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Abstract: Binary similarity measures have been used in several research fields, but their application
in sensory data analysis is limited as of yet. Since check-all-that-apply (CATA) data consist of binary
answers from the participants, binary similarity measures seem to be a natural choice for their
evaluation. This work aims to define the discrimination ability of CATA participants by calculating
the consensus values of 44 binary similarity measures. The proposed methodology consists of three
steps: (i) calculating the binary similarity values of the assessors, sample pair-wise; (ii) clustering
participants into good and poor discriminators based on their binary similarity values; (iii) performing
correspondence analysis on the CATA data of the two clusters. Results of three case studies are
presented, highlighting that a simple clustering based on the computed binary similarity measures
results in higher quality correspondence analysis with more significant attributes, as well as better
sample discrimination (even according to overall liking).

Keywords: panelist performance; discrimination ability; CATA; product development; binary
similarity

1. Introduction

In food sensory analysis, check-all-that-apply (CATA) experiments show an increasing
tendency among practitioners. Its high popularity is due to the simplicity, effectiveness, and
fast execution, as well as the many different applications [1]. Application fields of CATA
is not restricted to consumer assessors, researchers used the method with semi-trained
assessors as well [2].

During a CATA experiment, a list of sensory attributes is presented to the assessors,
from which they choose only those they identify in the given sample [3]. The final data
table of such an analysis contains the products and assessors in its rows and the sensory
attributes in the columns. The table is binary, where 1 denotes if the assessor identified the
attribute in the sample while 0 means that the attribute was not perceived by the assessor.
The most obvious way to analyze such data is to create contingency tables which show
how many times a given attribute was chosen.

CATA data analysis is a widely researched area; however, one of the most known
methods is graphical correspondence analysis (CA). CA might be considered as a general-
ized principal component analysis (PCA) for ordinal data [4]. Its popularity is due to the
easy interpretability of the results and the high similarity with the well-known biplots of
PCA. Attribute-wise differences among samples are analyzed by Cochran’s test, while a
modified penalty analysis is widely used to define attributes with the greatest effect on the
overall liking of the products [5,6].
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It is also important to evaluate the panel participating in a CATA experiment. Re-
producibility was investigated first among the performance metrics and within-assessor
reproducibility index was introduced [7]. Recent papers on CATA data analysis focus on
the clustering of subjects in CATA experiments. Since CATA participants are usually con-
sumers, monitoring their performance is rather difficult. It is hypothesized that clustering
participants based on their evaluations (e.g., their perceptions of the products) enables the
researchers to conduct CAs on the different consumer groups. In order to get a dataset
acceptable for cluster analysis, the CATATIS method has been introduced recently, which
yields a weighted average dataset that cross-tabulates the products and the attributes. The
original dataset is decomposed into assessor datasets, and during CATATIS, the group av-
erage dataset closest to the original dataset is identified to enable the definition of assessor
weights. In the second step, these weights are used to create clusters of assessors based on
their distance from the panel average, this is termed as the CLUSCATA method [8].

Further analysis of the agreement among the participants has also been discussed.
The authors of CLUSCATA and CATATIS introduced an overall index of agreement among
participants based on the cosine between two matrices associated with two respondents in
a Euclidean space [9].

From the above-mentioned developments in CATA data analysis, it can be seen that
there is a lack of methods aiming to describe the discrimination ability of consumer panels.
There are multiple methods which are used to assess the discrimination ability of trained
panels conducting descriptive sensory methods (e.g., F-plot [10] or MAM-CAP [11]).

In the present study, the application of binary similarity indices will be introduced and
discussed as another tool for CATA data analysis. Binary similarity indices are widely used
in various scientific fields, especially in chemometrics and cheminformatics to compare
binary vectors [12,13]. Although their sensometric application was limited so far, we have
recently highlighted their applicability for metabolomics data [14]. The most comprehen-
sive collection of these metrics was published by Todeschini and co-workers [15]. Their
work includes 44 different similarity metrics that were introduced by researchers of diverse
fields.

