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Abstract: The application of artificial intelligence (AI) such as deep learning in the quality control of
grains has the potential to assist analysts in decision making and improving procedures. Advanced
technologies based on X-ray imaging provide markedly easier ways to control insect infestation of
stored products, regardless of whether the quality features are visible on the surface of the grains.
Here, we applied contrast enhancement algorithms based on peripheral equalization and calcification
emphasis on X-ray images to improve the detection of Sitophilus zeamais in maize grains. In addition,
we proposed an approach based on convolutional neural networks (CNNs) to identity non-infested
and infested classes using three different architectures; (i) Inception-ResNet-v2, (ii) Xception and
(iii) MobileNetV2. In general, the prediction models developed based on the MobileNetV2 and
Xception architectures achieved higher accuracy (≥0.88) in identifying non-infested grains and grains
infested by maize weevil, with a correct classification from 0.78 to 1.00 for validation and test sets.
Hence, the proposed approach using enhanced radiographs has the potential to provide precise
control of Sitophilus zeamais for safe human consumption of maize grains. The proposed method
can automatically recognize food contaminated with hidden storage pests without manual features,
which makes it more reliable for grain inspection.

Keywords: deep learning architectures; MobileNetV2; Xception; Inception-ResNet-v2; peripheral
equalization; calcification emphasis; transfer learning; ImageNet; X-ray imaging; maize weevil

1. Introduction

Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) is one of the most serious
pests of stored maize grain worldwide, particularly in tropical and sub-tropical regions [1,2],
causing huge economic losses in agricultural and food industry. This weevil also attacks
several other cereals and agricultural products, processed or not [3]. In maize grain, the
Sitophilus zeamais life cycle is 150 days [4]. Hence, the damage caused by feeding of larvae,
pupae and adults can significantly reduce the weight and quality of the grains during
storage, which facilitates the entry of pathogens and mites [5].

In many countries, there is an increasing trend towards zero-tolerance for stored-grain
insects [6]. However, the early detection of Sitophilus zeamais in grains is very difficult to
be achieved in practice because the egg, larva and pupa development occur inside the
grain, which is not perceived by the human eye. Different methods have been developed
to identify signs of insect infestation during storage such as staining of grains, acoustic
techniques, Berlese funnel, uric acid method, grain probes and insect traps [6,7]; however,
these methods are time-consuming and require experienced technicians, and their accuracy
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depends on the insect development stage and infestation level. In fact, most conventional
techniques are useful only for external detection [7].

The development of advanced methods for the early detection of grain pests is es-
sential in the food industry that can help in decision-making. Soft X-ray imaging is a fast,
non-destructive and accurate technique for internal and external detection of insects in
stored food grains [8], regardless of the life stage of the insect. Furthermore, recent algo-
rithms focused on X-ray image contrast enhancement, including peripheral equalization
and calcification emphasis enable superior diagnostic images. These algorithms provide
the opportunity to distinguish finer density differences between features in the image [9,10].
Nevertheless, the automatic inspection of insect infestation is still a challenge. For instance,
limited research has attempted to use image processing algorithms to identify infested
grains. In addition, the application of mathematical and computational methodologies
requires interdisciplinary knowledge.

Recently, deep learning methods have been applied to solve many classification
problems from robotics, games and medicine [11]. Convolutional neural networks (CNNs)
are considered the dominant deep learning models [12], with strong potential in performing
classification tasks [13]. This technique uses artificial neural network (ANN) architectures,
which attempt to mimic how neurons work and interact with the world [14]. Several
“neurons” (multiple layers) act in concert as parallel information processors to automatically
recognize patterns in data with high precision [15]. The growing interest in applying CNNs
architectures has been mainly due to two factors: (i) the large number of databases and (ii)
the advancement in hardware, which reduces the processing time of these databases [16].

