene controlling fruit acidity (Figure 4A) [19,20].
The methylation levels of seven transporter and proton pump genes were significantly
lower in ‘HC’ mature fruits than in ‘QG’ mature fruits (Figure 4B), which contributed to
the higher expression levels of these genes in ‘HC’ mature fruits than in ‘QG’ mature fruits
(Table S5). The opposite patterns of methylation and expression were detected for three
other genes (Figure 4B, Table S5). The examination of the association between methylation
levels in each context (CG, CHH, and CHG) and gene expression levels indicated that
high methylation levels in promoters in the CHH context was positively associated with
gene expression levels (Figure 4C). However, the methylation level in the CG context in
promoters was not associated with gene expression (Figure 4D).

Figure 4. Expression and methylation levels of genes involved in soluble sugar and organic acid
transport into vacuoles. (A) Differentially expressed genes involved in organic acid and soluble sugar
transport between ‘HC’ (left 3 boxes) and ‘QG’ (right 3boxes) mature fruits. (B) Cluster analysis of
differentially methylated genes. (C,D) IGV snapshots of DNA methylation and gene expression in
‘HC’ and ‘QG’ mature fruits.
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3.8. Identification and Functional Analysis of Genes Involved in Soluble Sugar Accumulation

Because soluble sugars are mainly stored in vacuoles, we focused on identifying
candidate genes encoding tonoplast-localized proteins that are expressed in both ‘HC’ and
‘QG’ mature fruits, but at significantly different levels. Among the DEGs involved in the
transport of soluble sugars across the tonoplast, one TST gene (MdTSTa; MD05G1139800)
was expressed in both ‘HC’ and ‘QG’ mature fruits, but at significantly different levels
(Figure 5A). The methylation levels of the MdTSTa promoter and gene body were analyzed.
The methylation level in the CHH context in the MdTSTa promoter was higher in ‘HC’
mature fruits than in ‘QG’ mature fruits (Figure 5B). To determine the subcellular local-
ization of MdTSTa, the MdTSTa-GFP fusion construct was expressed in N. benthamiana
leaves. Protoplasts were isolated from the transiently transformed leaves and then lysed to
release the intact vacuoles (Figure 5C). The MdTSTa-GFP fusion proteins were detected in
the tonoplast (Figure 5C). The effects of MdTSTa overexpression (OE) on the soluble sugar
concentration were evaluated in transgenic tomato plants. The fruits of three MdTSTa-OE
lines were similar in size to the wild-type fruits (Figure 5D). An RT-PCR analysis indicated
that MdTSTa was highly expressed in the transgenic fruits (Figure 5E). The soluble sugar
contents, including glucose, fructose, and sucrose, in the wild-type and transgenic fruits
are presented in Figure 5F. The average sucrose, fructose, glucose, and total soluble sugar
contents were significantly higher in the transgenic fruits than in the wild-type fruits
(Figure 5F). These observations suggested that MdTSTa is important for the accumulation
of soluble sugars in fruits.

Figure 5. Functional characterization of MdTSTa. (A) MdTSTa expression levels in ‘HC’ and ‘QG’
mature fruits. (B) Differences in the methylation level of the MdTSTa promoter in the CHH context
between ‘HC’ and ‘QG’ mature fruits. (C) Tonoplast localization of the MdTSTa-GFP fusion protein
in vacuoles, which were obtained after transiently transformed N. benthamiana protoplasts were lysed.
Bars represent 10 µm. (D) Mature tomato fruits from wild-type and 35S: MdTSTa transgenic lines.
(E) MdTSTa expression in wild-type and transgenic tomato based on RT-PCR data. (F) Soluble sugar
contents in the mature tomato fruits of wild-type and transgenic lines. WT: wild-type; T1, T2, and
T3: 35S: MdTSTa transgenic lines. Double asterisks (**) represent significant differences between
wild-type and transgenic fruits (t-test, p < 0.01).

