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Abstract: Fusarium infection is a worldwide agricultural problem of billion dollar proportions
globally, and it has increasingly threatened entire regional food supplies. In addition to the toxin
deoxynivalenol (DON), Fusarium species express digestive enzymes that degrade starch and protein,
affecting the quality of infected grains, especially wheat processing performance which depends
largely on gluten proteins. In this study, the impact of Fusarium protease on the functionality of
Canada Western Red Spring (CWRS) wheat was assessed by adding Fusarium-damaged kernels
(FDK) to a FDK-free base wheat sample. Digestion of beta-casein by extracts of flours, milled from
sound and FDK-spiked wheat samples, demonstrated elevated cleavage in FDK-spiked flour extracts
as follows: N-terminal to lysine (eight-fold), N- and C-terminal to isoleucine (four-fold and three-
fold, respectively), N-terminal to tyrosine (three-fold) and C-terminal to arginine at P1′ (five-fold).
Comparison of abbreviated (45 min) and standard (135 min) extensigraph test results indicated that
desirable increases in dough resistance to extension (Rmax) due to gluten re-polymerization after
longer resting were partially to completely counteracted in FDK-spiked flours in a dose-dependent
manner. Baking tests confirmed that while loaf volume is similar, proofed dough from FDK-spiked
samples caused detectable loaf collapse at 3% FDK. Extensigraph Rmax and Fusarium protease levels
were inversely related, and effected by both the extent and severity of infection. While the current
FDK tolerances for grading Canadian wheat can effectively control protease damage, prevalence
of deoxynivalenol (DON) weak- and non-producing Fusarium strains/species (e.g., F. avenaceum)
in some growing regions must be considered to protect functionality if grading is solely based on
DON content.
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1. Introduction

Fusarium infection in wheat is a global problem involving a large number of Fusarium
species, each with a different prevalence in different parts of the world. In addition to the se-
vere economic loss and potential threat to regional food supplies, some of these species are
also capable of causing fusariosis in immunocompromised humans; a treatment-resistant
infection that is rare but globally on the rise [1]. In addition to the toxin deoxynivalenol
(DON), Fusarium species also produce degradative enzymes that aid initial infection and
provide sustained nourishment for the established infection. Proteomic analysis of the ex-
tracellular proteins (exoproteome) produced by Fusarium graminearum cultured with plant
cell wall isolates revealed F. graminearum produced all required digestive enzymes for com-
plete cell wall degradation [2]. These enzymes include both polysaccharide-metabolizing
enzymes and proteases, which are primarily involved with initial infection [3]. While DON
production typically increases several days after infection, production of secreted proteases
and polysaccharide-digesting enzymes peaks within 2 days of infection [3].

Fusarium infection reduces wheat end-use quality [4–13], presumably by impairing
seed maturation and digestion of starch and protein for sustenance. Fusarium proteases
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remain dormant in harvested seed but reactivate during dough making, thus affecting
dough handling properties and baking performance [14–17]. While a large amount of
work has been carried out in this field, most research has been based on non-specific
tests [3,15,18] or proteomic/genomic identification of gene sequences [19]. Additionally,
very little work has been carried out on identifying the specificities of individual proteases
or their abilities in damaging gluten proteins. Two proteases have been purified and
characterized from F. culmorum grown on a wheat gluten-containing culture; a subtilisin-
like serine protease with maximum activity at pH 8.3–9.6 [20] and a trypsin-like protease
with maximum activity at pH 9.0 [21]. While these two proteases were highly similar to
genes in other fungal species, a combined genetic and proteomic analysis has identified
up to 134 secreted peptidases/proteases in F. graminearum, forming several redundant
groups [19]. Culturing experiments have also shown that the nutrient composition of the
medium influences expression of secretory enzymes. For example, F. graminearum releases
a host of excretory proteins when grown on cell wall, but only four when grown on glucose
alone [2]. Pekkarinen et al. [18] observed no protease activity for three Fusarium species
grown on mineral media until glucose was depleted and proteases active between pH 6–9
on gluten or barley grain medium. Additionally, Fusarium poae produced an acid protease
with an optimal pH between 3.0 and 3.5 when grown on barley grains and in liquid media
containing wheat gluten protein [18]. Therefore, understanding the specificities of gluten-
degrading proteases and how they may differentially present on host species is essential to
the development of an assay sensitive and specific enough to detect Fusarium protease at
levels where declines in dough properties and baking performance are observed.