The presented study aims to introduce a new approach for CATA data analysis which
enables the researchers to:

i. Assess the discrimination ability of the assessors;
ii. Create consumer clusters based on the level of discrimination of the assessors.

This is based on the application of binary similarity metrics (as published in our recent
work and available at https://github.com/davidbajusz/fpkit, accessed on 18 May 2021)
to three case studies of CATA evaluation scenarios. The python code used for the pre-
sented calculations, along with an example input is published open source in the same
GitHub repository to allow for easy reproducibility of our results and the application of
the presented approach to other CATA datasets.

2. Materials and Methods
2.1. Datasets
2.1.1. Cricket Enriched Biscuit Dataset

Oat biscuit samples were prepared using house cricket (Acheta domesticus) powder, oat,
and buckwheat flour. Cricket powder was shipped from Thailand (JR Unique Foods Ltd.;
Udon Thani, Thailand), while oat and buckwheat flour were purchased from Hungarian
producers (Első Pesti Malom-és Sütőipari Zrt. and Bonetta Bt; Budapest, Hungary). Other
ingredients of the doughs were lactose free butter and sour cream, baking powder and salt.
Samples contained 0% (Ctrl), 5% (CP5), 10% (CP10), and 15% (CP15) cricket powder. Sixty-
seven consumers evaluated the prepared four samples using 38 CATA attributes (Table 1)
in a one-week session at the Sensory Evaluation Laboratory of the Hungarian University
of Agriculture and Life Sciences, Institute of Food Science and Technology. Participants
received written information about the possible risks and allergens of the tested products
and signed a consent form that they were aware of these risks and allergens, as well
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as that their blind answers would be used only for research purposes. The study was
conducted according to the Guidelines of the Hungarian University of Agriculture and
Life Sciences and was approved by the Ethical Committee of the Institute of Food Science
and Technology.

Table 1. Attributes evaluated by consumers using CATA questions for sensory characterization of
different product categories in the four studies included in this research.

Study CATA Terms

Cricket enriched
biscuit

too dark, too light, nice color, brown color, grainy, too strong odor, too
weak odor, cheesy odor, bitter odor, seedy odor, earthy odor,

sunflower-seedy odor, toasty odor, pleasant odor, fishy odor, friable, hard,
soft, crumbly, fatty, crispy, granular, dry, too strong flavor, too weak flavor,
cheesy flavor, seedy flavor, spicy flavor, salty taste, sunflower-seedy flavor,
toasty flavor, tasty, sweet taste, sticky, piquant, fishy flavor, burnt flavor,

long lasting taste

Apple pomace
biscuit enriched

biscuit

light, dark, homogeneous, heterogenous, seedy, rustic, perfect size, small,
fruity odor, citrus odor, apple odor, buttery odor, caramel odor, burnt odor,
coconut odor, hard, flexible, chewy, crispy, solid, mealy, sunflower seedy,

soft, sticky, friable, tasteless, vanilla flavor, fruity flavor, citrus flavor, apple
flavor, caramel flavor, sweet bitter, sour, burnt

Strawberry sweet, sour, strawberry flavor, strawberry odor, flavorsome, tasteless, red
color, irregular shape, regular shape, small, big, firm, hard, soft, juicy, dry

2.1.2. Gluten Free Brown Rice Biscuits Enriched with Apple Pomace and Flax
Seeds Dataset

Biscuit samples were prepared using brown rice flour, whole flax seeds, and dried,
finely ground apple pomace. Brown rice flour and flax seeds were purchased from Hungar-
ian producers (Riceland-Magyarország Kft. and Dénes Natura Kft; Lajosmizse, Hungary).
Apple pomace was made from Idared apples, at the Department of Food Preservation
at Hungarian University of Agriculture and Life Sciences, Institute of Food Science and
Technology. Other ingredients of the doughs were margarine, icing sugar, and vanilla
sugar. Samples contained 0% (AP0), 2.5% (AP2.5), 5% (AP5), and 10% (AP10) ground apple
pomace. Sixty consumers evaluated the prepared four samples using 34 CATA attributes
(Table 1) in a one-week session at the Sensory Evaluation Laboratory of Hungarian Univer-
sity of Agriculture and Life Sciences, Institute of Food Science and Technology. Participants
received written information about the possible risks and allergens of the tested products
and signed a consent form that they were aware of these risks and allergens, as well as that
their blind answers would be used only for research purposes. The study was conducted
according to the Guidelines of Hungarian University of Agriculture and Life Sciences and
was approved by the Ethical Committee of the Institute of Food Science and Technology.

