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Abstract: In this work, a retrospective screening based on ultra-high-performance liquid chroma-
tography (UHPLC) coupled with high-resolution mass spectrometry (HRMS) based on Orbitrap-Q-
Exactive Focus™ was used to check the occurrence of regulated and emerging mycotoxins in bulk 
milk samples. Milk samples were collected from dairy farms in which corn silage was the main 
ingredient of the feeding system. The 45 bulk milk samples were previously analyzed for a detailed 
untargeted metabolomic profiling and classified into five clusters according to the corn silage con-
tamination profile, namely: (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels 
of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high 
levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. 
Multivariate statistics based on both unsupervised and supervised analyses were used to evaluate 
the significant fold-change variations of the main groups of mycotoxins detected when comparing 
milk samples from clusters 3, 4, and 5 (high contamination levels of the corn silages) with cluster 1 
and 2 (low contamination levels of the corn silages). Overall, 14 compounds showed a significant 
prediction ability, with antibiotic Y (VIP score = 2.579), bikaverin (VIP score = 1.975) and fumonisin 
B2 (VIP score = 1.846) being the best markers. The k-means clustering combined with supervised 
statistics showed two discriminant groups of milk samples, thus revealing a hierarchically higher 
impact of the whole feeding system (rather than the only corn silages) together with other factors 
of variability on the final mycotoxin contamination profile. Among the discriminant metabolites we 
found some Fusarium mycotoxins, together with the tetrapeptide tentoxin (an Alternaria toxin), the 
α-zearalenol (a catabolite of zearalenone), mycophenolic acid and apicidin. These preliminary find-
ings provide new insights into the potential role of UHPLC-HRMS to evaluate the contamination 
profile and the safety of raw milk to produce hard cheese. 

Keywords: milk metabolomics; retrospective screening; UHPLC-Orbitrap; multivariate statistics; 
mycotoxins 
 

1. Introduction 
Milk is an important constituent of the human diet in the Western world [1]. In recent 

decades, world milk production has increased by over 60%, from 522 million tonnes in 
1987 to 843 million tonnes in 2018 [1]. As recently reviewed [2,3], the spectrum of milk 
metabolites can be deeply influenced by several external factors, such as the season, 
origin, health status, processing, storage, formulation, and feeding systems.  

In this regard, one of the major concerns when considering the feeding system is re-
lated to the potential contamination of silages (such as corn silage) by mycotoxins [4,5]. 
Mycotoxin contamination, especially in milk, has evoked global concerns regarding feed 
and food safety due to the toxic effects of mycotoxins in both animals and humans [6,7], 
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including carcinogenic, mutagenic, teratogenic, immunotoxic, and estrogenic potential. 
Mycotoxins are secondary metabolites produced by several fungi and mainly belonging 
to the Aspergillus, Penicillium, Fusarium, Alternaria, and Claviceps strains [8]. These genera 
can produce a wide range of different mycotoxins for which specific regulations have been 
established in many countries to protect consumers and livestock from their harmful ef-
fects [5]. The great ingestion by dairy cows of regulated mycotoxins has been related to 
the quality of the feeding systems [9]; however, this aspect remains insufficiently investi-
gated. The available data trying to connect the quality of forages and silages (such as corn 
silage) with other kinds of the so-called emerging mycotoxins (characterized by being nei-
ther routinely determined nor legislatively regulated) are very scarce [5,10]. When dairy 
cows receive a mycotoxin-contaminated feed, these fungal secondary metabolites can be 
metabolized and potentially transferred to animal-derived food, including milk and dairy 
products [8]. This aspect might be of great concern, considering the toxic effects previ-
ously mentioned. 

To date, few analytical methods have been proposed for the simultaneous identifica-
tion of mycotoxins using high-resolution approaches in milk and dairy products [11]. Re-
garding the most advanced analytical methods available for this purpose, ultra-high-per-
formance liquid chromatography (UHPLC) has overcome the limitations of conventional 
HPLC (e.g., lower separation capacity and speed of analysis), improving sensitivity and 
resolution using packing materials with smaller particle size [12]. Although tandem mass 
spectrometry (MS/MS) provides adequate quantification and high efficiency for multi-res-
idue analyses, this strategy is sometimes limited for analysis at trace levels in complex 
matrices. High-resolution mass spectrometry (HRMS) using Orbitrap technology has 
made it possible to achieve high resolution and good specificity because of the mass accu-
racy provided by the HRMS detector, combined with traditional information [12,13]. This 
technique also enables the retrospective analysis of samples, in contrast to MS/MS, by us-
ing appropriate and/or ad hoc databases [12,14,15]. 

Starting from these background conditions, in this work, a high-resolution UHPLC-
Orbitrap mass spectrometry approach was used to evaluate the mycotoxins profile of bulk 
milk samples collected from dairy farms using corn silages as the main ingredients of the 
total mixed ration (TMR) (i.e., 30.51 ± 5.84% on a dry matter, DM, basis) [16]. The corn 
silages were classified in five main clusters according to the mycotoxin contamination, as 
previously reported in Gallo et al. [5]. On the same milk samples, we have previously 
demonstrated the potential of untargeted metabolomics to evaluate the impact contami-
nated corn silages on the most important chemical classes, thus providing evidence that 
sphingolipids, together with purine and pyrimidine-derived metabolites, are the most af-
fected groups of metabolites [16]. Therefore, the aim of this work was to provide new 
insights into the ability of a retrospective screening based on HRMS to assess the myco-
toxin profile of bulk milk samples, thus potentially evaluating food safety issues as related 
to both regulated and emerging toxins. 

