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Abstract: A non-contact method was proposed to monitor the freshness (based on TVB-N and
TBA values) of large yellow croaker fillets (Larimichthys crocea) by using a visible and near-infrared
hyperspectral imaging system (400-1000 nm). In this work, the quantitative calibration models were
built by using feed-forward neural networks (FNN) and partial least squares regression (PLSR). In
addition, it was established that using a regression coefficient on the data can be further compressed
by selecting optimal wavelengths (35 for TVB-N and 18 for TBA). The results validated that FNN
has higher prediction accuracies than PLSR for both cases using full and selected reflectance spectra.
Moreover, our FNN based model has showcased excellent performance even with selected reflectance
spectra with rp = 0.978, R?, = 0.981, and RMSEP = 2.292 for TVB-N, and rp, = 0.957, R?;, = 0.916, and
RMSEP = 0.341 for TBA, respectively. This optimal FNN model was then utilized for pixel-wise
visualization maps of TVB-N and TBA contents in fillets.

Keywords: large yellow croaker; freshness; feed-forward neural networks; hyperspectral imag-
ing technology

1. Introduction

Large yellow croaker (Larimichthys crocea), as one of the most economically valuable
marine fish in China, has a unique flavor and positive effects on health arising from its
constituent proteins, polyunsaturated fatty acids, and carbohydrates, with a predicted
substantial market size in south east Asia [1-3]. However, due to rigorous environmental
requirements and the geographical limitations of large yellow croakers, it is difficult to
keep a live large yellow croaker in the market. Low-temperature storage technology is
a common technique for preservation and extends the shelf-life of large yellow croaker
products due to its convenience and low cost [4]. Protein degradation, lipid oxidation,
and microorganism growth are inevitable activities in fish muscle post-mortem due to the
high levels of nutrient and moisture content in large yellow croaker, which significantly
impact freshness and consumer acceptance and reduce economic efficiency. Therefore,
a scalable evaluation system of accurate traits for large yellow croaker freshness is an
essential process.

At present, conventional evaluation methods focus on physical observations, chemical
analysis, and microbial activities. Shi et al. investigated the quality changes of mud shrimp
during frozen storage by evaluating protein changes and lipid oxidation, and made the
prediction using a neural network [5]. Though presenting a comprehensive assessment
in the evaluation of fish freshness quality, these traditional methods need high-precision
skills and complex manipulations, thus they are time-consuming, inefficient, laborious, and
only applicable to small samples. It is difficult to scale them for commercial applications,
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which would require real-time monitoring of fish’s quality. Therefore, a method involving
rapid, non-destruction and efficient testing technology to guarantee quality, safety, and
authenticity is desirable for the fish processing industry and consumer market.

Hyperspectral imaging (HSI) technology has been successfully applied in the assess-
ment of fish freshness and safety [6-8]. It combines traditional spectroscopy and imaging
processing with much higher information in terms of spectral and spatial resolution. It
has not only compensated for traditional evaluative methods but also has high-sensitivity,
multi-component determination, and intelligent monitoring [9,10]. Cheng et al. have
successfully determined the total volatile basic nitrogen (TVB-N) in Ctenopharyngodon Idella
during frozen storage by HSI technology (400-1000 nm) [11]. Dai et al. have presented a
distribution map of texture (hardness, gumminess, and chewiness) of prawn (Metapenaeus
ensis) using a visible and near-infrared spectroscopy technique [12]. HSI technology was
utilized to determine the quality of aquatic products based on some significant features
(i.e., color [13], texture [14,15], water content [16], thio-barbituric acid (TBA) [6], and aerobic
bacterial count [17]). In addition, several methods were used to develop calibration and
prediction models using HSI information, such as partial least squares regression (PLSR),
multiple linear regression (MILR), least squares support vector machine (LS-SVM), artificial
neural networks (ANN), etc. ANN is usually applied in classification and non-linear regres-
sion techniques. Ahmed et al. evaluated the sugar content of potatoes using HSI and FNNs
(feed-forward neural networks, radial basis functions neural networks, and exact design
redial basis functions) [18]. Peter et al. reported a rapid method to identify pathogenic
bacteria using Fourier transform-infrared (FI-IR) HSI and ANN [19]. HSI technology has
been widely used in assessing product quality and demonstrated excellent predictability.
This is the inspiration for us to explore the possibility of using the combination of HSI
technology with FNN for assessment of the freshness of large yellow croaker.

