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Abstract: Polyphenols (PPs) are the main contributors to the health functions of Shanxi aged vine-
gar (SAV) and are mainly produced during the smoking process. This study aimed to explore the
feasibility of regulating the accumulation of total water-soluble PPs (TWSP) by changing environ-
mental factors based on the distribution of PPs. A total of eleven PPs, such as vanillin, vanillic acid,
and (e)-ferulic acid, were detected during the smoking process. During the smoking process, the
content of TWSP gradually increased and was accompanied by changes in environmental factors.
Spearman correlation analysis and verification experiments showed that temperature, amino acids,
and reducing sugars, as the main influencing factors, promoted the accumulation of TWSP. The in
situ regulation strategy of changing environmental factors significantly increased the accumulation
of TWSP by 12.24%.

Keywords: Shanxi aged vinegar; polyphenols; smoking; influencing factors; in situ regulation

1. Introduction

Polyphenols (PPs) are a large collection of at least 10,000 different compounds that
contain one or more benzene rings and different numbers of hydroxyl, carbonyl, and
carboxyl groups [1,2]. PPs have the functions of antioxidation, lipid metabolism regulation,
blood pressure control, cardiovascular disease prevention, liver protection, and antitumor
activities, which are the main contributors to the health functions of Shanxi aged vinegar
(SAV) [3].

PPs are affected by various environmental factors. PPs are often bonded to matrix
molecules, and this binding is mainly noncovalent bonds and sometimes covalent bonds [4–7].
Ionic strength, temperature, pH, and moisture have important effects on the combination of
PPs and the matrixes [8,9] that ultimately affect the content of PPs in the environment. PPs are
also sensitive to the environment. For example, tea polyphenols are sensitive to temperature
and are easily degraded at high temperatures [10]. Proanthocyanidins are sensitive to acid,
whereas anthocyanins are produced by chain breaks under the action of acid catalysis [11].
The accumulation and succession of PPs are also related to the substrate composition in
the reaction systems. Some compounds, such as tyrosine, can act as precursors to promote
the accumulation of PPs [12]. Other compounds, such as methylglyoxal [13] and glyoxylic
acid [14], may provide functional groups in the derivation of PPs to promote the succession
of PPs. In addition, hydroxylation, methylation, and methoxylation also have an important
impact on the succession of PPs [15,16]. Food processing often causes changes in a variety
of environmental factors that affect the accumulation of PPs, which makes the formation
mechanism of PPs complicated and difficult to regulate.

PPs in vinegar are mainly related to raw materials and processes [3], and the distribu-
tion of PPs differ in various types and production stages of vinegar. Ren et al. [17] compared
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the distribution of PPs in SAV and Zhenjiang aromatic vinegar. Seven PPs with different
types and contents were detected in SAV and Zhenjiang aromatic vinegar. Chen et al. [18]
detected eight PPs during the aging process of SAV, and they found that the content of PPs
was remarkably different at different aging times. As many as 41 PPs have been detected
in the 8-year-old SAV, among which the main PPs are 3-(4-hydroxy-3-methoxyphenyl)
propionic acid, vanillin, and vanillic acid [19]. The main sources of PPs are grains, nuts,
seeds, fruits, beverages, vegetables, and spices [2]. Food processing changes various en-
vironmental factors, which, in turn, affect the types and content of PPs. For example,
cooking makes petunidin, malvidin, and delphinidin, which are sensitive to temperature,
almost completely disappear [20]. Owing to changes in temperature, moisture, and drying
time, substrate drying also considerably affects the content of many PPs [10]. SAV uses
grains, including sorghum, peas, wheat bran, rice hull, and millet bran, as raw materials,
and its brewing process generally involves alcohol fermentation, acetic acid fermentation
(AAF), smoking, and aging. AAF begins when the mash formed by alcohol fermentation is
mixed with wheat bran, rice hull, and millet bran (the moist mixture is called Pei, and it is
also called Cupei in the AAF stage). Smoking is carried out in a smoking furnace with a
fire channel underneath and a smoking pot on the top. Put the Cupei at the end of AAF
(mature Cupei) into the smoking pot to start the smoking (Pei is often called smoking Pei
in the process of smoking). Transfer the smoking Pei to the adjacent pot every day, and the
turning during the transfer process will make the Pei mixed and heated evenly. Smoking is
a high-temperature brewing process dominated by Maillard reaction and the main stage
of polyphenol accumulation [21]. Dynamic changes in temperature, acidity, moisture,
and other environmental factors in the process of smoking affect the accumulation of PPs.
However, knowledge of the distribution of PPs in the process of smoking is limited, and
research on the regulation of PPs in complex systems is lacking.

In this study, the distribution of PPs during the smoking process was revealed via
gas chromatography–mass spectrometry (GC–MS). The correlation between PPs and envi-
ronmental factors was analyzed and verified. On the basis of this information, a strategy
for regulating total water soluble polyphenols (TWSP) in smoking was proposed. The
potential mechanism by which environmental factors affect the accumulation of PPs was
also discussed.