2. Materials and Methods 
2.1. Collection of Milk Samples 

Samples of bulk tank milk (500 mL) (n = 45) were taken in the period January–June 
2018 from dairy farms located in the Po Valley (Italy). These latter farmed Holstein Frie-
sian housed in free-stall barns without pasture access [16]. The herds were characterized 
by having on average 38.3% ± 1.9 of primiparous on lactating dairy cows and 2.4 ± 0.2 
lactations before culling. The dairy cows were milked twice a day (i.e., morning and after-
noon milking sessions) and fed a diet based on the large use of corn silage. In particular, 
the corn silage represented the main ingredient of total mixed ration (TMR) (i.e., 30.51 ± 
5.84% on a dry matter basis). The visited dairy herds provided additional information 
when considering other ingredients characterizing the TMR, namely other small-grain si-
lages (i.e., 10.65 ± 6.80% on dry matter basis) and hay (i.e., 10.26 ± 5.98% on dry matter 
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basis). The lactating dairy cows were fed with the same corn silages, previously analyzed 
by Gallo et al. [5], from at least four weeks, thus avoiding collecting milk in the period in 
which corn silage bunkers were changed. Additional information regarding herd compo-
sition, milk yield of lactating groups and milk quality, dry matter intake (DMI) as well as 
TMR formulation characteristics are reported in our previous published works [5,16]. The 
corn silages were grouped in five clusters according to the mycotoxin contamination pro-
files, as reported in our previous work [5], namely: cluster 1 (corn silages contaminated 
by low levels of both Aspergillus- and Penicillium-produced mycotoxins); cluster 2 (corn 
silages contaminated by low levels of fumonisins, and other Fusarium-produced mycotox-
ins); cluster 3 (corn silages contaminated by high levels of Aspergillus-mycotoxins); cluster 
4 (corn silages contaminated by high levels of Fusarium-produced mycotoxins); cluster 5 
(corn silages contaminated by high levels of fumonisins and their metabolites; number of 
samples: 3). The collected 45 bulk milk samples were then classified according to the same 
corn silages grouping, thus obtaining the following five groups: 18 samples (cluster 1), 17 
samples (cluster 2), 2 samples (cluster 3), 5 samples (cluster 4), and 3 samples (cluster 5). 
The sample legend for each cluster can be found in Table S1. 

2.2. Extraction Step for UHPLC-HRMS Analysis 
Milk samples were extracted according to the method previously reported for untar-

geted screening [16–18]. Following a skimming process by centrifugation (4500× g for 10 
min at 4 °C), the 45 milk samples (n = 3) were thoroughly vortex mixed. Afterwards, an 
aliquot of 2 mL of each sample was added to 14 mL of acetonitrile (LC-MS grade, Sigma-
Aldrich, Madison, CA, USA) acidified with 3% formic acid, mixed by vortexing for 2 min 
and processed with ultrasounds for 5 min. The samples were centrifuged at 12,000× g for 
15 min at 4 °C to remove large biomolecules (such as proteins). The supernatants were 
then filtered through 0.22 μm cellulose syringe filters in amber vials until the further un-
targeted metabolomic screening.  

2.3. Screening of Mycotoxins by UHPLC-HRMS Analysis 
The UHPLC-HRMS analysis was based on an untargeted metabolomic approach, by 

using a Q Exactive™ Focus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo 
Scientific, Waltham, MA, USA) coupled to a Vanquish ultra-high-pressure liquid chroma-
tography (UHPLC) pump and equipped with a HESI-II probe (Thermo Scientific, USA), 
as previously reported by [5]. The chromatographic separation was achieved under a wa-
ter-acetonitrile (both LC-MS grade, from Sigma-Aldrich, Milan, Italy) gradient elution 
(6%–94% acetonitrile in 35 min) using 0.1% formic acid as phase modifier, on an Agilent 
Zorbax Eclipse Plus C18 column (50 × 2.1 mm, 1.8 μm). For the full scan MS analysis, the 
acquisition was performed using the positive ionization with a mass resolution of 70,000 
at m/z 200. The automatic gain control target (AGC target) and the maximum injection 
time (IT) were 1e6 and 100 ms, respectively. Additionally, randomized injections of pooled 
quality control (QC) samples were performed in a data-dependent (Top N = 3) MS/MS 
mode with full scan mass resolution reduced to 17,500 at m/z 200, with an AGC target 
value of 1e5, maximum IT of 100 ms, and isolation window of 1.0 m/z, respectively. For 
the stage of data-dependent MS/MS, the Top N ions were selected for further fragmenta-
tion under stepped normalized collisional energy (i.e., 10, 20, 40 eV). The injection volume 
was 6 μL and the m/z range for the full scan analyses was 100–1200. Heated electrospray 
ionization (HESI) parameters were as follows: sheath gas flow 40 arb (arbitrary units), 
auxiliary gas flow 20 arb, spray voltage 3.5 kV, and capillary temperature 320 °C. Prior to 
data collection, the mass spectrometer was calibrated using a Pierce™ positive ion cali-
bration solution (Thermo Fisher Scientific, San Jose, CA, USA). To avoid possible bias, the 
sequence of injections for milk samples was randomized. Additionally, blank samples 
(i.e., extraction solvent only) were randomly injected through the sequence.  

