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4 Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture, University of South Bohemia
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Abstract: Heat stability (HS) is substantial technology property of raw milk. Analysis of sources
of HS variation and its regular monitoring can contribute to creating higher added value in the
dairy industry. The goal of this analysis was to assess the practice sources of raw cow milk HS
variability on the results of an extensive data set of bulk tank milk samples. There was implemented
neither a compositional technology modification nor acidity adjustment of milk, just original raw
milk was used for the analysis. A total 2634 HS analyses were performed, including other milk
indicators, during three years of an experimental period. The log HS mean and standard deviation
were 1.273654 ± 0.144189, equal to the HS geometric mean of 18.8 min. Explanation of the HS
variability through the linear model used was 41.1% (p < 0.0001). According to the results of the
variance analysis, the milk HS was influenced (p = 0.0033 and mostly <0.0001) by all the farm factors
such as year; season; calendar month; altitude; total annual rainfall; herd size by the number of cows;
milk yield; cow breed; type of milking; litter type in the stable; summer grazing application; farm
effect. During the calendar months (p < 0.0001), milk HS values suggest similar seasonal dynamics
with the somatic cell count, total count of mesophilic microorganisms, coli bacteria count and urea
and lactose concentration and opposite configuration pattern to fat, crude protein, solids-not-fat
and total solids content and milk freezing point depression. Here performed quantification of these
effects by analyzing the variance may allow efficient raw milk selection to be processed into specific
dairy products.

Keywords: cow; breed; farm factors; milk heat stability; milk composition; microbiologic indicators

1. Introduction

The quality of raw milk is important for its technological processing on products [1].
Milk quality means, in particular, the sum of its hygiene and health indicators, such as
the total count of microorganisms, the somatic cell count (SCC) or residues of inhibitory
substances (RAD) [2]. In a broad sense, the quality of raw milk can also be described as
its composition and several technological indicators. These may include titration acidity,
fermentation ability, or cheeseability [3]. The values of mentioned indicators are then
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decisive for the processing of raw milk into dairy products. Dairy products with a long
shelf-life must show good stability, mainly influenced by raw milk composition [4]. Thus
milk quality is also important regarding the possibility of applying the added value in
the dairying. In general, products with higher added value are increasingly required for
economic reasons.

The ability of milk and concentrated milk to withstand a defined heat treatment
without noticeable changes, such as flocculation of protein, is commonly denoted as heat
stability [5]. Milk stability is considered the total time for visual coagulation to occur
at a given pH and temperature, and it is directly related to the ability of milk to resist
coagulation at certain temperatures [6]. As an indicator of protein stability, this heat stability
(HS; also milk thermostability) is also an important technological property of raw milk as
its evaluation can contribute to higher added value in dairy [7–10]. The composition of
raw milk is essential for the stability of dairy products with a long shelf-life [4]. A sample
of milk with short HS is generally considered to be unstable in terms of processability.
It can result in problems during processing as opposed to longer HS [11,12]. Such milk
has high stability. It means that it is ideal for the heat treatment processes to produce
dairy products with a more extended shelf-life. The above mentioned is why it is crucial
to study the sources of HS variability in practical conditions, although milk hygiene has
improved during the last couple of decades, rendering milk less sensitive to coagulation [5].
Scientific and professional technological interest in the analysis of environmental (farm
technology) and biochemical effects, including effects of food technology affecting the HS
of lactoproteins also in the milk of small ruminants, can be found according to the other
papers [13,14].

The HS is, therefore, substantial property of raw milk. This represents the resistance
of lactoproteins against thermal coagulation [5]. In other words, it is the resistance of the
milk to heat denaturation. Decreased milk quality ([15], for instance, because of mastitis)
may adversely affect the HS. Hence, the raw milk’s good HS value is a prerequisite for
milk processing into durable dairy products with long shelf life, such as condensed and
sterilized, ultra-heat treated (UHT) milk [9,11]. Therefore, the HS was mentioned as an
important indicator in evaluating milk quality, especially in terms of heat gains to which
milk is exposed at its processing [16]. A simple technological test is usually used to
determine the HS value. However, this test is laborious and often lengthy ([5] methods of
subjective determination of HS). Because of HS determination laboriousness, the data sets
used in the evaluation of HS variability are made up of a smaller number of data, which
usually do not exceed one hundred [17,18]. Therefore, the number of HS measurements in
our study is exceptional. Due to its laboriousness, HS measurements are often replaced by
simpler and indirect determinations in practical dairy laboratories. This technological test
is called determining the alcohol stability of milk. The results of the milk alcohol stability
test may be in positive correlation with HS values (r = 0.28, p < 0.0001) [19], but this is not
always the rule.

Furthermore, possible sources of variability were also analyzed in connection with this
fact for the alcohol stability of raw milk [3,20–26]. Alcohol unstable milk showed higher
SCC. On the contrary, the contents of lactose and casein were lower along with this [27].
According to these facts, high SCC could be marked as the primary causal reason, in this
case of the high occurrence of alcohol unstable milk in commercial herds of dairy cows.
Further, the differences in raw milk HS in dairy animals (among species such as cow, sheep,
goat, camel, or yak) were also recorded [14,17,28,29]. Metabolic disorders of cows, such as
subclinical rumen acidosis, could also reduce the technological quality of milk by reducing
the content and quality of protein (so-called low protein syndrome; [30]).