2. Materials and Methods
2.1. Sample Collection

Samples of SAV were collected from Taiyuan, China. Both the mature Cupei (the
sample at the end of AAF) and the smoking Pei were obtained from about 30 cm from the
upper surface of the pot (height and width are 82 and 77 cm, respectively). A five-point
sampling method was used for sampling on a 30 cm cross-section. The five-point samples
taken from one pot were mixed uniformly to obtain a uniform sample. The smoking Pei
samples were collected from the 1st to the 5th day of the smoking process. A sufficient
amount of mature Cupei was taken, and each sample of smoking Pei was about 200 g. Each
sample was set in triplicate. The samples were transported in an ice box and stored in a
refrigerator, at −80 ◦C.

2.2. Determination of TWSP and Physicochemical Indexes

Prior to testing physicochemical indexes, solid samples were preprocessed to obtain
extracts. After adding 45 mL of water to 5 g of the solid sample, the mixture was shaken
at room temperature for 3 h and centrifuged at 1700× g for 10 min (Centrifuge TG16-WS,
Xiangyi Co., Ltd., Changsha, China). The supernatant was collected for analysis. The utiliz-
ing optimized Folin–Ciocalteu assay was used to determine the TWSP content [21]. The pH
was measured with a pH meter S20P (Mettler Toledo Co., Ltd., Shanghai, China). Total acid
was evaluated by titration using standardized solution (0.1 mol/L sodium hydroxide) with
phenolphthalein as indicator. Amino nitrogen was determined by the ninhydrin method of
the European Brewing Convention. Changes in pH and contents of total acid and amino
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nitrogen during the brewing process were detected after following previously described
methods [22]. Content of total reducing sugars was determined via Fehling’s test. Amino
acids were qualitatively and quantitatively detected by using an amino acid analyzer
S433D (Sykam Co., Ltd., Eresing, Germany), following the manufacturer’s instructions.
The temperature of the sampling point was measured with a thermometer. The moisture
content in the smoking Pei was determined via the drying method. The reducing sugars in
the samples were determined by high-performance liquid chromatography [23] (Agilent
1260, Agilent Technologies Inc., Santa Clara, CA, USA).

2.3. Analysis of PPs Composition

The composition of PPs in the smoking samples were detected via GC–MS. First,
10 mL of the supernatant obtained in Section 2.2 was collected, and PPs were extracted by
following a previously described method [19]. After that, 2, 4, 5-trihydroxybenzoic acid
(3B Scientific Co., Ltd., Libertyville, IL, USA) was used as an internal standard, and 0.002 g
was added to 10 mL of the extracts during pretreatment. Then 1 mL of bis-(trimethylsilyl)
trifluoroacetamide (BSTFA; Supelco, Bellefonte, PA, USA) +1% trimethylchlorosilane (Al-
addin Bio-Chem Technology Co., Ltd., Shanghai, China) was added to the PP extracts,
and then it was reacted for 3 h, at 70 ◦C, in a water bath (thermostat water bath DK-8D,
Qiaofeng Co., Ltd., Shanghai, China). An HP-5 column (30 m length × 250 µm internal
diameter × 0.25 µm film thickness; Agilent, Agilent Technologies Inc., Santa Clara, CA,
USA) attached to an Agilent 6890 N series gas chromatograph that was connected to a
5973 mass selective detector (Agilent, Agilent Technologies Inc., Santa Clara, CA, USA) was
utilized for the qualitative and quantitative analysis of PPs. The temperature of both the
injection port and the detector was 250 ◦C. The heating program of the oven was set to start
at 100 ◦C and increase to 280 ◦C at a rate of 3 ◦C/min. Mass spectra were obtained at 70 eV
through the electron ionization method. Compounds were identified by comparing their
retention times and mass spectra with those of authentic standards. Their concentrations
were calculated by comparing their peak areas with those of internal standard compounds.

2.4. Influence of Environmental Factors on TWSP

In the laboratory, the influence of environmental factors on TWSP was analyzed
through single factor experiments. Smoking is the process of heat-treating mature Cupei.
In the single-factor experiment conducted in the laboratory, the water bath heating method
was used to control the heat treatment temperature of the mature Cupei. A 500 mL
Erlenmeyer flask containing 300 g of mature Cupei was heated in a water bath. In the
temperature single factor experiment, the temperature of the control group (CG) for 1, 2, 3,
4, and 5 days was set to 55, 85, 90, 95, and 90 ◦C, which was close to the temperature in
production. The temperature settings of different experimental groups of 1–5 days were
experimental group 1 (EG 1; 65, 85, 90, 95, and 90 °C), experimental group 2 (EG 2; 75, 85,
90, 95, and 90 °C), experimental group 3 (EG 3; 85, 85, 90, 95, and 90 ◦C), and experimental
group 4 (EG 4; 95, 95, 95, 95, and 95 ◦C). In the single-factor experiment with exogenous
addition, the control group (CG) was mature Cupei, and the temperature for 1–5 days was
set at 55, 85, 90, 95, and 90 ◦C. In the experimental group, pure amino acids and reducing
sugars were mixed together and added into mature Cupei, and the temperature setting was
the same as that of the control group. The effects of amino acids and reducing sugars were
assessed by setting the gradients of the amounts of amino acids and reducing sugars added
to 0.5, 1.0, 1.5, 2.0, and 2.5× of the initial concentration of the corresponding substances.