Therefore, this study aims to correct the above imperfections by the following pro-
cedures: (1) to develop a HSI system within the spectral region 400-1000 nm to obtain
visible and near-infrared (VIS-NIR) hyperspectral images of large yellow croaker under
low-temperature treatments (4 °C, 0 °C, and —3 °C); (2) to select optimal wavelengths
that are essential to minimize redundant information from HSI and to obtain accurate
predictions of TVB-N (an authoritative trait for assessing protein degradation [11]) and
TBA (a typical index for accessing lipid oxidation [20]) values, due to the significant differ-
ence between fresh and un-fresh samples with large yellow croaker; (3) to develop novel
processing algorithms by feed-forward neural networks; (4) to visualize the TVB-N and
TBA distribution maps by applying imaging process algorithms for predicting TVB-N and
TBA contents of each pixel from the hyperspectral image of large yellow croaker.

2. Materials and Methods
2.1. Sample Preparation

Fifteen fresh large yellow croakers with an approximate length of 38 cm, were used
in this study. These fish were sourced from Zhangwan Dock (Ningde, Fujian Province,
China). They were then transported to the laboratory chilled in ice within 2 hours of being
caught. Upon arrival, each fish was beheaded, gutted, peeled, and washed with cold water.
They were then filleted and each fillet was divided into 5-6 pieces (as shown in Figure 1a).
These pieces were further classified based on their relative location on the fish body:dorsal,
ventral, and tail. The shape and thickness of the pieces were naturally (slightly) different
depending on the body structure of the fish. Finally, the fillets of each fish were packaged in
an individual zip-lock bag. These bags were then placed into a refrigerator (Haier, Fuzhou,
China). The zip-lock bags were randomly stored at 3 temperatures: —3 °C, 0 °C, and 4 °C.
The sampling time for measuring TVB-N and TBA of large yellow croaker fillets were: 0,
4,8, and 10 days at 4 °C; 4, 8, 12, and 16 days at 0 °C; and 4, 8, 12, 16, 20, and 24 days at
—-3°C.
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Figure 1. (a) Large yellow croaker fillet samples, (b) hyperspectral image acquisition, and (c) schematic
diagram of three-dimensional hyperspectral image.

2.2. Determination of Quality Indicators

In this study, TVB-N and TBA values were investigated to comprehensively assess
the quality changes of large yellow croaker during three different temperature storages.
TVB-N as an authoritative parameter for assessing the degradation of protein presents the
amount of trimethylamine, dimethylamine, ammonia, and methylamine caused by the
decomposition of nitrogenous compounds [21,22]. TBA is considered as a parameter for
evaluating the secondary lipid oxidation degree [23].

The TVB-N value was measured by a Kjeldahl nitrogen method following standard
(GB 5009.228-2016) with modifications. The process is briefly described as follows: 2.00 g
of large yellow croaker muscle was weighed and mixed with 28 mL purified water (Milli-
Q, Bedford, MA, America) by homogenizing for 60 s. Afterward, the mixture and 0.5 g
magnesia were placed in a distilling tube in Kjeltec 8400 instrument (FOSS, Hilleroed,
Denmark). Operational parameters were as follows: 30 mL of boric acid (10 g/L), a mixed
indicator-bromocresol green (0.1%): methyl red (0.1%) = 10:7; distilling for 3 min; titrated
with hydrochloric acid (HCI, 0.01 M).

TBA value was determined as a typical index for accessing lipid oxidation by following
the procedure of Salih et al. with some modifications [24]. The process is described as
follows: 2.00 g of large yellow croaker muscle was weighed and mixed with 10 mL
of purified water. The mixture was homogenized for 60 s and mixed with 10 mL of
trichloroacetic acid (TCA, 20%) standing for 20 min, and centrifuging for 5 min at 4200 rpm.
The supernatant was at a constant volume to 25 mL with purified water. Then, 5 mL
of diluted and 5 mL of TBA (0.01 M) were heated in a 95 °C water bath for 20 min and
then cooled down to room temperature. The absorbance of the cooled solution was tested
at 532 nm by a spectrophotometer (UV-2601, Beifen-Ruili, Beijing, China) and 1, 1, 3, 3-
tetrameth-oxypropane was used to perform a standard curve ranging from 0 to 0.25 ppm.
The contents of TBA were expressed as mg/kg sample.