Measurement of Fusarium protease is important as, with DON production, protease
activity differs between Fusarium spp. [17] and across strains within a species [3]. While
protease and DON are likely both positively correlated with the degree of infection,
DON levels will not necessarily predict protease content or loss of baking quality [10].
Kreuzberger et al. [10] also concluded that there was no significant impact on technological
quality as long as DON was within EU-mandated tolerances. This assertion, however,
requires the knowledge that all species and strains present in a growing region actually pro-
duce DON. For example, F. avenaceum cannot produce DON as the pathway is genetically
inactivated [22], but is prevalent (though declining) in parts of Western Canada [23], Eastern
Canada [24] and among the most prevalent Fusarium species in six European countries [25].
The actual or potential existence of non- or weak-DON producing Fusarium species/strains
in any one growing region makes drawing conclusions on damage from Fusarium protease
on functionality solely from DON levels a potentially erroneous assumption.

The objectives of this study were to characterize the prevailing Fusarium-specific
protease specificity in infected wheat and detect elevated protease activity in blends of
infected kernels at levels where technological quality (extensigraph Rmax) was significantly
reduced. This work will also form the basis for ensuring any loss of functionality due
to protease damage remains controlled in all growing regions if any changes are made
to grading tolerance levels for Fusarium damage. This will enable screening of Fusarium
species/strains and variation over growing seasons to understand how protease levels
relate to technological quality, pathogenicity and various environmental stresses.

2. Materials and Methods
2.1. Seed Samples

Bread wheat (cv. AAC Brandon), graded as No. 1 Canada Western Red Spring (CWRS)
and free from Fusarium infection, was used as a base for blends spiked with Fusarium-
damaged kernels (FDK). FDKs were handpicked by trained Canadian Grain Commission
(CGC) inspectors from Fusarium-infected samples into three categories based on infection
severity: mycelia (FDK-M; presence of mycelia beyond the seed crease, but otherwise
sound), affected (FDK-A; close to normal kernel weight and shape with chalky seed coat)
and distorted (FDK-D; reduced seed size, thin seeds with chalky seed coat).
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2.2. Extensigraph and Baking Test

Wheat blends were prepared by adding FDK to the clean base by mass as follows:
FDK-M (0, 5 and 10%), FDK-A (0, 0.25, 0.8, 1.5 and 3%) and FDK-D (0, 0.25, 0.8, 1.5 and
3%). Wheat samples were tempered and milled following the AACC International Method
26-21.02 [26] on a Buhler test mill to generate flour at a constant extraction rate of 74%.
Dough strength was measured in duplicate by extensigraph following AACC method
54-10.01 [27]. For each replicate, two 150 g pieces of dough were prepared, rounded and
molded into cylindrical shape and rested in a humidified chamber of the extensigraph
for 45 min prior to first stretching. The stretched dough was reshaped and stretched
again after a second resting period of 45 min, followed with a final stretching after a third
45 min rest. The Rmax values (BU) of the first and third stretches (45 and 135 min) were
recorded; 135 min is the standard test time [27]. To demonstrate the impact of FDK on
baking quality, duplicate loaves were prepared using flour from sound base wheat, sound
base +3% FDK-A and sound base +3% FDK-D were prepared using the lean no time (LNT)
baking method [28]. The LNT bake test eliminates the use of an oxidant and reduces
the salt and shortening levels to 1%. It better reflects the impact of dough properties on
loaf characteristics compared to other test bake methods [28]. A new objective parameter,
loaf top ratio, was introduced to qualify the handling properties [28]. The crumb images
were captured with loaf slices using C-Cell instrument (Calibre Control International Ltd.,
Warrington, UK).

2.3. Fusarium Protease Assay

Wheat blends of clean base spiked with FDK-D at 0, 0.25, 0.4, 0.5, 0.8, 1.0, 1.25, 1.5,
2, 2.5 and 3% were prepared by mass and ground with Perten mill 3100. The ground
whole meal (0.1 g) was extracted with ammonium bicarbonate buffer (150 mM, pH 7.8,
1000 µL) by orbital mixing for 15 min at room temperature. Extracts were centrifuged at
14,000× g for 5 min, filtered through a 1.0 µM glass fiber syringe filter and diluted 40-fold in
ammonium carbonate buffer. Protease activity was assayed within one hour of preparation
using the Förster Resonance Energy Transfer (FRET)-paired peptide substrate Mca-R-P-
K-V-E-Nval-W-R-K(Dnp)-NH2 (Peptide ES-002, R&D Systems, Minneapolis, MN, USA).
Substrate (1 mg) was dissolved in AMBIC (4.7 mL), stored in 500 µL aliquots protected
from light and only thawed once. Diluted extracts (90 µL) were delivered to 96-well black-
walled, clear-bottomed microtitre plates (3 wells per extract) and the assay initiated by
the addition of substrate solution (10 µL) using a multi-channel pipette. Fluorescence
(excitation 320 nm, emission 420 nm, no filter) was measured every 5 min for 60 min at
37 ◦C. Initial reaction rates were calculated for each time point and the slope of the plot
of initial rates as a function of time used as the activity for each sample. Five replicate
analyses were conducted.