2.5. Data Analysis Methods

Spearman correlation analysis was performed to analyze the correlation between
environmental factors and PPs by using SPSS Statistics (19.0). Correlation heat maps were
drawn by using the Multiple Experiment Viewer software (4.9.0).
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3. Results
3.1. Distribution of PPs and Changes of TWSP Content during the Smoking Process

PP composition during the smoking process was analyzed via GC–MS. The diagram
of total ion current is shown in Figure 1. From the 1st day to the 5th day of smoking, the
number of substances detected was 598 ± 8, 712 ± 23, 745 ± 41, 659 ± 12, and 618 ± 25,
respectively. The number of various types of substances detected initially increased and
then decreased. The PPs in the detected compounds were analyzed (Table 1). Eleven PPs
were detected during the smoking process of SAV: (1) vanillin, (2) vanillic acid, (3) (e)-
ferulicacid, (4) (e)-4-hydroxycinnamic acid, (5) 4-hydroxybenzoic acid, (6) (3R,4R)-dihydro-
3,4-bis[(3-hydroxy-4-methoxyphenyl) methyl]-2(3H)-furanone, (7) vanillinmandelic acid,
(8) 1-(3-hydroxy-4-methoxyphenyl)-1,2-ethanediol, (9) 3,5-dihydroxybenzoic acid, (10) (e)-
3-(3-hydroxyphenyl) acrylic acid ethyl ester, and (11) dihydroferulic acid. The types and
contents of PPs in the smoking samples at different times were different. The types of PPs
gradually increased from six on the 1st day to nine on the 5th day. PPs 1–4 were detected
during the entire smoking process. PPs 5, 6, and 9 were observed in the middle and late
stages of smoking. PPs 10 and 11 only appeared on the 4th and 3rd day of the smoking
process, respectively (Table 1). The content of the PPs dynamically changed during the
smoking process. The content of PPs 2, 3, 5, and 9 gradually increased with smoking time,
whereas the content of PP 7 initially decreased and then increased. The content of PPs 4,
10, and 11 initially increased and then decreased. The content of PPs 1, 6, and 8 did not
exhibit a particular trend, but their content at the end of the smoking process was higher
than that at the beginning. The distribution of PPs in the samples at the end of the smoking
process (5th day) was analyzed. Among the nine PPs, the proportion of PPs 1, 2, 3, 6, and 9
in TWSP was 6.44%, 11.84%, 33.56%, 22.69%, and 14.40%, respectively. These PPs were the
main components in smoking Pei, and their total proportion was 88.92%. Among these
PPs, PP 3 had the highest proportion; thus, it was the most important PP.

Foods 2021, 10, x  4 of 15 
 

added to 0.5, 1.0, 1.5, 2.0, and 2.5 × of the initial concentration of the corresponding sub-
stances. 

2.5. Data Analysis Methods 
Spearman correlation analysis was performed to analyze the correlation between en-

vironmental factors and PPs by using SPSS Statistics (19.0). Correlation heat maps were 
drawn by using the Multiple Experiment Viewer software (4.9.0). 

3. Results 
3.1. Distribution of PPs and Changes of TWSP Content during the Smoking Process 

PP composition during the smoking process was analyzed via GC–MS. The diagram of 
total ion current is shown in Figure 1. From the 1st day to the 5th day of smoking, the number 
of substances detected was 598 ± 8, 712 ± 23, 745 ± 41, 659 ± 12, and 618 ± 25, respectively. The 
number of various types of substances detected initially increased and then decreased. The 
PPs in the detected compounds were analyzed (Table 1). Eleven PPs were detected during the 
smoking process of SAV: (1) vanillin, (2) vanillic acid, (3) (e)-ferulicacid, (4) (e)-4-hy-
droxycinnamic acid, (5) 4-hydroxybenzoic acid, (6) (3R,4R)-dihydro-3,4-bis[(3-hydroxy-4-
methoxyphenyl) methyl]-2(3H)-furanone, (7) vanillinmandelic acid, (8) 1-(3-hydroxy-4-meth-
oxyphenyl)-1,2-ethanediol, (9) 3,5-dihydroxybenzoic acid, (10) (e)-3-(3-hydroxyphenyl) 
acrylic acid ethyl ester, and (11) dihydroferulic acid. The types and contents of PPs in the 
smoking samples at different times were different. The types of PPs gradually increased from 
six on the 1st day to nine on the 5th day. PPs 1–4 were detected during the entire smoking 
process. PPs 5, 6, and 9 were observed in the middle and late stages of smoking. PPs 10 and 
11 only appeared on the 4th and 3rd day of the smoking process, respectively (Table 1). The 
content of the PPs dynamically changed during the smoking process. The content of PPs 2, 3, 
5, and 9 gradually increased with smoking time, whereas the content of PP 7 initially de-
creased and then increased. The content of PPs 4, 10, and 11 initially increased and then de-
creased. The content of PPs 1, 6, and 8 did not exhibit a particular trend, but their content at 
the end of the smoking process was higher than that at the beginning. The distribution of PPs 
in the samples at the end of the smoking process (5th day) was analyzed. Among the nine PPs, 
the proportion of PPs 1, 2, 3, 6, and 9 in TWSP was 6.44%, 11.84%, 33.56%, 22.69%, and 14.40%, 
respectively. These PPs were the main components in smoking Pei, and their total proportion 
was 88.92%. Among these PPs, PP 3 had the highest proportion; thus, it was the most im-
portant PP. 