In previous studies, we dealt with the relationships between milk indicators and
the season to HS, and also the effect of feeding silage from legume-cereal mixtures on
HS [31–33]. While the milk components of the bulk tank samples did not correlate much
with the HS, in terms of simple correlations, closer relationships were shown between the
composition of the milk and the HS, taking into account the effect of the season. Several
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HS studies have been performed during technological modifications of milk. While the
change in calcium (CaCl2) level showed a high effect on the raw cow milk HS [4,34–37],
the modifications of the citrate and urea concentration did not affect this HS value [4]. The
HS of calcium citrate fortified milk was higher than the control milk and other calcium
(different salts) fortified milk [38]. However, HS can be affected by many external and
internal farm factors.

It turned out that in South America (Brazil, Chile, Colombia), the titratable acidity,
alcohol stability, and HS of milk have been particularly intensively studied in recent years
as the technological properties of milk. It was caused by often occurrence of problems
of alcohol (heat) unstable raw milk that were not identified as acidic in cow herds. This
phenomenon was probably determined by the problematic climate conditions for dairying,
the progressive development of industrial milk processing there and the concomitant
occurrence of possible technological problems. The effects of various dairy cow nutrition
(starvation, feeding cows only by forage, anionic nutrition) on the stability of milk, con-
cerning its titratable acidity, were evaluated [19,39,40]. In this context, a scheme [41] of
a current analytical method for the identification of so-called UNAM bulk milk samples,
i.e., unstable (positive ethanol test 72 ◦GI and negative boiling test) non-acidic cow milk
samples (pH ≥ 6.6 or titratable acidity ≤ 18 ◦D) was described. In three feeding systems
(herds) in spring-calving dairy cows, two based on grazing and one on a total mixed
feed ration [42], no significant effects on the HS of milk in the mid-lactation (July) and in
late lactation (September, October) were noted. Seasonal calving and pasture-based milk
systems are widely used in countries with temperate climates and abundant rainfall [12].
As a result, synchronous changes in macro and micronutrients in milk are much more
visible. Lactation here takes place in parallel with seasonal changes in the feed source,
in contrast to non-seasonal milk production systems. It can have a greater impact on the
processability and functionality of the milk. So, this logically means that the HS value of
raw milk can be a general (global) problem in milk processing.

To the best of our knowledge, there is very little information on the variability of
raw milk HS on farms in the scientific literature. Therefore, the goal of this work was to
evaluate the practice sources which can influence the variability of raw cow milk HS. The
priority was to carry out this evaluation with the results of an extensive data set of bulk
tank milk samples, which were not under technological, compositional modification or
acidity adjustment, just using original milk with its natural composition.

2. Materials and Methods
2.1. Dairy Cow Herds, Stables and Milk Sampling

Bulk tank milk samples were collected regularly on a monthly or two-week basis
under dairy production conditions in East Bohemia. The following were included in the
experimental assessment: 48 herds in total; 35 Czech Fleckvieh herds; 10 Holstein herds;
3 mixed herds. Cow milking was carried out by milking machine: 35 in the milking
parlours (cows were housed in free cowsheds); 13 into the pipeline (cows were housed in
binding stables). Dairy cows were milked twice a day. In monitoring, there were included
8928 dairy cows in total. In Table 1 there are listed relevant practice conditions in terms of
environment and dairy technology in herds.

The experimental period took three years in total. During this time, 3310 bulk tank
milk samples and 2829 for technological HS analyses were collected. Dairy cow feeding
was performed regularly twice a day by TMR (total mixed ration). In this system of feeding,
a mobile feed mixer tow trailer was used. The animals were fed using volume modification
of the feed ration, according to the stage of lactation and milk yield. The composition
of the feed rations was supplemented by the consumption of forage cereal concentrates,
according to the standard feed tables for the current milk yield. The same method was
used for the consumption of mineral feed supplements. The TMR quality during the
experimental period can be considered medium, without extremes, regarding the roughage
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portion of feed rations. The grazing of cows on pasture was carried out during late spring,
summer, and early autumn in a part of herds.

Table 1. Basic indicators of herds of dairy cows included in the experiment.

Indicator Unit Minimum Maximum x ± sd

Mean number of cows per herd head 4 630 186 ± 164

Altitude of herd m 254 510 347.7 ± 68.8

Total annual rainfall, an average mm 325 750 554 ± 143

Dairy plant raw milk delivery per herd,
an average kg 60 13,870 4454 ± 4095

Milk yield per cow and 305 days in
milk, an average kg 2033 11,124 6728 ± 2488

x ± sd = arithmetic mean ± standard deviation; 305 days in milk = standard lactation.