2.3. Hyperspectral Imaging System, Images Acquisition, and Processing

A push-broom VIS-NIR HSI system with a wavelength region from 400 to 1000 nm
was used to acquire hyperspectral images of large yellow croaker (as shown in Figure 1b).
This mainly consists of a charge-coupled device (CCD) camera (DL-604 M, Andor, Ireland)
with a high resolution of 1024 x 472 pixels, imaging spectrograph (Isuzu Optics, Taiwan,
China), a camera lens (M0814-MP2, Tsukishima, Tokyo, Japan), two 150 W halogen lamp
light source (3900e, Illumination Technologies, Taiwan, China) with an angle of 45° to
illuminate the moving platform controlled by a stepping motor (IRCP0076-1COMB, Isuzu
Optics, Taiwan, China), a black box, and a desktop computer with hyperspectral images’
data acquisition software (Spectral Image Application, Isuzu Optics, Taiwan, China),
regulating the exposure time, motor speed, combining mode, wavelength range, and
image acquisition.

In this study, parameters of image acquisition are 32 cm of distance from the lens
to the moving platform; 13 mm/sec of the horizontal movement speed of the moving
platform; and 0.1 ms of the exposure time of the camera. Each hyperspectral image has
472 wavelengths with an increment of ~1.27 nm.
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It should be noted that various imaging parameters (such as illumination or detector
sensitivity) could affect the intensity of the HSI, which could be detrimental. In order to
reduce the effect of the variations in illumination, detector sensitivity and camera, and
physical configuration, the instrument was first adjusted to reflectance mode by using two
extra reference images (black and standard white). The corrected hyperspectral image (Rc)
process could be calculated following Equation (1):

Rc = (Rg — B)/(W — B) )

where Ry, B, and W are the raw hyperspectral images, black reference, and white refer-
ence, respectively.

Region of interests (ROIs) within hyperspectral images were selected based on the
locations where the reference subsamples had been collected for further assessment (as
shown in Figure 1c). Finally, mean reflectance spectra from ROIs were presented as spectral
data. Multiplicative scatter correction as the spectral pre-processing method was used
to eliminate the undesirable scatter effect from the matrix prior to data modeling in this
study [11]. We collected a total of 397 and 316 spectrums for TVB-N and TBA, respectively.
This work was executed with ENVI 5.1 (ITT Visual Information Solutions, Boulder, CO,
USA) software.

2.4. Methodology for HSI Processing

In this work, two different methods are utilized, the first being feed-forward neural
networks (FNN). In order to benchmark the performance of FNN, a classical method
was also utilized to analyze the same dataset. It was found, that among researchers
working with HSI for fish, partial least squares regression (PLSR) method is popular [25-27].
Therefore, in this work, PLSR was selected. The following section describes the methods in
detail. For this work, we have used Matlab R2020a (The Mathworks, Inc., Mass, Natick, MA,
USA) and Unscrambler V9.7 (CAMO, Trondheim, Norway) software for implementation
of the following methods.

2.4.1. Feed-Forward Neural Networks

Feed-forward neural networks (FNN) are one of the most common types of neural
network in which the information moves forward. A feed-forward neural network is a
state of the art method for solving regression problems such as ours [28]. A FNN consists
of three components-layer(s) (of neurons), a linear weighing function (of neurons), and
a non-linear activation function (to select the relevant useful neurons). The non-linear
function used here is-LeakyRelu. For a given dataset, we have attempted to use FNN with
different widths and depths. Then, the optimal number of latent variables depends on the
prediction error, typically performed by using the lowest value of the predicted residual
error sum of squares [29].

2.4.2. Partial Least Squares Regression

Partial least squares regression (PLSR) as a classical method was widely applied to
multivariate data analysis, which is regarded as a standard calibration technology due to
considering the relation between sample characteristics and spectroscopic data [30,31]. It
has performed outstandingly when the wavelength numbers are greater than samples and
when there is multicollinearity among variables. The general equation describing the PLSR
model, the quantitative relation between independent wavelengths (X) and observations of
TBA/TVB-N (Y) results can be described as follows (2) [16]:

Ym><1=Xr1><1 ><Bk><1 +Er1><l (2)

where k is the number of wavelengths for n number of calibration samples, B is the matrix
of regression coefficients, and E is the regression residual matrix.
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2.4.3. Selection of Optimal Wavelengths