3.9. Identification of a Candidate Gene Affecting Vacuolar Acidity

As mentioned above, one gene (MdMa11) encoding a P3A-ATPase exhibited signif-
icantly higher gene expression levels in ‘HC’ mature fruits than in ‘QG’ mature fruits
(Table S5). The DNA methylation levels in the CG, CHH, and CHG contexts in different
MdMa11 genomic regions were investigated. The methylation levels in the CHH con-
text in the MdMa11 promoter were higher in ‘QG’ mature fruits than in ‘HC’ mature
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fruits (Figure 6A). During the examination of the subcellular localization of MdMa11,
the MdMa11-GFP fusion protein was detected in the tonoplast (Figure 6B). To determine
whether MdMa11 overexpression affects vacuolar acidity, MdMa11 was transiently ex-
pressed in tobacco leaves. No significant morphological differences were observed between
wild-type and transiently transformed tobacco leaves (Figure 6C). The results of an RT-PCR
analysis confirmed that MdMa11 was highly expressed in the transiently transformed to-
bacco leaves (Figure 6D). The pH values of the tobacco leaves transiently transformed with
MdMa11 or the empty vector were measured (Figure 6E). The average pH of the tobacco
leaves transiently transformed with MdMa11 was 5.69, which was significantly lower than
that in the tobacco leaves carrying the empty vector (5.92). These results suggested that
MdMa11 has functions that modulate vacuolar acidity.

Figure 6. Functional characterization of MdMa11. (A) Differences in the methylation of the MdMa11
promoter in the CHH context between ‘HC’ and ‘QG’ mature fruits. (B) Tonoplast localization of
the MdMa11-GFP fusion protein in vacuoles, which were obtained after transiently transformed
N. benthamiana protoplasts were lysed. Bars represent 10 µm. (C) Transiently transformed tobacco
leaves. CK represents tobacco leaves transformed with the empty vector, whereas T1, T2, and T3
represent tobacco leaves transformed with MdMa11. (D) Analysis of MdMa11 expression in tobacco
leaves transiently transformed with the empty vector (CK) or MdMa11 (T1, T2, and T3) based on
RT-PCR data. (E) Analysis of the pH of tobacco leaves transiently transformed with the empty vector
(CK) or MdMa11 (T1, T2, and T3). Double asterisks (**) indicate significant differences in the pH
of tobacco leaves transiently transformed with the empty vector (CK) or MdMa11 (T1, T2, and T3)
(t-test, p < 0.01).

4. Discussion

Apple is an important fruit crop which widely cultivated in temperate regions world-
wide. Moreover, apple fruits are very popular among consumers because of their high
organoleptic quality, which is mainly influenced by soluble sugars and organic acids [1,2,41].
For many biological processes, DNA methylation is critical, and disruptions to DNA methy-
lation can lead to abnormal phenotypes in plants [38]. The methylation of DNA at the 5′

position of cytosines is the predominant epigenetic modification regulating nuclear gene
expression and genome stability [42]. Therefore, the epigenetic modifications in apple
fruits with different organic acid and soluble sugar contents were investigated to clarify
the epigenetic regulation of organic acid and soluble sugar metabolism and to identify the
specific mechanism underlying these fruit traits.

Because of the advances in high-throughput sequencing technology, whole-genome BS
has become a particularly powerful method for elucidating novel regulatory mechanisms
mediating various biological processes, including fruit ripening, imprinting, seed develop-
ment, and responses to environmental stimuli [42,43]. However, the epigenetic regulation
of organic acid and soluble sugar metabolism in apple fruits remains unclear. In the current
study, we conducted a genome-wide analysis of the DNA methylation in ‘HC’ and ‘QG’
mature fruits and sought epigenetic variations between the two cultivars. The methylation
levels were approximately 49%, 34%, and 10% in the CG, CHG, and CHH contexts, respec-
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tively (Figure S2E). These results were consistent with those of earlier investigations on
rice, soybean, poplar, and Arabidopsis thaliana [33]. The highest relative proportion of mCs
was observed in the CHH context (Figure S2C), which is in accordance with the findings
of previous studies on poplar and birch, but differs from the results of earlier research
involving A. thaliana and rice, in which the mCs ratio was highest in the CG context [44].
Genomic stability may decrease because of the new copies of retrotransposons insertion
or the DNA transposons relocation. In the A. thaliana genome, TE-containing regions are
heavily methylated in CG, CHG, and CHH contexts [42,45]. Similarly, in the current study,
the methylation levels in all three contexts were positively related with the TE density, but
negatively related with gene abundance (Figure S2A) [43]. These results imply that DNA
methylation sites mainly contribute to the maintenance of genome stability.