2.2. Quality Indicators for Bulk Tank Milk

Chemical preservation of bulk tank milk samples was performed with bronopol
(2 bromine, 2 nitro, 1,3 propanediol, 0.03%, Broad Spectrum Microtabs). The samples were
then transported to the laboratory under cold conditions (<8 ◦C). These were analyzed
in an accredited dairy laboratory (Buštěhrad, Czech Republic), Czech-Moravia Breeders
Corporation a.s. (ČMSCH) according to the relevant standard operation manuals. Milk
indicators such as components and properties were determined by analytical methods
and in units, according to the relevant abbreviations as listed in Table 2. Analyzes of milk
samples were carried out using relevant methods and instruments that were calibrated and
controlled by procedures and techniques according to standard operation manuals and
with application of relevant result uncertainties of measurements stated by validation of
methods in accredited laboratory.

Table 2. List of used milk analytical methods and indicators.

Milk Indicator Abbr. Unit Method/Instrument Added Information/Note

Fat FA % CombiFoss FT+ (Foss, Hilleröd,
Denmark) MIR-FT

Crude protein CRP % see above total N × 6.38, MIR-FT

Lactose LA % see above monohydrate, MIR-FT

Solids-not-fat SNF % see above MIR-FT

Total solids TOS % see above MIR-FT

Urea UR mg·100 mL−1 see above MIR-FT

Milk freezing point
depression MFPD ◦C see above MIR-FT, combined with electrical

conductivity measurement

Somatic cell count SCC 103·mL−1 see above flow cytometry

Total count of
mesophilic

microorganisms
TCMM 103 CFU·mL−1 IBC FC (Bentley Instruments,

Chaska, MN, USA) flow cytometry

Count of coli-form
bacteria CCOL CFU·mL−1

plate cultivation method (VRBL
agar, 37 ± 1 ◦C, abbreviated
cultivation period 24–48 h)
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Table 2. Cont.

Milk Indicator Abbr. Unit Method/Instrument Added Information/Note

Residues of inhibitory
substances RAD +/−

microbiological (Geobacillus
stearothermophilus) inhibition assay

(growth at 65 ◦C) with pH
indicatorEclipse 50

(ZEU-INMUNOTEC, Zaragoza,
Spain)

mostly as residues of antibiotic
drugs and also for possible

interference potential of some
phytoactive substances

Fat/crude protein FA/CRP calculation energy (ketosis) milk (cow)
coefficient [43–47]

Fat/lactose FA/LA calculation see FA/CRP

Abbr. = Abbreviation; MIR-FT = mid-infrared spectroscopy with Fourier-transformation; % = weight percentage (g·100 g−1); CFU = colony
forming unit; +/− = positive/negative result.

The milk HS was logically analyzed in unpreserved samples. The HS results were
methodically expressed in minutes as used units. The time was stopped at the moment
of the creation of visible protein flakes in investigated milk [48], which means the visual
denaturation. Milk samples were treated by heating in glass vials with thick walls in an
oil bath at a temperature of 135 ◦C. This determination was performed with the volume
of 2.5 mL of milk sample in the laboratory of the dairy plant Bohemilk Opočno. In this
sense [49], a shortened test to determine milk resistance against protein denaturation
by heating was also developed. Nevertheless, in this experiment, the complete method
was used.

2.3. Statistic Assessment of the Results

Obtained experimental result file for milk indicators was added to records about con-
ditions for raw milk production. These records were obtained by the specific questionnaire.
Information about cow herds and relevant environmental and technological conditions
were recorded and completed. A lack of information in the data file occurred, which was
consequently limited to the complete form of results. Some monitored milk indicators
have usually confirmed an absence of normal data frequency distribution, such as hygienic
and microbiological indicators (SCC, total count of mesophilic microorganisms (TCMM),
count of coliform bacteria (CCOL)) and also HS, according to the results of previous stud-
ies [31–33,50–54]. Further, because of this reason, the logarithmically transformed (log, on
a decimal basis) results were used for the statistic evaluation, including an application of
relevant geometric means. This procedure was logically carried out only with samples
where a record of correspondence about type and time of analysis existed. So, by this
method, the number (n) of bulk tank milk sample results in the evaluation was a little
bit limited.

The statistic evaluation of experimental results was performed by multifactorial anal-
ysis of variance. There was used a reduced range of data file number (n = 2634 for HS
compared to 3310 for other milk indicators). This reduction was done correctly in a
mathematical sense with respect to reality. SAS ver. 9 program package [55] was used
for the statistical result of processing of milk indicators. It resulted in Means and GLM
(general linear model; the GLM procedure uses the method of least squares to fit general
linear models) procedures. The significance of investigated factors was expressed on
standard levels of probability. The results were processed by a linear model with fixed
effects (Table 3). Including random effects, the model was performed with formula as
follows (general equation parameters: Y = investigated milk indicator; µ = general mean;
eijklmnopqrst = random effect):

Yijklmnopqrst = µ+ YRi + SEj + CMk + ALl + WEm + NCn + YIo + BRp + MTq + LTr + PAs + FMt + eijklmnopqrst
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Table 3. The list of used effects in statistic linear model equation of multifactorial analysis of variance and their specifications
in the experiment.