2.4. Single Seed Protease Assay

FDK-A and FDK-D were handpicked from samples obtained from six individual
Fusarium-infected samples from different sites across Western Canada in the 2018 crop year.
From each site, 10 FDK-A and FDK-D seeds were weighed and ground using an Omni
Bead Ruptor Elite (Kennesaw, GA, USA) in 2 mL tubes with a single 6.5 mm ceramic bead
for 30 s at 6.0 m/s. Ammonium bicarbonate buffer (150 mM, pH 7.9, 1000 µL) was added
to each tube and samples were extracted at room temperature on an orbital mixer. Extracts
were decanted into a 1 mL syringe, filtered through a 1 µM glass fiber filter and serially
diluted 2000-fold in the same buffer. Protease activity was assayed as described above for
whole meal samples.

2.5. Verification of Protease Specificity

Enzyme extracts were prepared from ground samples (200 mg) of clean base and clean
base spiked with 3% FDK-D with ammonium bicarbonate, 150 mM, pH 7.8 (1.5 mL) at room
temperature by sonication (1 min), followed by 60 min using an orbital mixer. Extracts
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were microfuged and filtered through a 1 µM glass fiber syringe filter (enzyme extracts).
Bovine beta-casein (1 mg/mL) was prepared in 50% n-propanol containing 1% (w/v)
dithiothreitol, aliquotted to microfuge tubes (600 µL) and denatured by incubation at
60 ◦C for 15 min. Protein was precipitated with two volumes of 20% trichloroacetic acid,
followed by immediate centrifugation and acetone washes (2 × 2 mL). The pellets were
allowed to air dry and were then reconstituted in 100 µL of aqueous 1 mg/mL Rapigest
(Waters, Milford, NH, USA) by vortex mixing and sonication. Ammonium bicarbonate,
150 mM, pH 7.8 (300 µL) was added plus 100 µL enzyme extract (clean base, 3% FDK-D
or buffer for the digestion blank). Samples were incubated overnight at 37 ◦C, acidified
using formic acid (5 µL) and further incubation for 30 min at 60 ◦C to destroy the Rapigest
detergent. Digests were filtered through SINGLEStEP eXtreme filter vials (PTFE, 0.45 µM,
Thomson Instrument Company, Oceanside, CA, USA) and subjected to peptide mapping
by LC-MS on a Waters (Milford, NH, USA) G2-Synapt mass spectrometer as previously
described [29]. Briefly, an Agilent (Wilmington, NC, USA) Zorbax SB300-C8 column
(2.1 × 100 mm, 1.8 µM particle size, 300 Å pore size) was used with a water/acetonitrile
(ACN) plus 0.1% formic acid gradient at 0.25 mL/min and 50 ◦C from 5 to 60% ACN over
50 min. The mass spectrometer was operated in ESI positive mode using MSE with a 0.5 s
scan time.

Peptides were matched against the bovine beta-casein mature protein sequence
(UNIPROT accession P02666, residues 16–224) using the ion accounting function of Pro-
genesis QIP (Waters, Milford, NH, USA) with non-specific cleavage. Due to the potential
activity of multiple endoproteases and further processing of peptides by exopeptidases
present in the sample, all matched peptides were considered equally for determining the
protease specificity of the sound and FDK-D extracts.

3. Results
3.1. Impact on Dough Strength

The extensigraph Rmax (135 min) of the flour samples milled from the wheat blends
(Figure 1a, solid lines) decreased from sound base (445 ± 20 BU SD for FDK-A and FDK-
D, 457 ± 20 BU for FDK-M) significant enough to indicate a loss of dough strength at
0.8% FDK-D (389 ± 16 BU), 1.5% FDK-A (382 ± 20 BU) and 5% FDK-M (351 ± 6 BU).
During dough resting in the extensigraph test, gluten re-polymerization continues from
the first stretch at 45 min to the third stretch at 135 min. This leads to increased resistance
(elasticity) and decreased extensibility, as reflected by higher Rmax values in the 135 min
stretch than the 45 min stretch (Figure 1a, solid versus broken lines). In order to compare
the impact of FDK content on Rmax more directly, data were also expressed as the percent
loss from sound flour for each series (Figure 1b).