In plants, the precise molecular mechanisms underlying transcriptional control have
not been comprehensively characterized, but the regulation of gene expression by DNA
methylation in various regions has been investigated [36]. The methylation of promoters
usually inhibits transcription. A recent genome-wide analysis of methylation revealed the
complexity of the relationship between DNA methylation in promoters and gene expres-
sion [42]. In our study, the promoter methylation in the CHG and CG contexts was usually
negatively related with gene expression, in contrast to the positive correlation between
gene expression and the promoter methylation in the CHH context (Figure S9). Presum-
ably, the promoter methylation directly represses transcription by inhibiting the binding
of transcriptional activators or by promoting the binding of transcriptional repressors,
and indirectly represses transcription by regulating the histone modifications [42,46]. It
remains unknown how promoter methylations promote gene expression. Furthermore, the
methylation of gene bodies was thoroughly investigated in the apple fruits. In contrast to
transposons, promoters, and repeating sequences, which are highly methylated in all three
contexts (CG, CHH, and CHG), we observed that gene bodies were mainly methylated in
the CG context (Figures 2B, S6 and S10A), which is consistent with the previous finding [47].
The negative correlation between the methylation of gene bodies and gene expression was
revealed in this study (Figure S9) as well as in a recent study [33]. However, earlier research
suggested that methylated gene bodies are expressed at higher levels than unmethylated
gene bodies in A. thaliana [45]. This discrepancy might be because of species-specific gene
body methylations.

Apple fruit acidity and sweetness are complex quantitative traits that are determined
by organic acid and soluble sugar contents, respectively. In the current study, the methyla-
tion and expression of genes involved in organic acid and soluble sugar metabolism and
transport were investigated (Figures 4 and S11, Table S5). Some genes were associated
with hyper- and hypo- methylated regions, and many downregulated and upregulated
genes varied considerably in terms of methylation levels (Figure 4D), implying complicated
regulation of gene expression by DNA methylation. Earlier research proved that the over-
expression of TST genes can increase the accumulation of sugars in vacuoles [15,48]. In our
investigation, the overexpression of one candidate gene (MdTSTa) increased the fructose,
glucose, sucrose, and total soluble sugar contents in tomato fruits (Figure 5). In mature
fruits, the methylation level in the CHH context in the MdTSTa promoter was higher in ‘HC’
than in ‘QG’ fruits, indicating that MdTSTa modulates the apple fruit soluble sugar content
via DNA methylation changes. The predominant organic acid in apple fruits is malic acid,
which it is mainly stored in vacuoles [2,49]. The ‘acid trap’ mechanism enables the accumu-
lation and maintenance of malic acid in vacuoles in apple fruit cells [11,22]. The expression
of the Ma1 gene reportedly increases the uptake of malate by vacuoles, thereby influencing
the acidity of mature apple fruits [19,20]. Gene expression analysis revealed that Ma1 was
more highly expressed in ‘HC’ mature fruits than in ‘QG’ mature fruits, indicating that
more malate was transported into the vacuoles of ‘HC’ mature fruit cells than into the
vacuoles of ‘QG’ mature fruit cells. To maintain the electroneutral state of vacuoles, cations
(e.g., H+ or mineral cations) should be transported into vacuoles. In the current study, a
gene encoding a tonoplast-localized P3A-ATPase (MdMa11, which is homologous to Ma10)
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was confirmed to influence apple fruit acidity (Figure 6). The methylation level in the CHH
context in the MdMa11 promoter was lower in ‘HC’ mature fruits than in ‘QG’ mature
fruits, which is consistent with the findings of a recent study [36]. However, inconsistent
results were obtained for MdTSTa (Figures 5 and S9K–L). This discrepancy might be related
to the precise molecular mechanisms underlying the transcriptional control resulting from
DNA methylations. The regulation of gene expression by DNA methylation may occur via
the methylation of the gene itself (cis-element) and/or the methylation of a distal genomic
site [50].