2.1.3. Strawberry Dataset

Strawberry varieties were analyzed by 117 consumers in a supermarket in Montevideo,
Uruguay. Consumers rated 16 CATA attributes (Table 1) and overall liking. The dataset
is widely used to illustrate CATA data analysis methods and was originally published by
Ares and Jaeger (2013). Cochran’s Q test and multivariate data analysis proved that most
attributes are discriminant [1]. Additionally, a more recent study identified a rather poor
agreement among the subjects [8].

2.2. Data Analysis
2.2.1. Binary Similarity Measures

The CATA experiments provide a list of sensory attributes, in which the presence of an
attribute in a sample is denoted by “1” by the assessors. In this way, a long vector with the
binary coded absence or presence of the attributes in the sample is given for each sample
(row). The samples can be compared based on their binary vectors using a 2 × 2 table,
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which is presented in Table 2. The frequencies of 1-1, 0-0, and 0-1/1-0 pairs are calculated in
the 2 × 2 table, based on the attributes in the input matrix. The four cases are the following:
(a) 1-1 if the attribute is selected in both samples, (b) 0-1 if the attribute is selected in the
first sample out of the two, (c) 1-0 if the attribute is selected in the second sample out of the
two and (d) 0-0 if the attribute is selected in none of the compared two samples. Thus, four
parameters (a, b, c, d) are calculated based on a pairwise comparison of the binary vectors.
The additional parameter is the length of the binary vectors, which is marked by p.

Table 2. 2 × 2 table for the calculation of the binary similarity metrics.

p = a + b + c + d Sample 2

Sample 1 1 (Attribute present) 0 (Attribute absent)

1 (Attribute present) a c
0 (Attribute absent) b d

The mentioned five parameters are the basis of the different equations of the binary
similarity metrics. These are summarized in the work of Todeschini et al. [15], as well as
our earlier work [14], and a few examples are given here: Tanimoto coefficient (JT), Simple
matching coefficient (SM), Driver-Kroeber or cosine coefficient (DK).

JT = a/(a + b + c) (1)

SM = (a + d)/p (2)

DK = a/
√

((a + b)(a + c)) (3)

Similarity and distance metrics can be transformed into each other in the follow-
ing way:

Similarity = 1/(1 + Distance) (4)

Similarity metrics often, but not always, fall in the range between 0 and 1. For those
metrics, which are in a different range, Todeschini et al. have proposed a simple scaling
method to transform them to the [0, 1] range:

Similarityscaled = (Similarity + α)/β (5)

where the α and β parameters are individually determined for each metric. In this work,
the scaled versions of the 44 similarity metrics were calculated with the recently published
FPKit Python package [13], which is freely available at https://github.com/davidbajusz/
fpkit, accessed on 18 May 2021.

Due to the large selection of binary similarity metrics, the average values of the
different metrics can be used for the comparison of the assessors, as the simplest consensus
option. The reason for this choice is that we cannot arbitrarily select the best similarity
metric a priori. By contrast, the merit of consensus metrics/methodologies have been
extensively demonstrated [16–18]. Briefly, using the average of the 44 similarity metrics is
supported by the maximum likelihood principle, which “yields a choice of the estimator as
the value for the parameter that makes the observed data most probable” [19]. In effect, this
means that all of the individual similarity metrics express the true (unknown) similarities
with some errors (biases and random errors as well), but computing their average cancels
out these errors, at least partially. Thus, average similarity metrics were calculated for
each pair of samples in each dataset and for every assessor. Those assessors who produce
smaller similarities on average (between samples) can be considered to be more sensitive
to differences between the tested samples.