 
Figure 1. Gas chromatography–mass spectroscopy total ion diagram during the smoking process of 
Shanxi aged vinegar. 
Figure 1. Gas chromatography–mass spectroscopy total ion diagram during the smoking process of
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During the smoking process of SAV, the content of TWSP gradually increased and
reached the maximum value of 95.45 ± 5.48 mg/100 g Pei on the 5th day (Table 2). The
content of TWSP increased by 78.08% compared with that prior to smoking.
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Table 1. Distribution of polyphenols during the smoking process of Shanxi aged vinegar.

Polyphenols CAS Number Compound Identification
Smoking

1 Day 2 Days 3 Days 4 Days 5 Days

1 121-33-5 4-Hydroxy-3-methoxy-benzaldehyde
(Vanillin) 1.95 ± 0.19 1.04 ± 0.11 3.23 ± 0.13 2.70 ± 0.31 5.67 ± 0.14

2 121-34-6 4-Hydroxy-3-methoxy-benzoic acid
(Vanillic acid) 3.65 ± 0.17 3.50 ± 0.22 5.44 ± 0.08 6.98 ± 0.19 10.43 ± 0.17

3 537-98-4
(2E)-3-(4-Hydroxy-3-methoxyphenyl)-
2-propenoic acid
((E)-ferulicacid)

7.30 ± 0.36 13.07 ± 0.11 6.26 ± 0.23 11.37 ± 0.12 29.57 ± 0.16

4 501-98-4
(E)-3-(4-hydroxyphenyl)-2-
propenoicacid ((E)-4-hydroxycinnamic
acid)

4.55 ± 0.51 9.19 ± 0.04 10.44 ± 0.073 15.00 ± 0.30 27.01 ± 0.11

5 99-96-7 4-Hydroxybenzoic acid 0 0.40 ± 0.13 0.78 ± 0.31 0.91 ± 0.06 1.26 ± 0.01

6 93376-04-6
(3R,4R)-Dihydro-3,4-bis[(3-hydroxy-4-
methoxyphenyl)
methyl]-2(3H)-furanone

0 0 13.14 ± 0.14 11.74 ± 0.12 19.99 ± 0.14

7 55-10-7 4-Hydroxy-3-methoxymandelic acid
(Vanillinmandelic acid) 0.57 ± 0.18 0 0 1.18 ± 0.18 2.07 ± 0.07

8 40979-91-7 1-(3-Hydroxy-4-methoxyphenyl)-1,2-
ethanediol 0.37 ± 0.19 10.85 ± 0.17 0 0 3.73 ± 0.21

9 99-10-5 3,5-Dihydroxybenzoic acid 0 0 0 5.58 ± 0.25 12.69 ± 0.31

10 96251-92-2 (E)-3-(3-hydroxyphenyl) acrylic acid
ethyl ester 0 0 0 7.03 ± 0.15 0

11 1135-23-5 3-(4-Hydroxy-3-methoxyphenyl)
propionic acid (Dihydroferulic acid) 0 0 1.03 ± 0.15 0 0

CAS, Chemical Abstracts Service.
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Table 2. Changes in total water-soluble polyphenols during the smoking process of Shanxi aged vinegar.

Name
Smoking

1 Day 2 Days 3 Days 4 Days 5 Days

Total water-soluble polyphenols
(mg/100 g Pei) 53.60 ± 1.57 57.78 ± 1.01 69.47 ± 2.93 91.59 ± 5.00 95.45 ± 5.48

3.2. Changes in Physicochemical Indexes during the Smoking Process

The changes of physicochemical indexes during the smoking process were analyzed.
Temperature initially increased, slightly decreased, and then reached the maximum of
95 ◦C on the 4th day (Figure 2A). The content of reducing sugars and amino nitrogen
decreased by 17.20% and 45.45%, respectively (Figure 2B,C). The content of total acid
initially increased, decreased, and then reached the maximum value of 6.12 ± 0.10 g/100 g
Pei on the 3rd day (Figure 2D). The moisture content in smoking Pei ranged from 61% to
65% and decreased by 4.60% (Figure 2E). The pH fluctuated within the range of 3.8–4.0,
but no obvious trend was observed (Figure 2F).