As explained earlier, data collection involves spectral results at 472 wavelengths;
however, the chemical results such as TVB-N and TBA are single-dimensional data. The
spectral information extracted from hyperspectral images not only encompasses abundant
valid information but redundant information also exits, which needs to be inverted in
order to gather the relevant chemical properties. This could easily bottleneck the computa-
tional resources in a practical situation leading to higher inference time due to the lower
speed of the computational process. One possible way to avoid this is to select effective
wavelengths carrying the most valuable information that inflected the alteration of TVB-N
and TBA values during multivariate analysis and removing the useless wavelengths with
irrelevant information. To do so, the regression coefficient for each wavelength in the
spectral content for TVB-N and TBA was first computed. It is well established in mathe-
matics that columns (wavelengths) with lower regression coefficients do not contain as
much relevant information compared to those with a higher coefficient [32]. Therefore,
we have selected wavelengths corresponding to local maxima (and minima) of regression
coefficients. Expectedly, this substantially shrinks the dimensionality of the spectral dataset.
Based on these optimal wavelengths, a new simplified FNN-simplified model was estab-
lished. Again, to benchmark its performance, a simplified version of the PLSR was also
developed from optimal wavelengths.

2.4.4. Evaluation of Models

Reflectance spectra acquired from fillets were randomly divided into calibration and
prediction datasets, using a hold-out method (85:15 ratio). The abilities of the calibration
and prediction performance were evaluated based on six parameters: the correlation
coefficients of calibration (r.), the coefficient of determination of calibration (R2.), the root
mean square error of calibration (RMSEC), the correlation coefficients of prediction (rp),
the coefficient of determination of prediction (R?,), and the root mean square error of
prediction (RMSEP). Generally, a satisfactory model should present higher r., rp, RZ, RZP,
and lower RMSEC and RMSEP values.

2.4.5. Visualization of TVB-N and TBA Contents

In order to visually observe the contents of TVB-N and TBA of large yellow croaker
fillets during storage, it is necessary to visualize the quantitative spatial distribution
by grading color maps for evaluating the corruption of aquatic products. In this work,
according to the evaluation of the models, the best model was used to predict the quality
indicators’ content at each pixel in the hyperspectral image of the prediction dataset. A
distribution map of the chemical indicator within a fillet is based on the spatial position at
each pixel and the corresponding indicator’s value.

3. Results and Discussion
3.1. Statistics of TVB-N and TBA Contents and Spectra

A robust and developed model usually needs a wide range of quality variation for
calibration and prediction samples [33]. Table 1 presents the relevant statistics of TVB-N
and TBA contents of the examined large yellow croaker fillets. The presence of a wide
range of TVB-N and TBA indicators indicated that the calibration dataset had an excellent
performance in establishing a reliable calibration model. We used normalized data in the
calibration dataset and prediction dataset, which ensures a consistent coverage between
the calibration model and prediction model. This not only helps the establishment of stable
calibration models but also increases the credibility of the prediction model.

The differences in the average reflectance extracted from the pixels of ROIs of the
examined large yellow croaker fillets after 8 days’ storage under three different treatments
in the spectral range 400-1000 nm are shown in Figure 2a. It is apparently observed that the
spectral features showed an analogous changing trend with some broadband adsorption
peaks in the whole wavelength region. However, there were still some variations in the
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magnitude of spectral reflectance, which may be due to the different chemical transforma-
tions (i.e., lipid oxidation and protein degradation, and microbial activities) during different
temperature treatments, which is consistent with the previous literature [34,35]. In the
visible spectral range (400-780 nm), there are two adsorption broadbands located at around
417 nm and 553 nm, which may be due to adsorption of pigments (i.e., ferroheme [36];
hemoglobin and myoglobin [37]; and astaxanthin and canthazanthin [38]). In the NIR
spectral range (780-1000 nm), there are two weak adsorption bands at 836 nm (associated
with the third overtone O-H stretching [25] and lipid oxidation [39]) and 974 nm (related to

the second overtone O-H stretching in water [13]).

Table 1. Reference results of total volatile basic nitrogen (TVB-N, mg/100 g) and thio-barbituric acid
(TBA, mg/kg) contents of large yellow croaker fillets measured by conventional methods.