Bread prepared with flour from blends spiked with 3% FDK-A (Figure 2b,e,h) and
3% FDK-D (Figure 2c,f,i) had similar loaf volume to sound flour (Figure 2a,d,g), but
exhibited collapse of the loaf top (Figure 2a–f) and a more open cell structure in cross
sections (Figure 2g–i), indicating the weakening of dough due to FDK protease. Loaf top
ratios, calculated from loaf top measurements as described [28], were significantly lower
in the FDK-A and FDK-D loaves (0.45 ± 0.01 SD and 0.44 ± <0.01 SD, respectively) than
the sound loaf (0.51 ± 0.01 SD), indicating a loss of dough strength. This damage was
apparent, as the FDK-A and FDK-D loaves had collapsed over the lip of the pans while the
sound flour loaf maintained its loaf shape (not shown).

3.2. Ground Grain and Single Seed Protease Activity

Protease activity, assayed with the FRET-labeled peptide Mca-R-P-K-V-E-Nval-W-R-
K(Dnp)-NH2 and expressed as initial reaction rates (fluorescence units per minute per mg
seed) for FDK-D blends demonstrated a non-linear but positively correlated increase in
activity with FDK content (Figure 3). Activity was significantly higher (two-tailed t-test,
α = 0.05, n = 5) than sound base (0% FDK) at and above the 0.8% level.
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These deformities are indicative of protein damage.
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ground seed samples of Fusarium damaged kernels (distorted) in sound (uninfected) base seed. Data points annotated 
with * are significantly higher than the 0% FDK level (two-tailed t-test, α = 0.05, n = 5). 

FDK were hand-picked by trained inspectors from six producer samples across West-
ern Canada and 10 seeds of FDK-A and FDK-D were analyzed for protease activity. Since 
reduced seed size was the definitive criteria for FDK-D, they were lighter than FDK-A 
(17.3 mg ± 5.4 mg SD and 29.8 mg ± 6.7 mg SD, respectively). The protease activity profiles 
differed from site to site (Figure 4): In sites 1, 2 and 4 there was a clear distinction between 
FDK-A and FDK-D in terms of both seed mass and activity, while in site 6 there was nearly 
a complete overlap. 

Figure 3. Protease activity, assayed with the fluorescent peptide substrate Mca-R-P-K-V-E-Nval-W-R-K(Dnp)-NH2, for
ground seed samples of Fusarium damaged kernels (distorted) in sound (uninfected) base seed. Data points annotated with
* are significantly higher than the 0% FDK level (two-tailed t-test, α = 0.05, n = 5).

FDK were hand-picked by trained inspectors from six producer samples across West-
ern Canada and 10 seeds of FDK-A and FDK-D were analyzed for protease activity. Since
reduced seed size was the definitive criteria for FDK-D, they were lighter than FDK-A
(17.3 mg ± 5.4 mg SD and 29.8 mg ± 6.7 mg SD, respectively). The protease activity pro-
files differed from site to site (Figure 4): In sites 1, 2 and 4 there was a clear distinction
between FDK-A and FDK-D in terms of both seed mass and activity, while in site 6 there
was nearly a complete overlap.

3.3. Verification of Protease Specificity

Bovine beta-casein was subjected to digestion by enzyme extracts prepared from
whole meal samples of sound base and sound base spiked with FDK-D. Due to the likely
presence of multiple proteases and specificities, peptide mapping was performed with
non-specific cleavage rules. Sequences were tabulated ± 4 amino acids for both the N-
and C-termini of each identified peptide and expressed as the ratio (FDK-D/sound) for
each position (Table 1). According to convention, sequence positions are numbered from
the cleavage site starting from one, with prime (′) notation used on the C-terminal side.
Cleavage occurred eight-fold more frequently with lysine at P1, four-fold with isoleucine
at P1, three-fold with tyrosine at P1 and five-fold more with tyrosine at P1′ in FDK-D
digests (Table 1).
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Table 1. Heat map (red = low, green = elevated) showing the relative frequency of amino acids near
cleavage sites of bovine beta-casein digested with enzyme extracts from distorted Fusarium-damaged
kernels (FDK-D) relative to clean (uninfected) seed. Elevated numbers mean the specified amino acid
occurred at a position in more peptides in the FDK-D digest than base seed digest, i.e., lysine was
eight times more often at p1 in the FDK-D digest.