Identification Index Effect Title Number of Effect
Categories (from–to) Effect Specification

YR i year 1–3

SE j season 1–2 1 = summer (from May to October); 2 = winter
(from November to April

CM k calendar month 1–12

AL l altitude 1–3 1 = <300; 2 = 300–450; 3 = >450 m

WE m total annual rainfall 1–3 1 = <450; 2 = 450–650; 3 = >650 mm

NC n number of dairy cows
in the herd 1–3 1 = <100; 2 = 100–400; 3 = >400 of heads

YI o level of milk yield by
milk recording 1–3 1 = <6000; 2 = 6000–9000; 3 = >9000 kg

BR p breed 1–3 1 = Czech Fleckvieh (CF); 2 = Holstein (H);
3 = various hybrids between CF and H

MT q type of milking 1–3 1 = machine milking into can and pipeline;
2 = milking parlour; 3 = automatic milking system

LT r litter type in the stable 1–3 1 = straw; 2 = rubber mattress; 3 = manure
separation (liquid excrements)

PA s application of summer
grazing (pasture) 1–2

1 = grazing, sometimes with green forage feeding
next to silages in the mixture; 2 = without green

forage, only by preserved roughage feeding
rations (silages)

FM t farm 1–29

Milk recording = 305 days in milk = standard lactation.

3. Results and Discussion
3.1. Main Statistic Results and Explanation Efficiency by Model of Analysis of Variance

Main statistic parameters of indicators in bulk tank samples of raw cow milk are
included in Table 4. There is a good quality of raw milk included in cow herds during the
experiment regarding dairy conditions compared to the country’s relevant references (The
Czech Republic [56]). It is also well comparable to a high level of the west European results.
Only two positive RAD cases were recorded (0.06%, n = 3310) in monitoring for three years
of the experiment. It is approximately half of the value compared to the regular Czech
Republic sliding average of 0.124 ± 0.033% (in the period from 2012 to 2016 [56]). That is
why the RAD findings did not significantly affect the results of this evaluation negatively.

Explanation of the variability of the monitored milk indicators by the linear model
(Table 4) ranged from 23.7 (for milk freezing point depression (MFPD)) to 59.5% (for solids-
not-fat). The corresponding figure for the log HS was 41.1%. Thus, theoretically, 58.9% of
the variability of HS values falls on uncontrolled effects. The efficiency of explanation of
variability for all mentioned milk indicators, with the statistic model used, was significant
(p < 0.0001). These figures are relatively high in terms of solving a biological problem and
can be explained by including a specific farm effect that is the combined effect of all factors.
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Table 4. Basic statistic parameters of raw milk indicators in bulk tank milk samples and efficiency
explanation by model in analysis of variance.

IND n x xg sd R2 p

FA 2993 3.89 - 0.282 0.463 <0.0001
CRP 3015 3.4 - 0.128 0.56 <0.0001
LA 3015 4.89 - 0.08 0.548 <0.0001

SNF 3015 8.89 - 0.144 0.595 <0.0001
TOS 2993 12.79 - 0.332 0.494 <0.0001
UR 1804 24.5 - 5.0 0.435 <0.0001

FA/CRP 2993 1.15 - 0.083 0.458 <0.0001
FA/LA 2993 0.8 - 0.063 0.477 <0.0001
MFPD 3015 −0.526048 - 0.005521 0.237 <0.0001

log SCC 3013 2.329102 213 a 0.188909 0.344 <0.0001
log TCMM 3069 1.486766 30.6 b 0.355881 0.302 <0.0001
log CCOL 3069 0.666409 4.6 c 0.749125 0.244 <0.0001

log HS 2634 1.273654 18.8 d 0.144189 0.411 <0.0001
IND = indicator; n = sample number; x = arithmetic mean; xg = geometric mean; sd = standard deviation;
R2 = coefficient of determination by linear model in analysis of variance; p = probability of zero hypothesis; a in
103·mL−1; b in 103 CFU·mL−1 (CFU colony forming unit); c in CFU·mL−1; d in minutes; used units and explanation
of abbreviations of milk indicators are in Table 2; some figures in table were used also previously [31–33] in different
evaluation of milk heat stability (HS).

The data file used is interesting thanks to the high number of analytical results,
duration of the experimental period, and the range of the evaluated farm conditions. The
absolute majority of the observed fixed effects of the GLM significantly influenced most of
the monitored milk indicators (Table 5). Milk HS was statistically significantly influenced
by all the observed factors of farm conditions when the weakest effect (p = 0.0033) was in
summer grazing or fresh green forage in the summer feeding ration.

Table 5. Fixed effects and their significance of impact, regarding monitored milk indicators by results of analysis of variance.