CNN architectures have been particularly used for image detection, segmentation and
classification because images have a special spatial property in their formation, such as
edges, textures, gradients, orientation and color [15]. Many deep learning architectures
have been proposed for automatic pattern recognition, such as the Inception-ResNet-v2,
Inception-v3, VGG19, ResNet-50, DenseNet-201, Xception and MobileNetV2 architectures,
with different performances depending on the characteristics of the data [17–23]. These
CNN architectures have enabled the development of human-like efficient machines in
different domains of application [15].

Considering the great potential of deep learning models, they are ideal candidates to
provide predictions and recommendations during the monitoring of stored products. Here,
we propose the application of radiography using CNNs models to discriminate classes of
non-infested maize grains and grains infested with Sitophilus zeamais. Our study included
the application of image processing techniques based on peripheral equalization and
calcification emphasis algorithms to improve the detection of Sitophilus zeamais in the initial
infestation phase, in which the damages are more difficult to detect. We explored three
different CNN-based neural architectures widely used for classification tasks, (i) Inception-
ResNet-v2, (ii) Xception and (iii) MobileNetV2, which allowed to learn complex prediction
models. To the best of our knowledge, this is the first attempt to use peripheral equalization
and calcification emphasis algorithms for X-ray images of food products combined with
deep learning approaches.

2. Materials and Methods
2.1. Insect Infestation

Ten sets of twenty pairs of Sitophilus zeamais adults (1 male: 1 female) were allowed to
mate in plastic containers (300 mL) containing 20 g of maize grains. Five containers with
20 g of non-infested grains represented the control. The containers were covered with a
perforated lid and kept at 25 ± 2 ◦C and 65 ± 10% relative humidity with a photoperiod
of 14/10 h of light/dark. After 24 h, the males were removed and the females remained
isolated to lay eggs during four days. Then, the females were removed from the containers
and the insect infestation was monitored every seven days for 42 days.
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2.2. X-ray Imaging for Classes of Infested and Non-Infested Grains

Radiographic images were acquired from all samples at 7, 14, 21, 28, 35 and 42 days
using a MultiFocus™ instrument (Faxitron Bioptics LLC, Tucson, AZ, USA). This system
is integrated with a complementary metal-oxide-semiconductor (CMOS) X-ray sensor
coupled with an 11 µm focal spot tube, providing high-resolution grayscale images of
3072 × 2148 pixels (6 µm/pixel). Initially, the exposure time of the samples and the voltage
settings were automatically set by the sensor. Based on the pre-established configurations,
the exposure time of 6.0 s and 27 kV was manually standardized. To emphasize the smaller
details in the image, we used a built-in function in MultiFocus™ software (Faxitron Vision
NDT version 2.3.2U B) named “enhance image”. This image processing technique uses
peripheral equalization and calcification emphasis algorithms [24,25]. These algorithms
are widely used to detect abnormalities in mammograms such as calcification, masses and
architectural distortion that are too subtle to be perceived clearly by radiologists. Therefore,
this tool was used to enable superior diagnostic radiographic images, particularly in the
egg stage and first instar larva in which the damages are more difficult to detect.

Red-green-blue (RGB) images were also acquired using SeedReporter™ equipment
(PhenoVation B.V., Wageningen, The Netherlands), generating high-resolution images with
a spatial dimension of 2448 × 2448 pixels (3.69 µm/pixel). The RGB images are represented
by three-color channels (red, green and blue) to generate a single-color value for each
pixel in the image, and they were captured to assess possible symptoms on the surface of
the grains.

2.3. Confirmation of Grains Infested by Eggs

To confirm that the symptoms shown in the radiographic images were related to the
presence of eggs, a second experiment was carried out following the same procedures as
those adopted in Section 2.1. After X-ray imaging, the grains were stained with 0.5% acid
fuchsin solution (0.5 g acid fuchsin + 50 mL glacial acetic acid + 950 mL distilled water) for
3 min [26]. Subsequently, each grain was examined individually using a stereomicroscope
to locate the egg plugs.

2.4. Datasets

The major challenges for deep learning projects are the lack of reliable data. The
success of the training is closely linked to the number of varied data that were collected.
Since there is a lack of pre-existing databases, a dataset with high-quality images was
built with 426 radiographic images separated into two classes: (i) 270 infested grains and
(ii) 156 non-infested grains. The datasets comprised only X-ray images processed by the
peripheral equalization and calcification emphasis algorithms.