3.3. Analysis of Correlation among TWSP, PPs, and Environmental Factors during the
Smoking Process

Temperature, moisture, total acid, pH, total reducing sugars, and amino nitrogen
are the main parameters for monitoring the smoking process. With physicochemical
indexes as the environmental factors, Spearman correlation analysis was performed to
analyze the correlation among TWSP, PPs, and environmental factors (Figure 3). The
correlation between TWSP and environmental factors was analyzed. The environmental
factors that are significantly correlated with TWSP were temperature, amino nitrogen, and
reducing sugars (p < 0.05). By contrast, pH, total acid, and moisture content were not
significantly correlated with TWSP (p > 0.05). Therefore, temperature, amino nitrogen,
and reducing sugars may be the main environmental factors affecting the formation of
TWSP. Temperature was positively correlated with TWSP, whereas amino nitrogen and
reducing sugars were negatively correlated with TWSP. The correlation between these
environmental factors and different types of PPs was analyzed. Results showed that PPs
2, 5, and 9 were significantly correlated with temperature, amino nitrogen, and reducing
sugars. Temperature was significantly correlated with PP 5, whereas amino nitrogen and
reducing sugars were significantly correlated with PPs 2, 5, and 9. Therefore, temperature,
amino nitrogen, and reducing sugars may affect TWSP by affecting the production of PPs
2, 5, and 9. Moisture content was also significantly correlated with PP 2. Hence, it may also
be one of the environmental factors affecting TWSP.

3.4. Analysis of Correlation among TWSP, PPs, and Amino Acids during the Smoking Process

Thirteen amino acids were detected during the smoking process of SAV: Asp, Thr, Ser,
Glu, Gly, Ala, Cys, Val, Ile, Leu, Phe, His, and Lys (Supplementary Material Table S2). From
the 1st day to the 5th day, the total amino acid content (calculated as amino acid nitrogen)
was 0.113 ± 0.003, 0.092 ± 0.003, 0.082 ± 0.004, 0.081 ± 0.003, and 0.075 ± 0.004 g/100 g Pei,
respectively; the proportion of total amino acid content in amino nitrogen was 68.75%,
61.20%, 74.82%, 76.89%, and 82.99%, respectively (Figure 1, Supplementary Material
Table S2). Therefore, amino acids were the main source of amino nitrogen. The total
amino acid content during the smoking process decreased by 33.63% (Supplementary
Material Table S2). Except for Asp and His, the content of most amino acids decreased after
the smoking process. The amino acids that substantially decreased were Glu (100%), Thr
(69.23%), Lys (65.63%), and Ser (65.38%) (Supplementary Material Table S2).
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The correlation between amino acids, the supplier of amino nitrogen, and TWSP was
analyzed. Six kinds of amino acids were significantly related to TWSP: Glu, Ile, Leu, Thr,
Ser, and Phe (p < 0.05, Figure 3). Therefore, these amino acids may be the main amino acids
that affect TWSP formation. Correlation analysis revealed that six kinds of amino acids
(Glu, Ile, Leu, Thr, Ser, and Phe) and four kinds of PPs (1, 2, 5, and 9) were significantly
correlated (p < 0.05, Figure 3). The types of amino acids were the same as those that
affect TWSP. Therefore, these six amino acids may affect TWSP content by affecting the
production of the four aforementioned PPs.

3.5. Analysis of Correlation among TWSP, PPs, and Reducing Sugars during the Smoking Process

Reducing sugars are another environmental factor that affects TWSP. Five kinds of
reducing sugars were detected during the smoking process: xylose, fructose, mannose,
glucose, and maltose (Supplementary Material Table S2). The content of xylose gradu-
ally decreased, whereas that of mannose, glucose, and maltose initially increased and
then decreased. The change in the content of fructose did not show an obvious trend
(Supplementary Material Table S2).

The correlation between reducing sugars and TWSP was analyzed. Three kinds of
reducing sugars were significantly correlated with TWSP: xylose, glucose, and maltose
(p < 0.05, Figure 3). Fructose and mannose were not significantly correlated with TWSP
(p > 0.05, Figure 3). Therefore, xylose, glucose, and maltose may be the main reducing
sugars affecting TWSP. Correlation analysis between reducing sugars and PPs revealed
that four kinds of reducing sugars (xylose, glucose, maltose, and fructose) and five kinds
of PPs (1, 2, 5, 6, and 9) were significantly correlated (Figure 3). Therefore, xylose, glucose,
maltose, and fructose may affect the content of TWSP by affecting the production of the
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five aforementioned PPs. Xylose, glucose, and maltose were significantly related to TWSP
and the five aforementioned PPs. Thus, they may be the main reducing sugars that affect
TWSP (Figure 3). Fructose was also significantly correlated with PP 1. Hence, this reducing
sugar may also be one of the factors affecting the content of total PPs (Figure 3).