In summary, the data presented herein confirmed the importance of epigenetic mod-
ifications for apple fruit soluble sugar and organic acid accumulation. Moreover, we
demonstrated that overexpressing MdTSTa and MdMa11 can increase the soluble sugars
concentration and vacuolar acidity, respectively (Figures 5 and 6). Earlier studies proved
that the Ma1 gene encodes a tonoplast-localized protein that is significantly associated
with the malic acid content (i.e., fruit acidity). Thus, we propose that soluble sugars and
organic acids accumulate in vacuoles via MdTSTa and the interaction between MdMa11 and
MdMa1 (Figure 7). The results form the basis of future studies aimed at comprehensively
characterizing the complex mechanism regulating apple fruit acidity.

Figure 7. Proposed model for the epigenetic regulation of organic acid and soluble sugar in ‘HC’
and ‘QG’ mature fruits. Methylation levels are higher in ‘QG’ mature fruits than in ‘HC’ mature
fruits. Additionally, MdTSTa mediates the transport of soluble sugars from the cytosol into the
vacuole, whicle MdMa1 and MdMa11 transport malic acid and protons into the vacuole, respectively.
Upregulated MdTSTa, MdMa1, and MdMa11 expression levels tend to result in higher vacuolar
soluble sugar and malic acid concentrations in ‘HC’ mature fruits than in ‘QG’ mature fruits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10092198/s1, Figure S1. Characterization of bisulfite sequencing data in ‘HC’ and ‘QG’
mature fruits; Figure S2. Details regarding the ‘HC’ and ‘QG’ mature fruit epigenomes; Figure S3.
Detail information of epigenome in ‘HC’ and ‘QG’ mature fruits; Figure S4. Methylation patterns of
CG, CHG and CHH contexts in ‘HC’ and ‘QG’ mature fruits; Figure S5. DNA methylation pattern in
different genomic regions in ‘HC’ and ‘QG’ mature fruits; Figure S6. Methylation patterns of TEs in
‘HC’ and ‘QG’ mature fruits. U and D: 2 kb upstream and downstream regions, respectively; G: gene
body regions; Figure S7. Distribution of DMR lengths in the CG, CHG, and CHH contexts in ‘HC’
and ‘QG’ mature fruits; Figure S8. Differentially expressed genes (DEGs) between ‘HC’ and ‘QG’
mature fruits; Figure S9. Association analysis between DNA methylation levels and gene expression
of CH, CHG and CHH contexts in DMR gene bodies and DMR promoters between ‘HC’ and ‘QG’
mature fruits; Figure S10. Correlation between DNA methylation and gene expression in ‘HC’ and
‘QG’ mature fruits; Figure S11. Expression and methylation levels of genes involved in soluble sugar
and organic acid metabolism; Table S1. Primer sequences used in this study; Table S2. Details of the
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bisulfite sequencing data for the ‘HC’ and ‘QG’ mature apple fruits; Table S3. Genome coverage in
‘HC’ and ‘QG’ mature fruits; Table S4. Details of RNA sequencing data for the ‘MC’ and ‘QG’ mature
apple fruits; Table S5. Expression level of soluble sugar and organic acid related genes between ‘HC’
and ‘QG’ mature fruits.
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