P4 P3 P2 P1 P1′ P2′ P3′ P4′

A 1 1 1 1 1 1 0 2
C —– —– —– —– —– —– —– —–
D 1 0 1 0 1 2 2 1
E 1 1 1 1 1 1 1 1
F 2 1 1 1 1 0 1 3
G 3 3 1 2 1 2 2 2
H 0 1 0 1 1 1 0 4
I 2 2 2 4 3 1 1 2
K 1 0 1 8 1 4 6 1
L 1 1 1 1 1 1 1 1
M 2 0 0 1 1 1 14 0
N 1 2 1 1 0 1 0 2
P 1 1 2 1 1 1 1 1
Q 1 1 1 1 1 1 1 1
R 1 1 1 1 5 —– 1 1
S 1 1 1 1 1 1 1 1
T 0 1 1 1 1 1 1 1
V 1 1 1 1 1 2 1 2
W 0 0 —– 0 1 —– 0 8
Y 0 8 2 3

C
le

av
ag

e
si

te
1 1 1 2

4. Discussion

While gluten strength is largely determined by the glutenin polymer size distribu-
tion and ratio of polymer to monomer (mostly gliadins), physical dough properties and
baking performance depends on gluten strength and the amount of gluten proteins in a
flour. Gluten functionality can be defined as the balance of the extensibility (stretchiness)
and elasticity (springiness) of a dough, as the dough must be able to readily expand to
accommodate the increasing sizes of gas cells during leavening but also maintain integrity
without collapse. Excessive elasticity results in insufficient leavening as the gas pressure
required to stretch the dough is too high, while excessive extensibility without sufficient
strength results in rupture of gas cells leading to large voids within the loaf and collapse
during baking. The extensigraph measures this balance of resistance (Rmax) and extensibil-
ity, and is a standard test for gluten functionality. A decrease in Rmax generally correlates
to a loss of dough strength and baking quality. The physical manifestation of the effect of
Fusarium protease on baking quality is evident in loaves baked from sound flour versus
3% affected FDK and 3% distorted FDK (Figure 2). The combination of comparable loaf
volume and partial collapse of the loaf top (Figure 2b) is indicative of protein degradation,
in this case arising from Fusarium protease. Since Fusarium protease remains active through
the dough making and proofing stages, processes with longer rest and proofing times are
likely to result in greater loss of dough strength and loaf shape.

The extensigraph test is one of the most sensitive tests for measuring the viscoelastic
properties of dough. The Rmax (135 min) was significantly reduced from 445 BU to 382 BU
at 1.5% FDK-A (Figure 1a). This can affect the dough handling properties during the
bread-making process, even though loaf distortion was relatively small even at 3% FDK-A
(Figure 2b,e,h). In general, an increase in Rmax is expected with longer resting time, due to
continued re-polymerization of the gluten network, demonstrated by the approximately
55 BU difference between 0% FDK results at 45 min and 135 min (Figure 1a). Superimposed
on this gain is a loss of viscoelastic strength with increased FDK content arising from
proteolytic damage to gluten; while Rmax is generally higher at 135 min (Figure 1a) than at
45 min, the gain from the longer rest time of the 135 min test was essentially negated at 1.5%
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and 3% FDK-A and exceeded at 3% FDK-D. Expression of the data as a percent Rmax reduc-
tion from 0% FDK for each series (Figure 1b) effectively removed the re-polymerization
effect and revealed the protease-mediated functionality loss. In all cases, the relative Rmax
loss was greater at 135 min than at 45 min (Figure 1b), demonstrating that longer rest times
resulted in a greater reduction in Rmax. This is consistent with previous reports, showing
that in addition to damage during seed maturation, Fusarium protease damage occurs
during fermentation [4,16]. The comparison of 45 and 135 min extensigraph data was
effective at revealing the offsetting gluten strength loss due to protease from the expected
gain from continued dough development (re-polymerization).