3.6. Influence of Environmental Factors on TWSP

The analyses in the previous sections suggested that temperature, amino nitrogen, and
total reducing sugars may be the main environmental factors affecting TWSP. Six amino
acids (Glu, Ile, Leu, Thr, Ser, and Phe) and three reducing sugars (xylose, glucose, and
maltose) may be the main compounds that affect the content of TWSP. The influence of
environmental factors on TWSP was verified by controlling the temperature and adding
external sources. The externally added substances that may have a large effect on the
content of TWSP were amino acids (Glu, Ile, Leu, Thr, Ser, and Phe) and reducing sugars
(xylose, glucose, and maltose).

For the experiment of the effect of temperature on TWSP, the temperature setting is
shown in Figure 4A. The content of TWSP gradually increased during the smoking process.
As temperature increased, the accumulation rate of TWSP increased (Figure 4B). At the end
of the smoking process, the content of TWSP increased with the increase in temperature.
By the end of the smoking process, the content of TWSP reached the maximum value of
95.9 ± 2.1 mg/100g Pei, which was an increase of 9.23% compared with that in the control
group (Figure 4B). Exogenous addition of amino acids and reducing sugars also promoted
the accumulation of TWSP (Figure 4C). The contents of amino acids and reducing sugars
during the smoking process are given in Supplementary Material Table S2. As the amount
of these substances added was increased, the production rate of TWSP also gradually
increased. When the amount added is 0.5–1.5× of the initial concentration of the control
group, the content of TWSP gradually increased. When the amount added was over 1.5×,
the content of TWSP no longer increases (p > 0.05). Therefore, the content of TWSP reached
the maximum value after the smoking process when the addition amount was 1.5×. In
summary, increasing the temperature and the amount of amino acids and reducing sugars
added increased the content of TWSP during the smoking process. Moreover, the content
of TWSP reached the maximum value when the temperature was set to 95 ◦C and the
addition ratio was 1.5×.

3.7. In situ Regulation of TWSP during the Smoking Process

On the basis of the influence of environmental factors on the accumulation of TWSP,
the content of TWSP during the smoking process was regulated in situ. The temperature
was set to 95 ◦C, and the amount of amino acids (Glu, Ile, Leu, Thr, Ser, and Phe) and
reducing sugars (xylose, glucose, and maltose) added was 1.5× of the initial concentration
of the control group. The diagram of total ion current before and after regulation is shown
in Figure 5. A total of 677 ± 11 substances were detected in the experimental group, which
was higher than that in the control group (618 ± 25).

The types and contents of PPs during the smoking process remarkably changed after
the regulation. Thirteen PPs were detected in the experimental group (Table 3). Aside from
the eleven PPs in the control group (Table 1), (12) homoprotocatechuic acid and (13) catechin
were also detected. These PPs were detected only on the first day of the smoking process.
The distribution of PPs at the end of the smoking process after the regulation was analyzed.
Similar to the control group, the number of PPs detected at the end of the smoking process
in the experimental group was also nine. However, PP 8 disappeared in the experimental
group and PP 10 was detected instead. As the main PPs in the control group, the content of
PPs 1, 2, 3, 6, and 9 in the experimental group accounted for 6.77%, 14.04%, 37.26%, 23.12%,
and 7.34%, respectively, for a total of 88.53% of the total amount of PPs. Therefore, PPs 1,
2, 3, 6, and 9 were also the main compounds in the experimental group. Similarly, PP 3
had the highest proportion, thus it was also the most important PP in the experimental
group. Compared with that in the control group, the content of seven PPs, namely, PPs 1, 2,
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3, 4, 5, 6, and 10, in the experimental group increased. Among them, the PPs with larger
increments were PPs 3, 4, and 10, and their increments accounted for 81.90% of the TWSP
increments. Therefore, the regulation strategy mainly promotes the production of PPs 2, 3,
4, and 10 to increase the accumulation of TWSP.
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Table 3. Effect of in situ regulation on the distribution of polyphenols during the smoking process of Shanxi aged vinegar.

Polyphenols CAS Number Compound Identification
Smoking

1 Day 2 Days 3 Days 4 Days 5 Days

1 121-33-5 4-Hydroxy-3-methoxy-benzaldehyde
(Vanillin) 2.34 ± 0.21 2.58 ± 0.16 4.34 ± 0.18 4.62 ± 0.26 6.82 ± 0.25

2 121-34-6 4-Hydroxy-3-methoxy-benzoic acid
(Vanillic acid) 3.15 ± 0.26 4.24 ± 0.17 6.47 ± 0.28 9.78 ± 0.39 14.14 ± 0.47

3 537-98-4
(2E)-3-(4-Hydroxy-3-methoxyphenyl)-
2-propenoic acid
((E)-ferulicacid)