2.4. Data Processing 
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The collected data (.RAW files) were converted into abf format using the Reifycs Abf 
Converter and then further processed using the software MS-DIAL (version 4.60) [19]. 
Automatic peak finding, LOWESS normalization, and annotation via spectral matching 
against the database Mass Bank of North America were initially carried out. The mass 
range 100–1200 m/z was searched for features with a minimum peak height of 10,000 cps. 
The MS and MS/MS tolerance for peak centroiding were set to 0.01 and 0.05 Da, respec-
tively. Retention time information was excluded from the calculation of the total score. 
Accurate mass tolerance for identification was 0.01 Da for MS and 0.05 Da for MS/MS. The 
identification step was based on mass accuracy, isotopic pattern, and spectral matching. 
In MS-DIAL, these criteria were used to calculate a total identification score. The total 
identification score cut-off was >50%, considering the most common HESI+ adducts. Gap 
filling using peak finder algorithm was performed to fill in missing peaks, considering 5 
ppm tolerance for m/z values. The software MS-Finder [20] was also used for in-silico frag-
mentation of the non-annotated mass features, using different available data sources, such 
as FoodDB, BMDB, PubChem, T3DB (Toxin) and KNApSAcK libraries, thus reaching a 
level 2 of confidence in annotation [21]. A custom database containing the mycotoxins 
previously identified in the corn silage samples [5] was also used for a tentative annota-
tion according to the accurate mass and isotopic profile of each compound and exploiting 
the MS-DIAL software.  

Finally, calibration curves of authentic standards (purity ≥ 97%) of α-zearalenol (CAS 
number: 36455-72-8), mycophenolic acid (CAS number: 24280-93-1), apicidin (CAS num-
ber: 183506-66-3), and tentoxin (CAS number: 28540-82-1) (from Sigma-Aldrich) were in-
jected considering the concentration range: 0.1–100 ng/mL. Data were finally elaborated 
in the same software to provide semi-quantitative values. In our experimental conditions 
and according to literature [13,22], the definition of the limit of detection and limit of 
quantification is not applicable due to the application of high-resolution mass spectromet-
ric method. However, to ensure quantification, a certain degree of confidence is required. 
Therefore, the limit of quantification for the semi-quantitative analysis was the lowest cal-
ibration level used (0.1 ng/mL). 

2.5. Multivariate Statistical Analysis 
The HRMS data were elaborated using the software MetaboAnalyst [23,24]. Briefly, 

after data normalization, both unsupervised and supervised multivariate statistics were 
carried out. The unsupervised approach was based on hierarchical cluster analysis (HCA) 
and k-means clustering approach, while the orthogonal projections to latent structures 
discriminant analysis (OPLS-DA) was used as supervised tool. Additionally, the OPLS-
DA model validation parameters (goodness-of-fit R2Y together with goodness-of-predic-
tion Q2Y) were inspected, considering a Q2Y prediction ability of >0.5 as the acceptability 
threshold. Thereafter, the OPLS-DA model produced was inspected for outliers and per-
mutation testing (N > 100) was performed to exclude model over-fitting. The importance 
of each mycotoxin detected for discrimination purposes was then calculated according to 
the variable selection method VIP (i.e., variables importance in projection), considering as 
the minimum significant threshold those values higher than 1, also inspecting the S-plot 
related to the OPLS-DA model built. As the next step, volcano plots were produced for 
the comparison between contaminated (cluster 3, 4, and 5) vs. control groups (cluster 1 
and 2) by coupling fold-change analysis (cut-off value > 1.2) and ANOVA (p < 0.05; post-
hoc test: Tukey HSD; multiple testing correction: Bonferroni Family-Wise Error Rate).  
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3. Results and Discussion  
3.1. Profiling of Mycotoxins in the Different Milk Samples 

The starting mycotoxin contamination profile of the different corn silage clusters is 
summarized in Figure 1, considering each major group of mycotoxins detected, as previ-
ously discussed in Gallo et al. [5]. 

 
Figure 1. Cumulative values (expressed as μg/kg dry matter) of the major mycotoxins and their 
metabolites detected in the corn silages belonging to the different clusters. 

Overall, silages belonging to cluster 1 and cluster 2 were characterized by the lowest 
contamination levels (cumulatively lower than 1500 μg/kg), while cluster 3, 4, and 5 were 
highly contaminated by several regulated and emerging mycotoxins (Figure 1). From a 
qualitative point of view, the corn silages revealed a similar mycotoxin contamination 
profile, which was mainly associated with Aspergillus toxins, Penicillium toxins, 
fumonisins and their metabolites, together with other Fusarium toxins. Additionally, our 
previous work [16] demonstrated that there was a clear impact of contaminated corn si-
lages on the milk metabolomic profiles, and this was particularly true for the metabolism 
of purines, pyrimidines, sphingolipids, and oxidative stress-related compounds (such as 
oxidized glutathione). However, it is important to highlight that in this work no infor-
mation is available on the contamination of the other TMR ingredients potentially affect-
ing the final contamination profile of milk samples. Therefore, after having evaluated sep-
arately the fermentative quality characteristics of corn silages [5] and then the untargeted 
metabolomic profile of bulk milk from dairy cows consuming those contaminated corn 
silages [16], we exploited a retrospective screening based on high-resolution mass spec-
trometry to comprehensively investigate the mycotoxin contamination profile of the same 
bulk milk samples.  

Overall, the retrospective screening following HRMS-based data acquisition allowed 
us to identify 46 mycotoxins and/or metabolites, which are reported in Table S1 consider-
ing their adduct type, reference m/z, formula, total identification score (as provided by 
MS-Dial software), MS1 isotopic spectrum, MS/MS spectrum (where available), and rela-
tive abundance values for each sample replicate (n = 3). In our experimental conditions, 
the group composed of other Fusarium mycotoxins was found to be the most represented 
in the final dataset, being composed of 13 compounds (such as fusaric acid and apicidin), 
followed by 7 Penicillium mycotoxins, 5 toxins produced by other fungal strains (including 
ilicicolin A, ilicicolin B, citreorosein, macrosporin, and iso-rhodoptilometrin) and Alter-
naria mycotoxins (such as alternariol and tentoxin). Additionally, among the 46 mycotox-
ins detected, 10 compounds were structurally confirmed by means of MS/MS annotations, 
namely 4Z-infectopyron, kojic acid, fumonisin B2, nivalenol, siccanol, culmorin, 15-hy-
droxyculmorin, butenolide, beauvericin, and pestalotin (Table S1). Interestingly, the 
HRMS approach revealed a wide distribution of mycotoxins and some of their metabolites 
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in the bulk milk samples under investigation. In our previous work [5], 69 mycotoxins 
were identified and quantified in the different corn silages. Therefore, from a qualitative 
point of view, we found that milk samples were characterized by the 63.7% of mycotoxins 
found in the corn silages, although this latter was the not exclusive ingredient of the TMR 
of the visited dairy farms. Future ad hoc studies (such as those based on the evaluation of 
carry-over phenomena and individual diets for the dairy cows) are extremely necessary 
to better investigate the toxicological risks for both animals and humans. 