https://github.com/davidbajusz/fpkit
https://github.com/davidbajusz/fpkit
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2.2.2. Check-All-That-Apply Data Evaluation

The data matrix obtained after running and averaging the 44 similarity measures
on the binary CATA data table consists of columns corresponding to the assessors, and
rows corresponding to the pairs of products. The values in the matrix express the average
similarity metrics computed for the given assessor and the given pair of samples. These
pair-wise differences were subjected to a (column-wise) agglomerative hierarchical cluster
analysis (AHC) using Ward’s method and the Euclidean distance to create two clusters,
one representing assessors with good discrimination ability (e.g., lower average similarity
values) and the other containing assessors with poor discrimination ability (e.g., higher
average similarity values). In order to visualize the differences between the two groups,
correspondence analysis (CA) was computed for the total panel and for the created two
clusters (good/poor discrimination ability). AHC was run on the matrix of similarity
measures while CA was run on the binary data matrix obtained from the sensory tests.
Optimal cluster numbers were determined using the Silhouette index [20]. AHC and CA
were calculated using XL-Stat ver. 2019.2.2 [21].

3. Results and Discussion

The 44 similarity metrics were calculated for each dataset in the following way: the
original binary dataset contained the attributes in the columns and the samples in the rows.
The assessors were also assigned to the rows. After the calculation of the 44 metrics, the
averaged values for each sample combination can be found in the cells of the matrix, where
the assessors were in the columns and the compared sample combinations in the rows. The
workflow can be followed in Figure 1.
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Figure 1. The workflow of the calculation of similarity metrics from CATA experiments. Assessors are marked with “A”
and Samples are marked with “S” in the left side of the plot, with “n” being the number of attributes and “m” the number
of assessors.

The average similarity values for each assessor are plotted in a heatmap visualization,
colored dark green to red, from the lowest similarity to the highest similarity. To allow for
easier discrimination among the assessors, averages were calculated from the similarity
values column-wise (assessor average), as well as for the whole data matrix (grand average).
Those assessors, whose assessor averages are below the grand average (defined here as
a consensus limit) can be considered as the better ones, i.e., having higher-than-average
discrimination ability. These individuals were marked with brackets in Figure 2. Figure 2
presents a part of the results of the three different datasets, the full heatmaps can be found
in the supplementary material (Figures S1–S3). The grand averages (or consensus limits),
the number of the selected assessors based on the limit value, and the row maximum and
minimum values are reported in Table 3. The color ranges of the heatmaps were specified
by the latter two parameters.
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Figure 2. Excerpts from the three heatmaps for the three case studies (A: Cricket, B: Apple pomace
enriched and C: Strawberry). Red color means lower, while green color means better discrimination
ability. Sample names are in the first columns, while participants are denoted by numbers.

Table 3. Summary of the average similarity values and row minimum and maximum values for the heatmaps in each case
study.

Consensus Limit Selected Assessors * Row Minimum Row Maximum

Dataset 1 (cricket) 0.53 37/67 0.21 0.89

Dataset 2 (apple pomace enriched biscuit) 0.55 32/60 0.10 0.96

Dataset 3 (strawberry) 0.47 63/117 0.15 0.89

* Selected assessors, whose assessor averages are below the grand average (defined here as a consensus limit) can be considered as the
better ones, i.e., having higher-than-average discrimination ability.

3.1. Cricket Enriched Biscuit Dataset

Based on the average similarity measures of the assessors, 37 participants were marked
as good discriminators (highlighted with black boxes on Figure 2). To provide an even
finer distinction and grouping of the assessors (based on the discrimination of the samples
pair-wise), agglomerative hierarchical cluster analysis (AHC) was used.