7.77 ± 0.39 16.27 ± 0.22 29.23 ± 0.29 32.31 ± 0.42 37.52 ± 0.53

4 501-98-4
(E)-3-(4-hydroxyphenyl)-2-
propenoicacid ((E)-4-hydroxycinnamic
acid)

3.23 ± 0.18 5.19 ± 0.24 6.62 ± 0.14 7.43 ± 0.36 7.33 ± 0.32

5 99-96-7 4-Hydroxybenzoic acid 0.66 ± 0.21 0.74 ± 0.16 0.83 ± 0.25 1.21 ± 0.32 1.76 ± 0.22

6 93376-04-6
(3R,4R)-Dihydro-3,4-bis[(3-hydroxy-4-
methoxyphenyl)
methyl]-2(3H)-furanone

0 7.78 ± 0.31 11.27 ± 0.19 22.14 ± 0.33 23.28 ± 0.43

7 55-10-7 4-Hydroxy-3-methoxymandelic acid
(Vanillinmandelic acid) 0 0 0 0 1.39 ± 0.12

8 40979-91-7 1-(3-Hydroxy-4-methoxyphenyl)-1,2-
ethanediol 1.26 ± 0.14 0.18 ± 0.14 0 0 0

9 99-10-5 3,5-Dihydroxybenzoic acid 3.11 ± 0.17 3.88 ± 0.26 3.61 ± 0.13 4.44 ± 0.32 7.39 ± 0.22

10 96251-92-2 (E)-3-(3-hydroxyphenyl) acrylic acid
ethyl ester 0 0 0 1.15 ± 0.17 1.07 ± 0.14

11 1135-23-5 3-(4-Hydroxy-3-methoxyphenyl)
propionic acid (Dihydroferulic acid) 3.24 ± 0.16 6.26 ± 0.33 5.44 ± 0.36 0 0

12 102-32-9 3,4-Dihydroxybenzeneacetic acid
(Homoprotocatechuic acid) 9.02 ± 0.20 0 0 0 0

13 154-23-4
(2R,3S)-2-(3,4-Dihydroxyphenyl)-3,4-
dihydro-2H-1-benzopyran-3,5,7-triol
(Catechin)

0.19 ± 0.04 0 0 0 0

CAS, Chemical Abstracts Service.
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The absolute content of TWSP in the experimental group during the smoking process
was analyzed. The slope of the curve in the experimental group was greater than that in the
control group (Figure 6), indicating that the regulation accelerated the accumulation rate of
TWSP during the smoking process. The content of TWSP gradually increased during the
smoking process. On the 5th day, the content of TWSP in the experimental group reached
the maximum value of 107.13 ± 4.55 mg/100 g Pei, an increase of 12.24% compared
with that in the control group (the initial content of TWSP was 95.45 ± 5.48 mg/100 g
Pei) (p < 0.05, Figure 6). Therefore, this regulation strategy can substantially increase the
production of TWSP.
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4. Discussion

Smoking is a complex reaction system dominated by the Maillard reaction. PPs mainly
accumulate during the smoking process and are affected by various environmental factors.
In this study, the environmental factors affecting the accumulation of water-soluble PPs
were analyzed and the regulation strategy of TWSP was proposed.

Many studies demonstrated that various reactions, such as degradation, oxidation
loss, and melanoid formation in the Maillard reactions, reduce the content of PPs [13,24,25].
However, some conditions in the Maillard reaction may also promote the increase in the
types and content of PPs, such as promoting the release, synthesis, and derivatization of
PPs. The increase in temperature promoted the release of intracellular or bound PPs. The
main PPs during the smoking process were phenolic acids (Tables 1 and 3), which often
exist in cells in soluble or insoluble form [26]. The increase in temperature destroyed the cell
wall, thereby promoting the release of endogenous PPs. Phenolic acids are often coupled
with cell wall polymers to form covalent complexes, such as PP 3, which is abundant in
cereal cell walls [26]. The increase in temperature promotes the hydrolysis and release of
bound phenolic acids under acidic conditions. The melanoids produced by the Maillard
reaction are also rich in PPs [3,27]. The increase in temperature facilitates the breaking of the
covalent [27] and noncovalent bonds (such as hydrogen bonds) [8] between polyphenols
and melanoidin, as well as promotes the release of PPs. Therefore, the increase in the
amount of PPs released may be one of the important reasons accounting for the increase in
the accumulation of phenolic acids, such as PPs 3, 4, and 5 (Tables 1 and 3). In addition
to promoting the release of PPs, the increase in temperature also promotes the occurrence
of some chemical reactions related to PPs. First of all, the increase in temperature may
promote the accumulation of polyphenol precursors. High temperature denatures proteins
and produces more free amino acids, and some of these amino acids, such as tyrosine [28],
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act as precursors to promote the synthesis of PPs. High temperature also increases the
synthesis of the intermediates of the Maillard reaction, some of which are involved in the
synthesis of PPs. For example, glyoxylic acid, as a provider of acetate groups, reacts with
phenol to generate 4-hydroxyphenylacetic acid [29], which is beneficial to the production
of PP 12. Secondly, the increase in temperature may promote the occurrence of some
synthesis reactions. For example, the isomerization reaction of catechins [25] and the
reaction of malonic acid and PP 1 to PP 3 [30]. Thirdly, the hydroxyl and aldehyde groups
in PPs may be oxidized to carboxyl groups at high temperatures, thereby promoting
the occurrence of oxidation reactions [15,31]. For example, the aldehyde group in PP
1 is oxidized to produce PP 2 [32], and induce the conversion between PP 8 and PP 7.
In addition, (PP 5) 4-hydroxybenzoic acid and (PP 4) 4-hydroxycinnamic acid are the
precursors for the synthesis of other hydroxybenzoic acid and hydroxycinnamic acid
phenolic acids, respectively. Methoxylation at high temperatures promotes the formation
of PP 1 and 3, respectively. In fact, PP 11 can also be converted to PP 3 [33]. The conversion
of various PPs (such as PP 1, 4, and 11) to PP 3 may be the reason why PP 3 is the main PP
during the smoking process of SAV (Tables 1 and 3). The accumulation of some precursors,
intermediates or products in the conversion reaction may be the reason for the significant
correlation between environmental factors and them (such as PP 2, 5, etc.; see Figure 3).