IND YR SE CM AL WE NC YI BR MT LT PA FM
FA <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0184 0.2236 <0.0001 <0.0001

CRP <0.0001 <0.0001 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 0.0023 0.8489 0.8016 <0.0001
LA <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1398 0.5349 <0.0001

SNF <0.0001 <0.0001 <0.0001 <0.0001 0.2389 <0.0001 <0.0001 <0.0001 0.3563 0.8043 0.2625 <0.0001
TOS <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0112 0.2698 <0.0001 <0.0001
UR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0003 0.0948 <0.0001 <0.0001

FA/CRP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0004 <0.0001 0.2148 <0.0001 <0.0001
FA/LA <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.6359 0.4766 <0.0001 <0.0001
MFPD <0.0001 0.2197 0.0187 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

log SCC <0.0001 <0.0001 0.0012 <0.0001 <0.0001 <0.0001 <0.0001 0.0154 <0.0001 0.3618 <0.0001 <0.0001
log TCMM <0.0001 <0.0001 0.0328 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.8379 0.429 <0.0001
log CCOL <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.7686 <0.0001 0.2288 <0.0001 <0.0001

log HS <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 0.0033 <0.0001

IND = indicator; figure means probability of zero hypothesis by F value; normal letters, statistic significant; italics letters, insignificant;
the explanation of abbreviations of milk indicators (x axis of this table) and environmental and technology farm factors (y axis) is in
Tables 2 and 3; some figures in table were used also previously [31–33] in different evaluation of milk heat stability (HS).

3.2. The Effects of Practice Conditions on Milk Heat Stability

The log HS mean and standard deviation for this reduced analysis of variance of data
file were 1.273654 ± 0.144189, which corresponds to a geometric mean (xg) of 18.8 min
(Table 4). The year had a significant impact on HS values (Table 5, YR (year); p < 0.0001).
The F criterion of analysis of variance was 75.78 (Table 6). Therefore, this effect was
stronger concerning the F criterion, although the differences between years were practically
relatively small.
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Table 6. Influences on raw cow milk heat stability, according to various environmental and farm
technology factors by results of analysis of variance.

FAFA FAFAT F Criterion IFA t Value/Probability

YR i 75.78 1 −6.83/<0.0001
2–3 −1.15/0.2503

SE j 409.33 1–2 5.87/<0.0001

AL l 29.51 1 8.42/<0.0001
2–3 5.95/<0.0001

WE m 9.7 1 7.28/<0.0001
2–3 −4.76/<0.0001

NC n 18.53 1 −9.49/<0.0001
2–3 −3.81/0.0001

YI o 118.41 1 7.39/<0.0001
2–3 2.33/0.0201

BR p 12.86 1 1.19/0.2334
2–3 0.27/0.7836

MT q 15.23 1 1.11/0.2669
2–3 −3.72/0.0002

LT r 9.05 1 −0.93/0.3536
2–3 −0.43/0.6679

PA s 8.67 1–2 −5.76/<0.0001

FM t 25.6 1–29 -
F = criterion value as an influence power; FAFA = farm factor; FAFAT = farm factor type; IFA = identification of
farm factor type; t = t criterion value; the explanation of abbreviations of environmental and technology farm
factors is in Table 3.

The significant effect of the season on HS (Table 5, SE (season); p < 0.0001; F criterion
409.33, Table 6) proved to be the strongest factor. In the summer period, there are higher
(better) HS values. It could be partly in accordance with other research opinions [57].
Seasonal variability in feed ration composition clearly affects HS, as seen in milk produced
between November and March [58]. This period coincides with the indoor period of dairy
cows. Milk from this part of the season has a shorter HS than milk from the rest of the year
(April to October).

In contrast, better HS was observed in autumn and winter than in spring and summer
following UHT ([59] in bulk raw cow milk). Nevertheless, in this context, the absence of an
essential seasonal influence on most composition indicators, rennet gelation, and HS values
suggest that milk from a mixed herd of cows with spring- and autumn-calving cows is
suitable for cheese and milk powder production during a year [60]. However, following in-
container sterilization, samples with added stabilizing salts showed significantly improved
HS in autumn, whereas with added CaCl2, the best HS was observed in spring. The milk
obtained in the autumn/winter season had significantly higher HS (p ≤ 0.01), with the
most remarkable differences noted in the case of the Simmental cows [8].

The significant influence of altitude of dairy cow herd on HS (Table 5, AL (altitude);
p < 0.0001; F criterion 29.51, Table 6) was moderate and showed the highest (best) HS values
up to 300 m and the lowest at higher altitudes above 450 m.

The significant impact of the total annual rainfall on the HS (Table 5, WE (total annual
rainfall); p < 0.0001; F criterion 9.7, Table 6) was less potent compared to the AL influence
and showed the highest HS values for WE up to 450 mm, the mean at the highest WE over
650 mm and the lowest at medium WE. The finding of the highest HS values at the lowest
WE corresponds to the same finding at lower altitudes, where the WE is usually lower
compared to higher altitudes.
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The significant influence of the herd size (Table 5, NC (number of dairy cows in the
herds); p < 0.0001; F criterion 18.53, Table 6), which characterizes the production technology,
was less pronounced on HS and indicated significantly lower HS in small herds up to
100 animals, mean HS in herds from 100 to 400 cows, and the highest HS in herds over
400 heads.

The significant effect of the herd milk yield on HS (Table 5, YI (level of milk yield by
milk recording); p < 0.0001; F criterion 118.41, Table 6) was strong and demonstrated a
significantly lower HS at a lower YI of up to 6000 kg of milk per lactation, mean HS at a YI
of between 6000 and 9000 kg and a slightly higher HS at a high YI of over 9000 kg of milk
per lactation in official milk recording procedure.