Quality Indicators

No. of Samples

TVB-N
TBA

Max Min Mean + SD 1
397 34.920 8.176 14.518 + 5.509
316 3.072 0.097 0.61 = 0.48

1 SD: standard deviation.
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Figure 2. (a) Average spectral curves of the examined large yellow croaker fillet after 8 days’ storage; (b) Distribution of

optimal wavelengths in full reflectance spectra.
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3.2. Prediction of TVB-N and TBA Contents Using Full Reflectance Spectra

Throughout the average reflectance spectra extracted from hyperspectral images of
large yellow croaker fillets and their corresponding indicator (TVB-N and TBA, respec-
tively) values, the prediction models were developed by using PLSR and FNN algorithms
within the full reflectance spectra, respectively. Table 2 shows the quantitative relation-
ships of measured and predicted values of TVB-N and TBA of fillet samples. As shown
in Table 2, for the TVB-N analysis, PLSR exhibits excellent performance in building the
calibration model with the two coefficients of determinations (R%. and Rzp) were 0.901
and 0.894, respectively and the two corresponding root mean square errors (RESEC and
RESMP) were 5.708 and 6.904, respectively. This shows better performance than another
study reported by Liu et al. for the rapid prediction of pH values in salted meat using
Vis-NIR HSI technology, showing coefficients of determination (R?. and R%;) of 0.856 and
0.797 using the same PLSR modeling approach [40]. In addition, compared with the PLSR
model, the FNN algorithm displayed better effectiveness and predictability with a major
increase of 0.081 and 0.091 for R?. and R2p and a decrease of 3.285 and 4.291 for RMSEC and
RMSEP. 1t is clear that a higher R?. and Rzp and lower RESEC and RESMP are significant in
spectral analysis and quantitative prediction. Therefore, the model established by the FNN
algorithm using full reflectance spectra has superior prediction accuracy than the PLSR
approach for the prediction of TVB-N content of large yellow croaker fillets. Moreover,
the FNN approach also exhibited high ability in the prediction of TBA content of large
yellow croaker fillets with higher R (0.945) and Rzp (0.929) and much lower RMSEC
(0.130) and RMSEP (0.133) than that of the PLSR model. More importantly, the capability of

dULIIPIY
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the FNN model confirms the efficiency and robustness of HSI technology for TVB-N and
TBA content prediction in a rapid and non-destructive technology.

Table 2. Calibration and prediction results of TVB-N and TBA values for large yellow croaker fillet by HSI technology.

Calibration Prediction
Quality Indicators Model No.W!  No.LV?
re R%2.  RMSEC 1 R?%, RMSEP
PLSR 472 13 0949 0901 5708 0932 0894 6904
FNN 472 2 0991 0982 2423 0993 0985 2613
TVE-N PLSR-simplified 35 10 0933 0871 6510 0927 0875  7.668
FNN-simplified 35 6 0989 0978 2933 0978 0981 2292
PLSR 472 10 0934 0891 0421 0922 0896 0529
FNN 472 2 0972 0945 0130 0964 0929 0133
TBA PLSR-simplified 18 8 0917 0860 0313 0908 0887 0429
FNN-simplified 18 2 0964 0930 0148 0957 0916 0341

! No. W: number of wavelengths; 2 No. LV: number of latent variables.