The addition of amino acids and reducing sugars increased the substrate of the Mail-
lard reaction and promoted the synthesis of PPs during the smoking process. Amino acids,
especially aromatic amino acids, are important precursors for the synthesis of PPs. SAV
is rich in numerous kinds of amino acids. The 4-hydroxybenzaldehyde synthesized from
tyrosine [12] is the precursor for the synthesis of hydroxybenzoic phenolic acids, which can
derive many polyphenols, such as PP 5 and PP 1. Phenylalanine is a common intermediate
in the synthesis of PPs [26] and can derive various PPs [34]. Therefore, the addition of
phenylalanine promotes the synthesis of PPs. In addition, some of the added amino acids
are non-neutral amino acids, which may cause changes in environmental factors such as
pH and affect the release of PPs. The reaction of amino acids and reducing sugars can also
cause changes in some environmental factors. Therefore, the increase in the accumulation
of PPs by exogenous addition may be due either to the direct addition of amino acids and
reducing sugars or to other indirect factors derived from such addition. Sugars are an
important source of polyphenol side chain groups. Glycolaldehyde, glyoxal, and glyoxylic
acid are formed in large quantities in the Maillard reaction as the fragmentation products
of sugars, providing aldehyde groups for PPs [35–37]. For example, glyoxylic acid reacts
with guaiacol or catechol to form PP 1, and PP 7 is the intermediate product of the reac-
tion [38,39]. Therefore, the increase in glyoxylic acid content is conducive to the production
of PPs 1 and 7, and fluctuations in the content of PP 7 during the smoking process may be
related to the conversion of PP 7 to PP 1 (Table 1).

However, changes in smoking conditions undeniably have a negative effect on PP
accumulation. For example, catechins are easily degraded at high temperatures [25], which
may be the reason why PPs 12 and 13 disappeared during the middle and late stages of
smoking process (Table 3). High temperatures may cause more PPs to participate in the
formation of melanoidin [24], and reduce the content of free PPs in vinegar. The effect
of temperature on the bonding of PPs with the matrix is also related to the endothermic
and exothermic heat of broken bonds. The increase in temperature is conducive to the
hydrophobic interaction between the PPs and the matrix [8], which is not conducive to
the release of PPs. In summary, the effects of promoting and restraining the accumulation
of PPs during the smoking process occur simultaneously, and the promotion effect was
dominant during the smoking process, which increased the content of TWSP.

In this study, Spearman’s correlation analysis and single factor experiment were used
to screen environmental factors and verify, respectively. On the basis of the influence of
environmental factors on TWSP, a regulation strategy for promoting the accumulation of
TWSP was proposed from the perspective of strengthening the Maillard reaction. The
distribution of PPs was first analyzed. A total of eleven PPs were detected during the
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smoking process of SAV. For the first time, temperature, amino acids, and reducing sugars
were observed to promote the production of TWSP. By increasing the temperature and
the content of amino acids and reducing sugars, the accumulation of TWSP increased
by 12.24%. Although it has been discovered that environmental factors promote the
accumulation of TWSP, their mechanism during the smoking process still needs further
study. A simple model system eliminates the obstacles in analyzing complex reaction
systems and is an effective means to reveal the formation mechanism of substances in
complex systems [12,37]. In a follow-up study, we will comprehensively investigate the
formation mechanism of PPs during the smoking process by simulating the conditions of
smoking and constructing a reaction model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10071518/s1. Table S1: Structural formula of polyphenols during the smoking process of
Shanxi aged vinegar. Table S2: Variations of types and contents of amino acids and reducing sugars
during the smoking process of Shanxi aged vinegar.
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