In order to visualize the effects of the grouping based on the similarity values, corre-
spondence analysis was carried out on the total panel data (Figure 3a). Figure 3a presents
only the significant check-all-that-apply (CATA) attributes determined by Cochran’s Q test.
The total inertia shows high explained variance (95.24%) and the four products are placed
into four different quadrants. Additionally, the products are arranged in a “U” shape from
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left to right based on the amount of added cricket powder (from Ctrl (0%) to CP15 (15%)).
The detailed analysis of the product relationship among products and attributes will be
published elsewhere.
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Figure 3. (a–d) Results of the cricket-enriched biscuit dataset. Correspondence analysis of the total sample (n = 67). (a),
profile plot of the agglomerative hierarchical cluster analysis with Euclidean distance and Ward’s method (b), correspon-
dence analysis of good discriminators (n = 56) (c), correspondence analysis of poor discriminators (n = 11) (d). Products are
marked with blue dots, attributes are marked with red squares in panels (a,c,d), cluster of good discriminators is colored by
green, while poor discriminators are colored by red in panel (b). Samples contained 0% (Ctrl), 5% (CP5), 10% (CP10), and
15% (CP15) cricket powder.

AHC was applied to the pair-wise sample average similarity values of the assessors, as
presented by Figure 1. Silhouette clustering indices were computed to validate the cluster
numbers. The highest average Silhouette index was found in the case of two clusters
(0.1810), hence this will be used later.
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Figure 3b presents the profile plot of AHC, showing two clearly distinguishable
clusters. In the plot, lower average similarity values mean better discrimination, while
values closer to 1 mean poor discrimination between samples. The lowest average similarity
values were obtained in the case of Ctrl vs. CP15, which is expected since these are the two
most different products. The profile plot shows that cluster 1 (green line) showed better
discrimination among products, creating the group of good discriminators. Altogether 56
consumers were identified as good discriminators and 11 as poor ones.

Figure 3c,d presents the cluster analysis (CA) of the two clusters separately. The
number of significant CATA terms (Table 1) was higher for the good discriminators than
for the total panel (19 vs. 17) and lower for the poor discriminators (7). Additionally,
while Ctrl and CP5 were discriminated well, the difference between CP10 and CP15 is less
pronounced based on the total panel and the good discriminators.

3.2. Apple Pomace-Enriched Biscuit Dataset

Results of the apple pomace-enriched biscuit dataset are presented in Figure 4. Figure 4a
shows the CA results on the total panel data, which presents a “U” shape according to the
amount of added apple pomace to the products. AHC of the binary similarity metrics
identifies two distinct clusters (average Silhouette width: 0.2145) (Figure 4b). The first cluster
shows lower similarity values, meaning they discriminate the products better. Figure 4c
presents the CA of cluster 1 (good discriminators), which showed better discrimination
between the product pairs, while Figure 4d shows the results of cluster 2. CA shows a higher
number of significant attributes compared to Figure 4a, and the products are also better
differentiated.

3.3. Strawberry Dataset

Analysis of total panel results are similar to those published by other authors evaluat-
ing the same data set [1,8,22], namely that the products were described by the CATA terms
(Figure 5a).

Analyzing the optimal cluster numbers, Silhouette index revealed that two clusters
would be optimal (average Silhouette width: 0.1138), which is similar to those cluster
numbers found in the previous case study. Figure 5b presents the profile plot of the two
clusters, where again, the two clusters can be described as good and poor discriminators
(Figure 5c,d). Cluster 1 (good discriminators) shows average similarity values around
0.4–0.5, while cluster 2 (poor discriminators) shows slightly higher values (0.5–0.6). It is
important to note that some samples showed higher difference. For example, the first
five sample pairs in Figure 5b, while others (located in the middle of the plot) showed
very similar results, thus no difference between the two clusters. This might be due to the
high similarity of the samples. The strawberry dataset consisted of six varieties, which
greatly raises the number of combinations during a pair-wise comparison. (Compared to
the cricket powder enriched biscuit dataset, where six combinations were calculated, here
15 pairs can be enumerated.)