3.2. Multivariate Analysis on the Different Milk Samples and Discriminant Metabolites  
In this work, a foodomics-based approach was used to retrospectively screen the my-

cotoxins in the different bulk milk samples to produce hard cheese, to find potential 
marker compounds of the feeding regimen (typically based on corn silage as the main 
ingredient). Therefore, starting from the mycotoxin profile reported in Table S1 and pre-
viously discussed, we used a multivariate statistical approach based on a hierarchical clus-
tering to naively group the five milk clusters according to the mycotoxins detected. In this 
regard, the resulting heat map (Figure 2) was built considering the average log fold-
change (FC) variations of each mycotoxin detected across the five different contamination 
clusters.  

As can be observed from the figure, the average mycotoxin distribution based on the 
corn silage clusters allowed us to group milk samples into two main groups: the first 
group (on the right side of the heat map) consisted of milk samples belonging to the clus-
ters 1 and 2 (from silages with a low contamination level), cluster 4 (from silages with high 
levels of non-regulated Fusarium mycotoxins), and cluster 3 (high levels of Aspergillus-
mycotoxins in the silages). Additionally, cluster 5 (i.e., high levels of fumonisins and their 
metabolites) showed the most differential and exclusive profile. The heat map reported in 
Figure 2 allowed us to observe an indirect correlation between the contamination profile 
of corn silages and milk samples, as also reported in our previous work evaluating the 
global changes of the major chemical classes because of the contaminated feeding systems 
[16]. Interestingly, cluster 5 was outlined as the most discriminant also in our previous 
work, thus highlighting the potential of high levels of fumonisins and their metabolites in 
the corn silages to potentially drive chemical differences in cow milk. Additionally, it was 
evident from the heat map that some mycotoxins were characterized by both strong up 
(red color) and down (blue color) accumulation trends in the different milk clusters.  
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Figure 2. Heat map showing the average clustering (distance measure: Euclidean; clustering algo-
rithm: Ward) of the milk samples according to the mycotoxins detected. The log2 fold-change (FC) 
values of each abundance were used for the cluster analysis with the Mass Profiler Professional 
software. Red and blue colors in each column indicate relative up- or down-accumulation of the 
mycotoxins, respectively. 

The supervised OPLS-DA approach combined with the VIP selection method was 
then used to extrapolate those mycotoxins characterized by the highest discrimination po-
tential. The OPLS-DA predictive score plot built considering the distribution of the differ-
ent mycotoxins detected is reported as Figure 3. As can be observed, the 45 milk samples 
showed a high variability into the score plot space, already observed in the not-averaged 
unsupervised HCA (not reported), with the orthogonal component explaining the 16.4% 
of the prediction ability. Additionally, the OPLS-DA model built was characterized by a 
goodness of prediction lower than 0.5 (i.e., representing the cut-off of acceptability), thus 
demonstrating a bad correlation between the mycotoxin contamination profile of corn si-
lages and the bulk milk samples, thus resulting in a prediction model not robust enough 
to be used for discrimination or traceability purposes. This result is likely due to the other 
ingredients characterizing the TMR. Therefore, further studies are mandatory to better 
evaluate the final mycotoxin profile detected. As a next step, we extrapolated those my-
cotoxins better accounting for the differences between the five different milk clusters, us-
ing the VIP selection method. Overall, 15 toxins were outlined as the best in terms of dis-
crimination potential (i.e., VIP score > 1), with antibiotic Y (a Fusarium mycotoxin) charac-
terized by the best discriminant ability (VIP score = 2.579). Among the VIP markers, the 
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26.6% consisted of other Fusarium mycotoxins, followed by a quite similar numerical dis-
tribution (i.e., two toxins per class) for the remaining VIP markers. Among the VIP mark-
ers we found also zearalenone (VIP score = 1.358) and its metabolite α-zearalenol (VIP 
score = 1.098).  

 
Figure 3. OPLS-DA score plot considering the different milk samples and their cluster, according to 
the corn silage contamination profile. 

Considering the scarce prediction ability resulting from the supervised OPLS-DA 
modelling, we decided to combine the information provided by volcano plot (i.e., built by 
coupling a fold-change analysis with a one-way ANOVA) with the VIP discriminant 
markers, thus assessing the cumulative LogFC variations of the main classes of mycotox-
ins. An overview of the different compounds (organized in classes) can be found in Table 
1. As a general consideration, the mycotoxins annotated showed differential trends ac-
cording to the average LogFC values. In this regard, when considering the comparisons 
with clusters 1 and 2 (considered as a control because of the low contamination levels of 
corn silages), fumonisins showed an average up-accumulation in milk samples belonging 
to clusters 3 and 5, whilst Alternaria mycotoxins showed no averaged differences, alt-
hough altersetin was particularly abundant in milk samples characterizing cluster 5. Re-
garding the group composed of Aspergillus mycotoxins, bis(methyl-thio)-gliotoxin was 
highly and significantly abundant in milk samples belonging to cluster 3 and 5, with av-
erage LogFC values of 5.83 and 7.24, respectively. Additionally, regarding zearalenone 
metabolites, we found a significant down-accumulation of zearalenone in cluster 5 with a 
corresponding strong and significant (p < 0.05) increase in α-zearalenol. Overall, cluster 5 
was confirmed again to be the most characteristic in terms of mycotoxin profile; accord-
ingly, it also showed a strong down-accumulation for other Fusarium mycotoxins for the 
comparison with both cluster 1 and cluster 2 (being −1.49 and −1.87, respectively). Regard-
ing the other classes of mycotoxins (such as Enniatins-derived or Penicillium toxins), no 
huge variations were detected for the different milk clusters under investigation (Table 1).  
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Table 1. Mycotoxins detected by HRMS in the different milk samples. Each compound is provided with its VIP score (from 
OPLS-DA), log2 fold-change (FC) value and p-value (FWER) resulting from the volcano plot analysis. 