3.3. Prediction of TVB-N and TBA Contents Using Selected Spectra

Optimal wavelength selection is a significant step in eliminating the redundant infor-
mation of hyperspectral images, optimizing the calibration models, reducing the computa-
tion time, and further satisfying the practical application [41]. In this work, the regression
coefficient was conducted to select the optimal wavelengths carrying the most valuable
information related to large yellow croaker quality from the full reflectance spectra, to sim-
plify the original calibration models. As shown in Figure 2b, 35 individual variables (428,
430, 450, 457, 476, 481, 492, 505, 506, 510, 511, 515, 516, 517, 521, 522, 528, 541, 543, 553, 587,
594, 600, 639, 653, 656, 673, 685, 692, 707, 710, 759, 777, 784, and 811 nm) were selected as
the optimal wavelengths to replace the full reflectance spectra for the following prediction
of TVB-N content in large yellow croaker fillets, and 18 optimal wavelengths (430, 431, 458,
461, 522, 573, 608, 610, 627, 660, 668, 747, 756, 766, 784, 836, 837, and 901 nm) were obtained
for further prediction of TBA values. Notably, most of the selected wavelengths were
located in the limit of the visible spectrum (400-780 nm), which is in accordance with the
TVB-N content of grass carp reported by Cheng et al. [11]. Table 2 shows the performance
of simplifying models of PLSR-simplified and FNN-simplified models established by using
the reduced spectral information for TVB-N and TBA indicators, respectively. It can be
noticed that although the number of wavelengths was reduced by more than 92% (472 vs.
35 and 472 vs. 18), the prediction ability of optimized models (PLSR-simplified and FNN-
simplified) show minor differences compared with the models developed using full spectral
regions. As illustrated in Table 2, even in this case comparison with the PLSR-simplified,
FNN-simplified model showed superior effectiveness and accuracy in calibrating and
predicting TVB-N and TBA values with the R?. of 0.978 and 0.930, R?;, of 0.981 and 0.916,
RMSEC of 3.933 and 0.148, and RMSEP of 2.292 and 0.341, respectively, confirming that
FNN-simplified is regarded as the best model using optimal reflectance spectra to predict
the TVB-N and TBA values for the evaluation of freshness of larger yellow croaker fillets.
Figure 3 showed the scatter plot of predicted versus measured TVB-N and TBA obtained
by the FNN-simplified model based on the selected wavelengths. It is thus indicated that
HSI technology with the selected wavelengths is also suitable for quantitative prediction of
TVB-N and TBA values of large yellow croaker filets, respectively.

3.4. Distribution Map of TVB-N and TBA Contents

The great advantage of HSI technology is that the spectral and spatial information
at each pixel in a hyperspectral image make it possible to reveal the freshness of fish by
showing chemical images of the quality indicators obtained by using suitable calibration
models [33]. To do so, the FNN-simplified method, obtained with the help of the selected
reflectance spectra, was used to transfer information from each pixel in the hyperspectral
image to the prediction of chemical values (TVB-N and TBA) in the fillet sample of large



Foods 2021, 10, 1161

8 of 10

yellow croaker. This is because a simplified model is expected to be more representative of
a practical scenario. It is expected that pixels with similar characteristics would present
similar visualization with similar quality parameters [42]. Figure 4 shows the distribution
map of TVB-N and TBA content in large yellow croaker fillets after 8-day storage at
three low-temperature treatments (—3 °C, 0 °C, and 4 °C). Differences in TVB-N and
TBA contents were observed using images in a fillet, which could imply the degradation
of nitrogen-containing chemical compounds (i.e., protein) and the oxidation degree of
lipids after 8-day storage at three low-temperature treatments. Figure 4a,b,d,e show that
surrounding locations present higher values of TVB-N and TBA than the inner location,
which means that the degradation and oxidation degree started at the edge of the fillet.
This might be due to the ruptured cells, oxygen penetration, and microorganism activities
at the cut surface [6,11]. Moreover, Figure 4c,f show a large area of red color, indicating
that a higher level of degradation and oxidation degree has occurred during higher storage
temperature (4 °C) than others (—3 °C and 0 °C). Thus, this further illustrates the alternation
process of TVB-N and TBA contents in the fillet of large yellow croaker under the different
storage treatments by comparing the different distribution maps of TVB-N and TBA
contents, respectively. Additionally, it is a successful technique to evaluate the fillets’
freshness by showing the TVB-N and TBA contents via RGB images.

w
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w n w
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RMSEP=0.341

1209784
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Figure 3. Scatter plots of predicted versus measured TVB-N (a) and TBA (b) obtained by FNN-
simplified model based on the optimal wavelengths.

—3 °C 0 °C 4 °C

0.727 mg/kg

0.230 mg/kg

0.502 mg/kg

Figure 4. Distribution maps of TVB-N (a—c) and TBA (d—f) contents in large yellow croaker fillets
after 8-day storage at three low-temperature treatments.
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4. Conclusions

A VIS-NIR hyperspectral imaging system empowered with PLSR and FNN was con-
ducted to rapidly and non-invasively monitor the freshness of large yellow croaker fillets.
The results validated that FNN has showcased excellent prediction accuracies in full and
selected reflectance spectra. In addition, the optimal FNN-simplified model was utilized
for pixel-wise visualization maps of TVB-N and TBA contents in fillets, revealing the
distribution of freshness of large yellow croaker fillets during storage. However, some
obstacles need to be overcome, such as the limited number of regression algorithms avail-
able, different locations of the fish, and different storage methods. Further experimental
validation of this method i.e., combining HSI and FNN, is still needed for its application in
the field of aquatic food processing.
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