The significant impact of dairy cow breed on HS (Table 5, BR (breed); p < 0.0001; F
criterion 12.86, Table 6) was less potent and confirmed slightly higher HS values for Czech
Fleckvieh (CF) and mildly lower HS in Holstein (H) cows. Slightly lower was HS in other
breeds (hybrids of CF and H and others). The lowest resistance to heat treatment was
characteristic for milk of Polish Holstein-Friesian cows (average 120 s), the highest for
Simmental (average 300 s), and the lactation phase did not affect HS of milk [10]. On the
other hand [8], the best HS (p ≤ 0.01) was noted in the Black-and-White Polish Holstein-
Friesian cows (220 s), while the milk of the Jersey cows was most susceptible to thermal
destabilization (140 s).

The significant influence of the milking type on HS (Table 5, MT (type of milking);
p < 0.0001; F criterion 15.23, Table 6) was relatively weak and evidenced the mean HS for
automatic milking system (robot), higher when machine milking in the can and pipeline
and lower at the milking parlour.

The significant effect of litter type in the stable on HS (Table 5, LT (litter type in the
stable); p = 0.0001; F criterion 9.05, Table 6) was weak but showed a slightly lower HS in
straw and mattress and slightly higher for technology separating liquid excrements.

The significant influence of the application of summer grazing and summer fresh
green forage addition to total mixed ration in the course of dairy cow feeding on HS
(Table 5, PA (application of summer grazing); p = 0.0033; F criterion 8.67, Table 6) was weak
and indicated a lower HS for grazing and green feed. However, there might also exist a
previous opposite standpoint in this evaluation. In the grazing system, the urea content of
milk is usually increased during the spring and early summer season, which leads to its
significantly higher HS compared to winter dry feeding [57]. Moreover, in Scotland, the
recorded urea contents in milk accounted for most of the variability in HS during the year,
where there were differences in the feeding of grazing cows in summer and autumn, which
had higher HS than cows in a stable [61].

The significant impact of the farm (Table 5, FM (farm); p < 0.0001) on HS was expected
due to specific conditions and their combinations at various localities. According to the
F criterion 25.6 (Table 6) this FA effect was at medium power. Therefore, the selection
of farms for the raw milk collection according to the history of higher HS values could
be a method of effective dairy practice because of obtaining better raw material. This
procedure is suitable for the improvement of operation certainty in the dairy plant during
milk processing. On the other hand, the prediction of HS of concentrated (condensed)
milk from the HS results of the corresponding unconcentrated (raw) milk for rapid quality
testing purposes has been difficult, mainly due to different experimental conditions [5].

Concerning the future rapid practical monitoring of HS to select raw material from
specific sources (farms), it turns out that [5] the infrared spectroscopy with Fourier trans-
formation (MIR-FT) could be a successful procedure to elucidate the extent of changes in
the secondary structure of crude protein during the heat treatment of milk and correlate
them to the onset of coagulation and the quantity of aggregated protein.
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3.3. The Seasonal Effect on Milk Indicators and Heat Stability

The mean values of milk indicators in Table 7 show seasonal trends. This effect of
the CM (calendar month) was significant for all recorded milk indicators (Table 5) and
especially for milk HS (p < 0.0001; Table 6, F criterion 8.25). It is clear that milk HS values
suggest approximately similar seasonal dynamics with health and hygiene indicators, such
as SCC, TCMM, and CCOL (Table 7; also [33]), which is not easily explainable and is it
a little bit paradoxical but practically realistic. As expected, Machado et al. [19] reported
negative relationships between HS and hygienic indicators TCMM and SCC (r = −0.15,
p < 0.0003, n = 591 and r = −0.13, p = 0.0019, n = 591). However, this fact could be
explained by the high mean values of TCMM and SCC in their file compared to our data set.
Seasonal dynamics of hygienic indicators (TCMM and CCOL) were in accordance with the
relevant type of research. As expected, there has been reported negative relationships [62].
Milk HS also had a similar trend with composition indicators such as urea and lactose
content (Table 7; also [33]). However, other authors [63] did not find the urea effect on
HS (p > 0.05) in individual milk samples. Another research found no correlation between
urea and HS ([59] in bulk raw cow milk). For example, this does not correspond to the
results reported by van Boekel et al. (1989, cit. [64]), where there is stated higher protein
dissociation for higher urea content, and then casein molecules are more susceptible to
flocculation. Other researchers [16] also did not find a significant impact of basic milk
indicators on HS. Nevertheless, the approximately contradictory season trend of milk HS
values was observed compared to fat, crude protein, solids-not-fat, total solids, fat/crude
protein, fat/lactose, and MFPD (Table 7; also [33]). The component indicators seem to
be more logical to link to HS dynamics [33]. Higher component concentrations can mark
better visibility and traceability of the beginning of lactoprotein coagulation (denaturation,
flakes) with extreme heat treatment of milk, which can demonstrate a simple technological
relationship. This standpoint could also be supported with results reported by another
research team [18], where artificial milk supplementation by milk proteins decreased milk
HS. In general, some higher cow milk yield in the summer is also known and therefore,
there is also an indication (Table 7) of a slightly positive relationship of milk HS to milk
yield over calendar months.