Compared to the previous dataset, the average similarity measure values are lower,
meaning that the participants in the strawberry group discriminated the samples better
compared to the group evaluating the cricket powder enriched biscuit samples. Consid-
ering this observation, we propose that the similarity measures could be generalized to
compute a global measure describing the discriminator power of the test. However, it
should be noted that this is a combined result, we cannot judge the participants (e.g., their
discriminatory power) independently of the similarities of the products.
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Figure 4. (a–d) Results of the apple pomace-enriched biscuit dataset. Correspondence analysis of the total sample (n =
60). (a), profile plot of the agglomerative hierarchical cluster analysis with Euclidean distance and Ward’s method (b),
correspondence analysis of good discriminators (n = 37) (c), correspondence analysis of poor discriminators (n = 23) (d).
Products are marked with blue dots, attributes are marked with red squares in panels (a,c,d), cluster of good discriminators
is colored by green, while poor discriminators are colored by red in panel (b). Samples contained 0% (AP0), 2.5% (AP2.5),
5% (AP5), and 10% (AP10) ground apple pomace.
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Figure 5. (a–d) Results of the strawberry dataset. Correspondence analysis of the total sample (n = 117). (a), profile plot of
the agglomerative hierarchical cluster analysis with Euclidean distance and Ward’s method (b), correspondence analysis of
good discriminators (n = 81) (c), correspondence analysis of poor discriminators (n = 35) (d). Varieties are marked with blue
dots, attributes are marked with red squares in panels (a,c,d), cluster of good discriminators is colored by green, while poor
discriminators are colored by red in panel (b).

3.4. Comparison of Product Liking

Comparison of overall liking values between the two consumer groups determined
by agglomerative hierarchical clustering of the similarity values is presented by Table 4.
In the case of cricket enriched oat biscuits and strawberry varieties, the cluster showing
lower similarity values, e.g., the one having better discrimination ability, shows significant
differences between the samples based on overall liking. In the case of cricket enriched
oat biscuit data set, Ctrl and CP5 is significantly more liked compared to the products
containing higher amounts of cricket powder. Although a similar tendency can be seen
in the case of C2, there is no statistically justifiable difference between the OAL of the
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samples. C2 consisted of participants who liked the products similarly and did not make
any difference among them.

Table 4. Analysis of variance and Tukey post-hoc tests of overall liking variable conducted on the two
clusters separately for all three product groups. Letters indicate homogeneous subgroups determined
by Tukey post hoc test. C1 indicates the cluster achieving lower average similarity values, e.g., having
better discrimination ability.

Cricket C1 C2

Ctrl 6.536 b CP5 6.818 a

CP5 6.339 b Ctrl 6.727 a

CP10 5.357 a CP10 6.182 a

CP15 4.518 a CP15 6.091 a

Apple pomace enriched C1 C2

AP0 6.216 c AP0 6.304 c

AP2.5 5.541 bc AP2.5 5.435 bc

AP5 5.081 b AP5 4.870 ab

AP10 3.568 a AP10 3.652 a

Strawberry C1 C2

L20.1 5.753 b L20.1 6.571 a

Festival 5.247 ab Guenoa 6.171 a

Guenoa 5.136 ab Festival 6.029 a

Yvahé 4.938 ab Yvahé 5.486 a

K31.5 4.469 a K31.5 5.229 a

Yurí 4.358 a Yurí 4.971 a

Letters denote homogenous subgroups determined by Tukey post-hoc tests.

The strawberry dataset shows also that members of C1 differentiated the products on a
higher level, their mean OAL across products ranged between 4.358 (Yurí) and 5.753 (L20.1)
and significant differences were found. Interestingly, while the OAL values reported by the
members of C2 span across a slightly greater range (5.0–6.6), due to the wide distribution
(i.e., large variance) of the values, the differences between the products are statistically not
significant.

The apple pomace-enriched biscuits dataset showed a different result. In this case, both
clusters showed significant differences among samples with the same pattern, meaning that
AP0 proved to be the most liked and AP10 as the least liked one. It has to be mentioned that
these products were highly different because the added amount of apple pomace changed
the texture, color, and taste to a great extent, which is why the consumers differentiated the
products very well.