Class Compound p-Value 
(FWER) 

VIP Score 
(OPLS-

DA) 

LogFC 
Cluster 3 

vs.  
Cluster 1 

LogFC 
Cluster 3 

vs  
Cluster 2 

LogFC 
Cluster 4  

vs  
Cluster 1 

LogFC 
Cluster 4 

vs  
Cluster 2 

LogFC 
Cluster 5 

vs  
Cluster 1 

LogFC 
Cluster 5 

vs  
Cluster 2 

Alternaria 
mycotoxins Altersetin p > 0.05 <1 2.151 1.562 −1.466 −2.056 3.343 2.753 

 Alternariol p > 0.05 <1 −0.064 0.113 −0.341 −0.163 −0.097 0.080 

 Alternariol, 
methyl-ether 

0.0011 <1 −0.810 −0.433 0.139 0.516 −1.273 −0.897 

 Tentoxin 0.0495 1.119 −0.158 0.272 −0.492 −0.061 −1.258 −0.827 
 4Z-Infectopyron 0.0354 <1 0.298 1.072 0.002 0.774 −0.210 0.562 

Aspergillus 
mycotoxins Brevianamide F 0.0065 1.287 0.307 0.671 −0.584 −0.220 0.501 0.865 

 Kojic acid p > 0.05 <1 −0.542 −0.513 −0.250 −0.222 −0.267 −0.239 
 Averufin p > 0.05 <1 0.531 0.129 0.080 −0.321 −0.640 −1.042 

 Bis(methylthio)gli
otoxin 

0.0066 1.102 5.414 6.242 −2.603 −1.775 6.830 7.657 

 Asperphenamate p > 0.05 <1 −5.604 −4.700 −1.351 −0.447 −2.126 −1.222 
Fumonisins 
mycotoxins Fumonisin A1 0.0494 1.667 2.069 1.671 0.412 0.014 1.084 0.687 

 Fumonisin A2 0.0024 <1 3.285 4.041 −4.203 −3.447 4.114 4.870 
 Fumonisin B2 0.0294 1.846 2.444 1.918 0.858 0.332 1.096 0.570 

Zearalenone 
and 

metabolites 
Zearalenone 0.0176 1.358 0.420 0.632 0.175 0.386 −0.543 −0.332 

 α-Zearalenol 0.0378 1.098 0.416 0.666 −1.264 −1.014 2.822 3.072 
Trichothece

nes Deoxynivalenol p > 0.05 <1 −0.396 −0.080 −0.530 −0.214 0.00072 0.316 

 Nivalenol p > 0.05 1.114 0.198 0.053 −0.029 −0.174 −0.265 −0.410 
Other 

Fusarium 
mycotoxins 

Siccanol p > 0.05 <1 0.335 0.303 −0.261 −0.293 −0.214 −0.246 

 Monocerin p > 0.05 <1 0.460 0.287 −0.072 −0.246 −0.376 −0.550 
 Moniliformin 5.2 × 10−6 1.012 0.442 −0.187 −0.119 −0.748 −1.359 −1.988 
 Equisetin p > 0.05 <1 1.166 2.234 −0.060 1.006 −1.493 −0.426 
 Culmorin p > 0.05 <1 0.243 0.071 −0.185 −0.357 −0.467 −0.639 

 15-
Hydroxyculmorin 

p > 0.05 <1 0.137 0.352 −0.377 −0.161 −0.376 −0.161 

 Butenolide p > 0.05 <1 0.116 0.097 −0.099 −0.118 −0.560 −0.578 
 Bikaverin 3.4 × 10−4 1.975 −1.630 −3.375 −0.734 −2.478 −9.655 −11.400 
 Apicidin p > 0.05 <1 0.104 −1.462 3.163 1.596 −4.700 −6.268 
 Antibiotic Y  0.0065 2.579 3.395 1.069 0.771 −1.554 2.315 −0.010 
 Kaurenolide 0.0024 1.581 −0.178 −0.334 −0.198 −0.354 −1.845 −2.001 

 
7,1-

Dihydroxykaureno
lide 

p > 0.05 <1 0.954 1.572 −1.999 −1.381 −0.011 0.606 

 Fusaric acid p > 0.05 <1 0.250 0.175 0.264 0.189 −0.578 −0.653 
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Enniatins-
Beauvericin 

toxins 
Enniatin A p > 0.05 <1 0.647 0.640 −0.418 −0.425 0.564 0.557 

 Enniatin B1 p > 0.05 <1 −1.421 −0.724 0.767 1.464 −1.944 −1.248 
 Enniatin B2 0.0434 1.039 0.058 0.436 −0.466 −0.088 0.458 0.836 
 Beauvericin 0.0024 <1 0.438 0.656 −0.429 −0.211 −0.586 −0.368 