The protease assay was capable of detecting significantly elevated protease activity
at 0.8% FDK-D (Figure 3), where extensigraph Rmax was visibly affected (Figure 1a). The
correlation of protease activity with decreased gluten strength, an indicator of baking
quality, is consistent with previous reports relating Fusarium protease to reduced baking
quality [3,11]. Although the assay time was 30 min, most samples progressed past the
linear response region before this, so timed measurements and calculation of initial reaction
rates from initial (linear) data were necessary. Digestion of beta-casein with enzyme
extracts from FDK-D and sound seed showed that lysine at P1 (N-terminal to cleavage
site) occurred eight-fold more with FDK-D extract than with sound extract, isoleucine at
P1 four-fold more and at P1′ three-fold more, tyrosine at P1 three-fold more and arginine
at P1′ five-fold more. This is consistent with previously identified subtilisin-like [20] and
trypsin-like [21] proteases purified and characterized from F. culmorum and matching four
potential cleavage sites in the artificial substrate Mca-R-P-K-V-E-Nval-W-R-K(Dnp)-NH2
by Fusarium proteases; C-terminal to both arginines and N-terminal to both lysines. To
our knowledge, this is the first analysis of the specificity of the residual active Fusarium
protease in flour after harvest, storage and milling into flour.

In Canada, wheat grading for Fusarium damage is based on FDK content, meaning
FDK-M, FDK-A and FDK-D would all be counted equally for grading. Canadian bread
wheat varieties predominantly belong to the CWRS class, with Fusarium damage (%FDK)
limits of 0.3%, 0.8% and 1.5% for No. 1, No. 2 and No. 3 CWRS grades, respectively [30].
The use of FDK-D presents a worst-case scenario, as real producer samples would likely
contain a range of less infected kernels and FDK-D can be partially removed by commercial
cleaning due to their lower density and thin shape. Since extensigraph Rmax and protease
activity were significantly changed at and above 0.8% FDK-D (Figures 1 and 3), there should
be very low risk to dough handling properties, and baking quality provided Fusarium
damage, as expressed as FDK%, does not exceed the No. 2 CWRS limit. The development
of a limit-test for Fusarium protease may be useful for grade improvements to “average
out” damage types by blending sound and damaged seed lots in cases where DON levels
meet the specifications.

Data from single seed analysis of FDK-A and FDK-D from six producer sites across
Western Canada demonstrate the complex problem that Fusarium protease presents. Raw
activities were generally higher in FDK-D than FDK-A across sites, and they formed distinct
groups in sites 1, 2 and 4, but were co-mingled in site 6 (Figure 4). Since FDK-D seeds are
light weight and thin by definition, they can mostly be removed by commercial cleaning.
This may result in a dramatic reduction in total protease for many samples due to the
higher activity in FDK-D; however, sites 3, 5 and 6 (Figure 4) contain FDK-A seeds (which
cannot be effectively removed by commercial cleaning) with activities similar to FDK-D
seeds. This suggests that remediation by cleaning may be highly variable and sample-
specific. The highest activity in the blended samples (3% FDA-D) was 11.6 Fl/min/mg seed
(Figure 2), compared to activities of FDK-A and FDK-D (normalized to seed mass) spanned
53.0–12,700 Fl/min/mg seed and 0 (not detected) to 61,500 Fl/min/mg seed, respectively.
The incredibly high potential activity of individual seeds, combined with a wide range
of measured activities, indicates that the extent of infection (% FDK) and the severity of
infection (types of FDK) both play a role in defining the total protease in a sample.
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While protease activity from Fusarium infection reduces gluten strength by partial
digestion of polymeric gluten, not all samples are functionally impacted to the same extent.
Flours from varieties with higher intrinsic gluten strength may demonstrate a reduction in
dough elasticity, but the loss of their dough handling properties and baking performance
was not as much as for flours from weaker varieties [31]. Kreuzberger et al. [10] have
presented evidence that the potential damage from Fusarium protease is minimal for
samples under the EU DON limit. Our results indicate that the visual grading system in
Canada equally protects quality, as there was no significant reduction in extensigraph Rmax
below 0.8% FDK; the current limit for the No. 2 CWRS grade [30]. It may appear that
the potential quality reduction from Fusarium protease can be controlled, since variability
in gluten strength normally occurs for a variety of reasons and is routinely compensated
for by wheat blending or changes to milling process or baking formulations. However,
changes in process or reformulation is time consuming and costly for food manufacturers.
In addition, inconsistency of raw material quality is a major concern for millers and bakers.
Other options, such as using DON as a proxy for potential protease damage, also need
to be regularly and regionally validated due to the prevalence of DON non-producers,
such as F. avenaceum. Ultimately, a thorough knowledge of the variability of protease
expression between fungal species and strains within a growing region, in response to
environmental stresses and to wheat varieties is valuable to fully validate any grading or
quality control system.
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