3.5. Comparison with Panelist Agreement

Panelist agreement was calculated by the CATATIS method introduced recently [9].
CATATIS calculates the so-called homogeneity index, describing the global agreement
among the respondents. The homogeneity index was found to be satisfactory for the cricket-
enriched biscuit dataset (42.6%), while the strawberry dataset showed lower homogeneity
(37.2%). The highest homogeneity index was achieved for the apple pomace-enriched
biscuits (52.1%), showing that the assessors had similar opinions about the products. A
discrimination index was calculated to characterize the whole dataset by computing the
grand average of the binary similarity measures of each assessor. The Best discrimination
was obtained in the case of the strawberry dataset (47.3%), while the cricket-enriched and
apple pomace-enriched biscuit datasets showed poor discrimination (53.3% and 55.5%, re-
spectively). It should be noted that unlike the homogeneity index, the lower discrimination
index denotes better discrimination.

The authors would emphasize the joint application of the homogeneity index (as
the measure of panelist agreement) and the introduced methodology (as the measure
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of discrimination ability) in order to identify assessors with good or weak performance.
An example of this joint application is presented by Figure 6, where the agreement and
discrimination ability of assessors from the apple pomace-enriched biscuit case study
are plotted. The figure presents that there is no correlation between the two metrics,
i.e., a panelist having good agreement with the panel does not guarantee that he/she
discriminates the samples well. The proposed joint application gives detailed information
about the dataset and the panelist’s performance as well, by applying different filtering
methods, e.g., the one proposed by Llobell, Cariou, et al. (2019).
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4. Conclusions

The proposed methodology aims to fill a gap in check-all-that-apply (CATA) tests by
providing a method to assess the discrimination ability of the panelists participating in
CATA evaluations. The method fits into the scope of newly introduced CATA data analysis
methods. The proposed analysis is easy to run using our open-source python package,
available at https://github.com/davidbajusz/fpkit, accessed on 18 May 2021. The pre-
sented results of the three case studies show that a simple clustering of the computed binary
similarity measures results in higher quality correspondence analysis with more significant
attributes, as well as better sample discrimination (even according to overall liking).

It must be mentioned that good discrimination does not mean good repeatability
and/or panel agreement. In order to describe the performance of a panel/panelist cor-
rectly, all three metrics should be calculated. In the present paper, the joint application
of discrimination ability and repeatability has been introduced, however by conducting
replicate sessions (which is more common with trained panels), repeatability can also be
calculated using 2 × 2 tables [23].

The distance metric and linkage rule were defined as the most popular ones, namely
Euclidean distance and Ward’s method. Further analysis could assess the effect of the
combination of distance metrics and linkage rules on the separation of good and poor
discriminators, ideally on a greater number of datasets.

In particular, since the sensory similarity of the products is difficult to assess prior to
the tests, the method should be tested with a wide range of products, from highly similar
to highly different. Higher average similarity values (e.g., poor discrimination) might be
achieved due to the high similarity of the samples and not only because of the panelist’s
poor performance.

Our proposed method gives a new tool to the hands of consumer sensory panel leaders
for the assessment of the discrimination ability of consumers participating in CATA tests.
As the used scripts are free to download and use, these calculations can be built into any
data analysis routines easily. The obtained information improves the reliability of CATA

https://github.com/davidbajusz/fpkit
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tests, as well as gives another piece of important information regarding the performance
of consumer panels. Application of binary similarity measures with the earlier proposed
homogeneity index gives a complete evaluation of the consumer panels.

A further future direction would be the application of the proposed method on trained
panel data, where the panel agreement and discrimination ability are more important than
they are during a consumer test. Additionally, comparison of binary similarity metrics to
the existing methods used to assess the discrimination ability would further validate the
proposed approach in trained panel tests. A further advantage of the proposed approach
would be to use as a screening method for the identification of well-performing consumers
who could be potentially transferred into trained panels after completing the required
trainings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10051123/s1, Figure S1: The heatmap for Cricket, Figure S2: The heatmap for Apple
pomace enriched. Figure S3: The heatmap for Strawberry.
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