Penicillium 
mycotoxins 

Asperglaucide p > 0.05 <1 −0.452 −0.802 −1.913 −2.263 1.347 0.997 

 Pestalotin p > 0.05 <1 0.088 0.167 −1.029 −0.951 0.981 1.0595 
 Oxaline p > 0.05 <1 0.428 0.475 −0.174 −0.127 −0.699 −0.652 
 Flavoglaucin 0.0111 <1 −1.088 −0.992 0.842 0.938 −1.288 −1.192 
 Cyclopenin p > 0.05 <1 −0.515 −0.420 −0.281 −0.187 −0.393 −0.299 
 Fellutanine A p > 0.05 <1 1.067 1.129 0.037 0.099 −0.283 −0.221 
 Mycophenolic acid 0.0147 <1 −0.312 −0.094 −1.394 −1.175 1.296 1.515 

Other 
fungal 

metabolites 
Ilicicolin A 0.0146 1.706 2.421 6.086 −4.303 −0.639 −2.547 1.117 

 Ilicicolin B 0.0467 <1 −0.086 0.734 −3.767 −2.946 −1.029 −0.208 
 Citreorosein 0.0369 <1 5.858 5.831 −2.225 −2.252 −2.510 −2.538 
 Macrosporin 1.6 × 10−13 <1 −4.451 −4.295 −0.415 −0.260 −4.296 −4.147 

 Iso-
Rhodoptilometrin 

3.2 × 10−5 1.254 −0.162 −0.462 −0.042 −0.341 −1.301 −1.599 

3.3. Discrimination of Milk Samples According to a k-Means Clustering Approach 
The mycotoxin profile of the different milk samples showed a scarce prediction abil-

ity when considering as class discrimination parameter the cluster type used to previously 
classify the different corn silages [5]. This aspect is not surprising, considering that in our 
experimental conditions, several variables related to both animals and dairy farm condi-
tions (including the other ingredients of the TMR) may have contributed to the profile 
observed, not only the contamination of corn silages by mycotoxins. However, the unsu-
pervised statistical approach based on hierarchical clustering dendrogram (Table S1) re-
vealed a tendency in the dataset to discriminate two main groups. This was confirmed by 
the PCA score plot resulting from the unsupervised k-means clustering approach (Figure 
4), with two principal components able to explain the 36.8% of the total variability. There-
fore, to find potential marker compounds of the discrimination observed, we used again 
a supervised statistical approach (OPLS-DA) combined with the S-plot to extrapolate the 
discriminant features. To this aim, two main groups (Group 1 and Group 2) were consid-
ered, and milk samples were assigned to these new groups, accordingly.  
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Figure 4. PCA score plot resulting from the unsupervised k-means clustering of the different milk 
samples under investigation, revealing two major groups according to the mycotoxin contamination 
profile. 

Afterwards, a new OPLS-DA prediction model considering the two new groups out-
lined by the unsupervised k-means clustering was built, and the resulting score plot is 
provided in Figure 5 (Figure 5A). The new OPLS-DA model was characterized by excel-
lent parameters, recording a goodness-of-fit of 0.976 and a goodness-of-prediction of 
0.965, recording a clear separation between the two groups of milk samples.  

 
Figure 5. OPLS-DA score plot (A) considering the two group of milk samples outlined by the unsupervised k-means 
clustering approach, together with the S-plot; (B) outlining the most discriminant compounds for the comparison Group 
1 vs. Group 2, namely mycophenolic acid and α-zearalenol (Group 1) followed by apicidin and tentoxin (Group 2). 

Finally, the S-plot related to the OPLS-DA score plot (Figure 5B) was inspected to 
extrapolate the most discriminant mycotoxins allowing the separation of both principal 
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groups. Interestingly, we found that milk samples belonging to Group 2 were higher in 
apicidin and tentoxin, while those belonging to Group 1 were mainly discriminated by α-
zearalenol and mycophenolic acid (Figure 5B). Considering the clear separation revealed 
by the OPLS-DA approach and based on the new sample grouping, we aim in a future 
work to explore more variables able to affect the final mycotoxin profile of milk. In fact, 
as widely reported in literature [8], various mycotoxins can modify the rumen flora due 
to their antimicrobial activity. This may decrease the degrading capacity of the rumen, 
resulting in an unexpected passage rate of intact toxins from other sources. Additionally, 
changes in the blood–milk barrier due to systemic, and particularly local, infections (mas-
titis) can affect the integrity of the blood–milk barrier and the pH gradient between blood 
and milk. Taken together, these effects could, in turn, alter the rate of excretion and facil-
itate the excretion of mycotoxins that are not expected in milk. 

3.4. Semi-Quantitative Analysis by UHPLC-HRMS of the Discriminant Markers 
As a final step, a semi-quantification in HRMS-mode using authentic standards was 

carried out considering some of the discriminant marker compounds revealed by the dif-
ferent statistical approaches, namely α-zearalenol, mycophenolic acid, apicidin, and 
tentoxin. The results obtained are reported in Table 2, as average contents (n = 3) for each 
milk sample.  