Later, data were separated into training (70% of the images) and validation sets (30%
of the images). The training set comprised 181 images from infested class and 117 images
from non-infested class, divided into 19 training batches (18 batches with 16 images and
1 batch with 10 images). The validation set contained 89 images from the infested class and
39 images from the non-infested class, divided into 8 batches with 16 images each. One
of the batches in the validation set was transformed into a test set, containing 16 images.
To build the predictive models, all images were resized to 160 × 160 pixels for training,
validation and test sets.

2.5. Data Augmentation

CNNs have many weights that must be defined, and they therefore require a large
number of labeled data to learn accurately [16]. To ensure variation in the training dataset,
increasing the volume of data, and transforming the invariant models to image features
that do not affect their labels, data augmentation methods can be used. We applied
data augmentation only to the training set, creating more images. The images were pre-
processed by geometric transformations based on rotations and flips (mirror effect) that
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allow the repositioning of the pixels in an image while maintaining the neighborhood
relationship between them and preserving the visual characteristics of the image.

The images were rotated clockwise or counterclockwise, with angles randomly defined
(Figure 1). This method uses bilinear interpolation that preserves straight-line features
through the image, producing a smoother interpolation than does the nearest neighbor
approach. The flip transformation combines image rotation by multiple angles of 90◦

with the calculation of the transposed matrix of the original image pixel, reversing the
pixels horizontally or vertically. A horizontal flip rotates the image 90◦ clockwise or 270◦

counterclockwise under transposition of the original image, while a vertical flip rotates the
image 90◦ counterclockwise or 270◦ clockwise under the transposed matrix.
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Figure 1. Data augmentation method based on random rotations and flips (mirror effect) used for
X-ray image recognition in classes of maize grains infested and non-infested by Sitophilus zeamais.

2.6. Transfer Learning and Architecture Approaches

Transfer learning consists of applying knowledge previously acquired by a certain
domain, adapting it to solve a new problem in a different context of images [27]. There are
two common methods for transfer learning approaches. The first is performed by freezing
the weights from lower convolutional layers that were adjusted and learned from another
database and only training the dense layer according to the target classes [28]. In this
case, transfer learning facilitates the training process because it uses the feature extractor
from other tasks, avoiding the weight adjustment in the convolutional layers. In addition,
training adjusts the weights of the upper classification layers in the deep network, which is
useful when we do not have a large amount of data to train all the weights. In the second
method, a fine tuning based on the lower layer weights is used as the initial point and the
weights of all (or some) layers of the network are refined. We adopted the first strategy.

We compared the performance of three different architectures, (i) Inception-ResNet-
v2 [29], (ii) Xception [30] and (iii) MobileNetV2 [31] (Figure 2), and the weights of the
convolutional layers were trained on the ImageNet dataset [32]. We used models with
pre-trained weights of the convolutional layers, and the last fully connected layer was
replaced with a single neuron in the output layer with loss function binary cross-entropy.
The output neuron contains probabilities (0 ≤ p ≤ 1) that the input image belongs to class
0 (infested) or 1 (non-infested).
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Figure 2. Outline of the convolutional neural network models developed for X-ray image classification of maize grains
infested and non-infested with Sitophilus zeamais using the Inception-ResNet-v2, Xception and MobileNetV2 architectures.

Table 1 shows the proposed CNNs for X-ray image classification of maize grains
infested and non-infested by Sitophilus zemais with their parameters and accuracies in the
ImageNet dataset. The size refers to the file size with pre-trained weights. The top-1 and
top-5 accuracies refer to the performance of the models on the ImageNet validation dataset,
where top-1 represents the class with the highest probability to match the target label, and
top-5 accuracy represents the five predictions of the model with the highest probability
to match the target label. Depth refers to how deep the CNN is, including the convolu-
tional layers, activation and batch normalization. The number of trainable parameters
corresponds to the number of weights that must be trained with our dataset, while the
number of non-trainable parameters is related to the number of pre-trained weights in
the ImageNet dataset. We used Adam (Adaptive Moment Estimation) optimization to
minimize the error rate of the model in the prediction [33], which is a stochastic gradient
descent method based on adaptive estimation of first and second-order moments, with a
learning rate equivalent to 10−4 and the binary cross-entropy loss function that calculates
the cross-entropy loss between the actual and predicted labels.