Table 7. The trend dynamics of means of milk indicators along calendar months by results of analysis of variance.

IND 1 2 3 4 5 6 7 8 9 10 11 12

FA x 3.87 3.82 3.8 3.69 3.76 3.65 3.64 3.63 3.74 3.89 3.81 3.89
CRP x 3.39 3.34 3.34 3.29 3.3 3.24 3.22 3.2 3.28 3.4 3.38 3.4
LA x 4.87 4.89 4.86 4.88 4.92 4.95 4.94 4.92 4.92 4.89 4.88 4.89

SNF x 8.87 8.83 8.81 8.79 8.82 8.79 8.75 8.7 8.79 8.89 8.91 8.89
TOS x 12.74 12.65 12.6 12.48 12.58 12.45 12.39 12.34 12.53 12.79 12.72 12.79
UR x 24.76 24.31 25.63 26.29 26.55 25.55 27.49 26.07 26.85 24.49 24.33 24.49

FA/CRP x 1.14 1.15 1.14 1.13 1.14 1.13 1.13 1.14 1.14 1.15 1.12 1.15
FA/LA x 0.8 0.78 0.78 0.76 0.76 0.74 0.74 0.74 0.76 0.8 0.78 0.8
MFPD x −0.52625 −0.52707 −0.52662 −0.52691 −0.52722 −0.5277 −0.52665 −0.52694 −0.52672 −0.52605 −0.52727 −0.52605
SCC xg 219 212 214 208 212 230 226 251 229 213 218 213

TCMM xg 27.2 24.6 25.3 27.6 29.3 34.7 33.1 31.4 33.2 30.7 27.6 30.7
CCOL xg 5.8 3.7 4.5 4.8 6.2 9.1 10.1 8.0 8.2 4.6 3.7 4.6

HS xg 16.2 16.8 18.6 19.8 18.9 18.8 19.4 20.2 20.9 18.8 19.0 18.8

IND = indicator; x = arithmetic mean; xg = geometric mean; 1–12 = calendar months; used units and explanation of abbreviations of milk
indicators are in Table 2.

3.4. Other Effects on Milk Heat Stability in Discussion

In many papers [18,22,65–70], HS was monitored in relation to technological mod-
ifications of milk, such as pH adjustment or other artificial additives, e.g., Ca (CaCl2),
citrate, phosphates (different forms) with a targeted shift of milk buffering capacity (MBC)
or whey protein and casein additions (technological improvement of raw material). The
effects of elevated calcium, citrate, and urea levels on the stability of UHT milk stored for
52 weeks at 4, 20, 30, and 37 ◦C were investigated by Karlsson et al. [4]. An elevated level
of calcium lowered the pH, resulting in sedimentation and significantly decreased stability.
An elevated citrate level was associated with color, but the stability was not improved



Foods 2021, 10, 2017 11 of 15

compared to the reference UHT milk. Elevated levels of urea or interaction terms had little
effect on the stability of UHT milk.

Further, for example, protein additions (retentate) reduced milk HS [18]. However, it
is not necessary to carry out this manipulation in all cases of milk processing. It means this
is not always a positive trend to treat milk artificially before processing into food, especially
regarding current sustainable views on healthy nutrition. Therefore, this thesis deals with
the practical effects on HS of native milk in its natural composition and its original MBC.

Kailasapathy [71] referred to factors such as milk pH, salt content (can be adjusted by
salt adding as stabilization [72]), urea, lactose, protein (and their variants), and also the sea-
son, lactation, and health of cows as essential for HS of milk proteins. As mentioned [11,71],
pH acidity is the main factor in milk HS. HS variability in this evaluation of bulk milk
samples was 39.6% (calculated from original values). In individual milk samples, it could
be up to double by the qualified estimation. However, the pH variability for a large file of
bulk milk samples was 1.9% (n = 2522, 0.13/6.82; [20]). That is 20.8 times less variability
than HS, which is considerable. This low pH variability of raw milk is determined by its
buffering capacity (Figure 1; MBC).

Foods 2021, 10, x FOR PEER REVIEW 11 of 15 
 

 

FA/LA x 0.8 0.78 0.78 0.76 0.76 0.74 0.74 0.74 0.76 0.8 0.78 0.8 
MFPD x −0.52625 −0.52707 −0.52662 −0.52691 −0.52722 −0.5277 −0.52665 −0.52694 −0.52672 −0.52605 −0.52727 −0.52605 
SCC xg 219 212 214 208 212 230 226 251 229 213 218 213 

TCMM xg 27.2 24.6 25.3 27.6 29.3 34.7 33.1 31.4 33.2 30.7 27.6 30.7 
CCOL xg 5.8 3.7 4.5 4.8 6.2 9.1 10.1 8.0 8.2 4.6 3.7 4.6 

HS xg 16.2 16.8 18.6 19.8 18.9 18.8 19.4 20.2 20.9 18.8 19.0 18.8 
IND = indicator; x = arithmetic mean; xg = geometric mean; 1–12 = calendar months; used units and explanation of abbrevi-
ations of milk indicators are in Table 2. 