As shown in the Table 2, we found a concentration range for the tentoxin of 0.19 to 
2.9 ng/mL, with no significant differences between the different milk groups considered 
according to the k-means unsupervised clustering (i.e., Group 1 and Group 2). Regarding 
the distribution of tentoxin in the corn silages, Gallo et al. [5] reported a maximum content 
of 88.9 μg/kg for corn silage samples belonging to cluster 4, followed by cluster 2 (46.2 
μg/kg) and cluster 5 (34.3 μg/kg). Alternaria species can produce more than 70 toxins, 
which play important roles in fungal pathogenicity and food safety, since some of them 
are harmful to humans and animals [25]. The studied Alternaria secondary metabolites 
belong to diverse chemical groups such as nitrogen-containing compounds (amide, cyclo-
peptides, etc.), steroids, terpenoids, pyranones, quinines, and phenolics. The major Alter-
naria toxins belong to the chemical groups dibenzo-pyrones, which include alternariol and 
alternariol monomethyl ether and cyclic tetrapeptides represented by tentoxin. These my-
cotoxins were the most studied metabolites produced by Alternaria strains on different 
substrates (tomato, wheat, blueberries, walnuts, etc.) and some of the main Alternaria com-
pounds thought to pose a risk to human and animal health because of their known toxicity 
and their frequent presence as natural contaminants in food [26]. The cyclic tetrapeptide 
tentoxin is one of the major Alternaria toxins produced, along with dihydrotentoxin and 
isotentoxin. Their structures differ at the unsaturated bond of the N-methyldehydro-
phenylalanine moiety, which is hydrogenated into a single bond in dihydrotentoxin, and 
E configured in isotentoxin. All three compounds are phytotoxins, with tentoxin being the 
most potent, inhibiting photophosphorylation and inducing chlorosis [27]. However, no 
toxicological data are available for mammals, and the data on the occurrence of this toxin 
in food and feed are limited as well. Additionally, according to the scientific opinion pro-
vided by EFSA in 2016 [26], the levels of tentoxin in the different food categories consid-
ered were the lowest among the four Alternaria toxins covered. In this regard, the highest 
levels were found in samples of sunflower seeds (on average 80 μg/kg). Additionally, alt-
hough based on limited data, vegetarians seemed to have higher dietary exposure to 
tentoxin than the general population. Overall, few data are available in literature about 
absolute quantification or screening of Alternaria toxins, such as tentoxin, in milk and 
dairy products. In a previous work, Izzo and co-authors [12] tentatively identified 
tentoxin in seven milk samples by using a high-resolution retrospective screening, point-
ing out the necessity of evaluating other fungal toxic metabolites in milk monitoring stud-
ies besides the regulated mycotoxins and their known metabolites.  

Among the VIP markers of the OPLS-DA model we found also zearalenone (VIP 
score = 1.358) and its metabolite α-zearalenol (VIP score = 1.098). As reported in Gallo et 
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al. [5], the corn silages belonging to cluster 1 were characterized by a total content of zear-
alenone and derivatives of 95.3 μg/kg, with a great abundance of zearalenone-sulfone (i.e., 
91.2 μg/kg). On the other hand, the lowest contents for zearalenone derivatives were re-
ported for cluster 2 (22 μg/kg) and cluster 4 (2.5 μg/kg), whilst the highest values were 
reported for cluster 3 (i.e., 152.8 μg/kg) and cluster 5 (i.e., 286.6 μg/kg). Accordingly, the 
highest abundance of zearalenone-sulfone was found in cluster 5, being 284.9 μg/kg. This 
might be of great concern considering the toxic effects of this compound. Zearalenone and 
its derivative, α-zearalenol, are a family of phenolic compounds produced by several spe-
cies of Fusarium (such as F. graminearum, F. culmorum, F. crookwellense, F. sambucinum and 
F. equiseti), which can infect many important crops such as corn, wheat, sorghum, barley, 
oats, sesame seed, hay, and corn silage [28]. These fungal toxins have been associated with 
hyperestrogenism and other reproductive disorders in swine. In sows, a series of repro-
ductive disorders may occur at greater levels of zearalenone in feed (50–100 mg/g feed), 
including the induction of vulvovaginitis, vaginal and rectal prolapses, delayed onset of 
the first estrus, infertility characterized by continuous estrus, pseudo-pregnancy, ovarian 
abnormalities, and pregnancy loss [29]. Additionally, the α-zearalenol metabolite is re-
ported to be three/four times more estrogenic than zearalenone [30]. In our experimental 
conditions, we found not quantifiable values up to more than 5 ng/mL for α-zearalenol. 
Interestingly, milk samples belonging to cluster 5 showed the higher average value, ac-
cording to the highest values of zearalenone derivatives recorded in the silages belonging 
to cluster 5 (i.e., 286.6 μg/kg). Besides, α-zearalenol was a specific marker of Group 1 of 
the OPLS-DA model reported in Figure 5, while Group 2 showed no detectable levels 
(Table 2). 

Finally, mycophenolic acid (a Penicillium mycotoxin) and apicidin (a Fusarium myco-
toxin) were found to be two of the most discriminant mycotoxins of the new OPLS-DA 
model built (Figure 5). To date, no comprehensive information concerning the carry-over 
of mycophenolic acid from feed to milk is available, although carry-over is possible [31]. 
However, in our experimental conditions, we found semi-quantitative values of <0.1 up 
to 1.38 ng/mL in milk samples for this Penicillium mycotoxin. This compound presents low 
acute cytotoxicity on the human intestinal cell line Caco-2 compared to other mycotoxins 
(such as T-2 toxin, gliotoxin, deoxynivalenol, and patulin) after 48 h exposure; however, 
it has been shown to possess immunosuppressive effects [31]. According to literature, my-
cophenolic acid is found mainly in blue-veined cheeses. In fact, Fontaine et al. [31] re-
ported that the 75% of cheese samples analyzed contained a maximum of 705 μg/kg of 
mycophenolic acid. However, cheeses may be directly contaminated by mycotoxins, such 
as mycophenolic acid, because of accidental or intentional mycotoxigenic fungal develop-
ment on the cheese surface or in their core, while the presence of mycophenolic acid in 
bulk milk is only attributable to potential carry-over from the feed. Therefore, further 
studies based on strong and targeted monitoring plans of mycophenolic acid in both the 
TMR and milk (considering individual animals and single diets) are mandatory. As re-
vealed by the semi-quantification of mycophenolic acid reported in Table 2, this com-
pound was a specific marker of the Group 1. Regarding apicidin, no information in the 
literature is available about its presence in milk and dairy products, and this was also due 
to its nature of “emerging” mycotoxin. Overall, apicidin (a cyclic tetrapeptide) is a fungal 
metabolite that exhibits potent, broad-spectrum, antiprotozoal activity and inhibits his-
tone deacetylase activity at nanomolar concentrations [32]. As reported in Table 2, this 
compound was a specific marker of the Group 2. Apicidin and mycophenolic acid (as 
emerging mycotoxins) have been identified also in the corn silages previously analyzed 
by Gallo et al. [5]; however, in our experimental conditions it is impossible to provide 
carry-over evaluations and further work is mandatory to better evaluate the impact and 
incidence of the contamination profile. 
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Table 2. Semiquantitative analysis based on HRMS (UHPLC-Orbitrap-MS) of tentoxin, α-zearalenol, mycophenolic acid, 
and apicidin in the different milk samples according to the main groups highlighted by the k-means clustering approach. 
nd = not detected. 