Table 1. Comparison of convolutional neural network models in terms of parameters and accuracies in the ImageNet dataset.

Inception-ResNet v2 Xception MobileNetV2

Size 215 MB 88 MB 14 MB
Top-1 accuracy 0.803 0.790 0.713
Top-5 accuracy 0.953 0.945 0.901

Depth 572 126 88
Number of trainable parameters 1537 2049 1281

Number of non-trainable parameters 54,336,736 20,861,480 2,257,984
Total parameters 54,338,273 20,863,529 2,259,265

All models were trained for 200 epochs in the Google Colaboratory, also known as
Google Colab or Colab, which is a free environment used to implement Python algorithms
in a Jupyter Notebook interface with access to Google hardware. Linux-based virtual
machines (VMs) are provided by Google, where Notebooks can be processed in central
processing units (CPUs), graphics processing units (GPUs) or in tensor processing units
(TPUs). The hardware available to the user varies by session. The training was processed
with an Intel (R) Xeon (R) CPU @ 2.20 GHz, 13 GB RAM, NVidia Tesla T4 and GDDR6 16 GB
VRAM. The experiments were developed using Python, Keras and Tensorflow, which are
libraries focused on machine learning.



Foods 2021, 10, 879 6 of 13

2.7. Confusion Matrix and Metrics

Confusion matrices were created for the developed models, which reveal the number
of correct and incorrect predictions for each class in a given dataset. The performance
of the models was evaluated using five metrics—precision, accuracy, sensitivity (recall),
specificity and F1 Score (harmonic mean of precision and sensitivity) [34,35]—according to
the following formulas:

Precision =
TP

TP + FP
(1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

F1 Score =
2TP

2TP + FP + FN
(5)

TP (True Positive) represents the number of X-ray images from infested grains correctly
classified as infested grains, TN (True Negative) is the opposite, i.e., X-ray images from
non-infested grains correctly classified as non-infested grains, FP (False Positive) refers
to non-infested grains incorrectly classified as infested grains and FN (False Negative)
represents infested grains incorrectly classified as non-infested grains.

3. Results
3.1. Classes of Infested and Non-Infested Grains

Throughout the infestation period (42 days), the RGB images did not show any alter-
ation on the surface of the grains caused by Sitophilus zeamais (Figure 3). However, the radio-
graphic images allowed the detection of the maize weevil in the internal parts of the grains
at different developmental stages (oviposition, larva, pupa and adult) (Figures 3 and 4).
Nevertheless, without the application of the image pre-processing technique, it was diffi-
cult to detect the insect during the initial infestation, i.e., when the grains were infested
with eggs (oviposition) or larvae (Figure 3). Meanwhile, the peripheral equalization and
calcification emphasis algorithms improved the detection of Sitophilus zeamais, regardless
of its stage of development (Figures 3 and 4). In addition, the damages (“galleries”) caused
by the insect were effectively detected in the grain (Figure 4).
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3.2. Training, Validation, and Test Sets

The models were trained for 200 epochs. During the learning process, the curves for
each model indicated a predictive power for the classification of X-ray images from maize
grains infested and not infested with Sitophilus zeamais (Figure 5). MobileNetV2 model
showed slightly greater accuracy compared to the Xception and InceptionResNet-v2 archi-
tectures on training and validation sets. In the last epoch validation, the models achieved
accuracies of 0.8926, 0.8571 and 0.8392 for MobileNetV2, InceptionResNet-v2 and Xcep-
tion, respectively. The final loss, i.e., the prediction error of MobileNetV2, Xception and
InceptionResNet-v2 models were 0.2676, 0.3605 and 0.3432.
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Figure 5. Performances on training (a,b) and validation (c,d) datasets during the learning process of Inception-ResNet-v2,
Xception and MobileNetV2 architectures for classification of X-ray images from non-infested maize grains and grains
infested with Sitophilus zeamais.