3.4. Other Effects on Milk Heat Stability in Discussion 
In many papers [18,22,65–70], HS was monitored in relation to technological modifi-

cations of milk, such as pH adjustment or other artificial additives, e.g., Ca (CaCl2), citrate, 
phosphates (different forms) with a targeted shift of milk buffering capacity (MBC) or 
whey protein and casein additions (technological improvement of raw material). The ef-
fects of elevated calcium, citrate, and urea levels on the stability of UHT milk stored for 
52 weeks at 4, 20, 30, and 37 °C were investigated by Karlsson et al. [4]. An elevated level 
of calcium lowered the pH, resulting in sedimentation and significantly decreased stabil-
ity. An elevated citrate level was associated with color, but the stability was not improved 
compared to the reference UHT milk. Elevated levels of urea or interaction terms had little 
effect on the stability of UHT milk. 

Further, for example, protein additions (retentate) reduced milk HS [18]. However, 
it is not necessary to carry out this manipulation in all cases of milk processing. It means 
this is not always a positive trend to treat milk artificially before processing into food, 
especially regarding current sustainable views on healthy nutrition. Therefore, this thesis 
deals with the practical effects on HS of native milk in its natural composition and its 
original MBC. 

Kailasapathy [71] referred to factors such as milk pH, salt content (can be adjusted 
by salt adding as stabilization [72]), urea, lactose, protein (and their variants), and also the 
season, lactation, and health of cows as essential for HS of milk proteins. As mentioned 
[11,71], pH acidity is the main factor in milk HS. HS variability in this evaluation of bulk 
milk samples was 39.6% (calculated from original values). In individual milk samples, it 
could be up to double by the qualified estimation. However, the pH variability for a large 
file of bulk milk samples was 1.9% (n = 2522, 0.13/6.82; [20]). That is 20.8 times less varia-
bility than HS, which is considerable. This low pH variability of raw milk is determined 
by its buffering capacity (Figure 1; MBC). 

 

 pH 

buffering capacity 

°SH pH 

°SH 

influence of factor change 

residues of alcaline cleaners 

milk souring or residues 
of acidic cleaners 

Figure 1. Scheme of milk buffering capacity (MBC) function. ◦SH = Soxhlet-Henkel degree of milk titration acidity;
pH = milk active acidity.

This MBC is more efficient towards the acidic area than the alkaline, as it is well
known. It turns out that between values 1.9% (variability for pH acidity) and 39.6% (for
HS), there is a large space for the explanation of sources to be filled since the quality of
the raw material from the farm is a determining factor in the quality of dairy products.
The multiple imbalances between HS and pH variability (39.6/1.9 = 20.8) when pH is the
main factor of HS variability have to be better explained. It appears that this statement
of pH, as the main HS factor, applies only to milk from a technological point of view, as
such, it means in processing modifications and manipulations. However, according to the
presented results in this work, there are several significant factors for the HS variability of
raw milk in environmental and technological impacts on farms. Partial explanation and
quantification of these impacts was the aim of this paper.
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4. Conclusions

From the above experiment, it was concluded as follows:

- analysis of the variance on the influences of farm factors on the raw cow milk indica-
tors, in particular the HS of lactoproteins, showed the severity of the influence of farm
conditions on the quality of dairy products and the possibility of increasing the share
of added value in the dairy industry;

- milk HS was statistically significantly influenced by all the farm factors (fixed effects
of the linear model): year; season; calendar month; altitude; total annual rainfall; the
number of dairy cows in the herd; milk yield level; cow breed; type of milking; litter
type in the stable; summer grazing application; farm effect;

- quantification of these effects may allow efficient selection of raw milk during its col-
lection in order to be processed into specific dairy products with the high-temperature
treatment, according to the definition of farm conditions.

Author Contributions: Conceptualization, O.H., J.K. and E.S.; Methodology, O.H., J.K., E.S., J.Č.,
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2. Pytlewski, J.; Antkowiak, I.; Adamski, M.; Kučera, J.; Skrzypek, R. Factors associated with hygienic quality of bulk tank milk

produced in Central Poland. Ann. Anim. Sci. 2012, 12, 227–235. [CrossRef]
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XIV–XVII. Available online: http://www.mlekarskelisty.cz/upload/soubory/pdf/2014/146_xiv-xvii.pdf (accessed on 19 May
2021). (In Czech)

17. Chramostová, J.; Mühlhansová, A.; Binder, M.; Strmiska, V.; Čurda, L.; Hanuš, O.; Kopecký, J.; Klimešová, M.; Dragounová,
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//www.mlekarskelisty.cz/upload/soubory/pdf/2016/156-157/veda_157-22-26.pdf (accessed on 19 May 2021).

18. Peroutková, J.; Binder, M.; Drbohlav, J. Thermal stability of milk fortified with protein preparations. Mlékařské Listy 2016, 27,
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