Group (k-Means) Milk Sample  Tentoxin 
(ng/mL) 

α-Zearalenol 
(ng/mL) 

Mycophenolic Acid 
(ng/mL) 

Apicidin 
(ng/mL) 

Group 1 (left side) Sample 2 0.86 2.44 1.27 nd 
 Sample 6 1.68 3.81 1.08 nd 
 Sample 11 1.71 2.91 0.95 nd 
 Sample 14 1.03 2.31 0.31 nd 
 Sample 16 0.64 1.79 0.52 nd 
 Sample 20 2.21 3.06 1.19 nd 
 Sample 43 1.08 2.33 0.35 nd 
 Sample 45 2.04 3.35 0.34 nd 
 Sample 10 1.69 4.94 0.48 nd 
 Sample 13 1.93 2.79 0.49 nd 
 Sample 21 1.18 5.25 2.68 nd 
 Sample 23 0.67 1.06 0.46 nd 
 Sample 26 0.71 2.13 0.50 nd 
 Sample 32 1.16 2.90 0.79 nd 
 Sample 5 1.07 2.90 0.30 nd 
 Sample 27 1.07 1.96 0.62 nd 
 Sample 4 0.76 1.75 0.28 nd 
 Sample 28 1.22 4.93 1.38 <0.1 
 Sample 41 0.87 1.80 0.99 nd 

Group 2 (right side) Sample 19 1.01 <0.1 <0.1 0.33 
 Sample 22 1.16 <0.1 <0.1 0.23 
 Sample 25 2.35 <0.1 0.19 0.28 
 Sample 29 1.85 <0.1 <0.1 0.15 
 Sample 33 1.05 <0.1 0.16 0.11 
 Sample 36 1.79 <0.1 <0.1 0.57 
 Sample 37 2.07 <0.1 <0.1 0.27 
 Sample 38 2.35 <0.1 <0.1 0.24 
 Sample 39 1.16 <0.1 0.15 0.32 
 Sample 40 2.06 <0.1 <0.1 <0.1 
 Sample 1 0.29 <0.1 <0.1 0.13 
 Sample 3 0.19 <0.1 <0.1 0.24 
 Sample 7 1.49 <0.1 <0.1 0.20 
 Sample 15 1.15 <0.1 <0.1 0.44 
 Sample 17 1.28 <0.1 <0.1 <0.1 
 Sample 24 1.32 <0.1 <0.1 0.43 
 Sample 30 1.71 <0.1 <0.1 0.18 
 Sample 31 2.42 <0.1 0.15 0.41 
 Sample 34 2.02 <0.1 <0.1 0.55 
 Sample 42 2.23 <0.1 <0.1 0.14 
 Sample 44 2.88 <0.1 <0.1 0.41 
 Sample 8 1.43 <0.1 <0.1 0.71 
 Sample 9 <0.1 <0.1 <0.1 0.30 
 Sample 12 1.01 <0.1 <0.1 0.15 
 Sample 18 2.06 <0.1 <0.1 0.12 
 Sample 46 1.46 <0.1 <0.1 0.25 
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4. Conclusions 
In this work, we have assessed the potential of a metabolomics-based approach cou-

pled with a retrospective screening by high-resolution mass spectrometry to evaluate the 
mycotoxin profile (in terms of both regulated and emerging mycotoxins) of bulk milk 
samples. Overall, the HRMS approach allowed us to identify 46 mycotoxins, but the ac-
curacy of the prediction was not robust enough and further ad hoc and targeted studies 
(based on dedicated and optimized extraction conditions and tandem MS analyses) are 
required to confirm the robustness of the markers proposed. Additionally, by coupling 
unsupervised (different clustering algorithms) and supervised (such as OPLS-DA) ap-
proaches we found the most discriminant mycotoxins driving the separations of the bulk 
milk samples under investigation. In this regard, among the most discriminant markers 
we found α-zearalenol, mycophenolic acid, tentoxin, and apicidin. The preliminary semi-
quantitative results obtained in this work suggest potential carry-over and metabolization 
phenomena in milk of the selected mycotoxins, although further ad hoc confirmation 
studies are mandatory, mainly when considering the toxicity reported in literature for 
some of the markers identified.  

Supplementary Materials: The following are available online at www.mdpi.com/2304-
8158/10/9/2025/s1, Table S1: dataset resulting from the screening by HRMS of the different myco-
toxins annotated in the milk samples (the MS1 and MS/MS isotopic profiles for each compound are 
provided with both isotopic mass and corresponding relative intensity values) together with the 
sample legend and the unsupervised grouping (tree plot) of the different milk samples according to 
the hierarchical clustering approach (built considering the Euclidean similarity measure and 
‘Wards’ as linkage rule). 
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