The confusion matrices (Figure 6) of MobileNetV2 and Xception models achieved the
highest hit rate for prediction of a non-infested class member on the validation set (1.00);
however, the number of non-infested grains correctly classified based on the Xception
model was reduced on the test set (0.83), while MobileNetV2 remained with the greatest
performance (1.00). For class membership of infested grains, MobileNetV2 also showed
the best performance (0.91) on the validation dataset. However, Xception had the highest
hit rate on the test database (1.00).
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Figure 6. Confusion matrices for classification of X-ray images from non-infested maize grains and grains infested with
Sitophilus zeamais based on Inception-ResNet-v2, Xception and MobileNetV2 classifier architectures on training (a), validation
(b) and test (c) datasets.

Classification performance in terms of precision, accuracy, sensitivity, specificity and
F1 Score was also measured (Figure 7). The precision measures the number of X-ray
images that were correctly classified as infested class (positive predictive value), with
greater values shown for MobileNetV2 and Xception models on training and validation
sets (1.00). In the test set, the precision of the Xception model was reduced to 0.85, while
MobileNetV2 remained equal to 1.00. Again, both models achieved the best accuracies for
training, validation and test sets (0.88–1.00).

The sensitivity of the Xception classifier had a superior performance mainly for the test
dataset (1.00). Meanwhile, although higher specificity values were reached for Xception and
MobileNetV2 on training and validation datasets, after learning the non-infested features
on these datasets, the MobileNetV2 model showed the best specificity on the test set (1.00).
This metric measures the number of non-infested grains that were correctly classified
as non-infested. For F1 Score, the Xception model was more effective for all datasets
(0.86–1.00) but with high performance also demonstrated for MobileNetV2 (0.88–0.96).
F1 Score is a harmonic mean of precision and sensitivity when these metrics have the same
weight, allowing the effectiveness of the model to be measured for the classification of
infested grains.
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4. Discussion

Maize grain plays an important role in the global economy, with increasing demand for
food by population growth. Therefore, the development of rapid and accurate methods for
monitoring the quality of grains has progressively increased. The maize weevil, Sitophilus
zeamais, is a pest with high reproductive potential that can multiply rapidly during grain
storage, especially without control of temperature and relative humidity [36]. The detection
of the maize weevil is still a challenging task in the food industry even for trained analysts
because the damage caused by weevils is not easily detected with the naked eye, except
in the adult stage when punctures occur in the surface of the grain produced by the
insect’s emergence.

X-ray imaging is a non-destructive technique to efficiently overcome such challenges,
with rapid and reliable detection of weevils on the inner parts of a grain [8,37]. Maize
grains infested by Sitophilus zeamais exhibited internal damages characterized by the ab-
sence of tissues that are referred to as “galleries”, and these regions appear darker on the
radiographic images. This occurs due to the lower density of grain tissues [38] as a result
of mass loss by insect feeding, while the electromagnetic radiation of X-rays is relatively
short (high frequency), with wavelengths ranging from 0.01 to 10 nm [39]. The onset of
insect attack occurs when the female, after mating, inserts the eggs in the grain, and then
the eggs hatch into larvae, building galleries into the embryo or in the endosperm. Larvae,
pupae and adults cause considerable damages by consuming the internal structures of the
endosperm grain that do not exhibit any external symptoms (Figure 3).

Although the X-ray imaging technique provides several advantages in the detection
of Sitophilus zeamais, there are still difficulties in detecting symptoms during the initial
infestation period using unprocessed traditional X-ray images [40], as they usually show
noise in the images, such as edges and contrast boundaries. In the current research,
we tested contrast enhancement image processing based on peripheral equalization [24]
and calcification emphasis algorithms [25], which are well-known in medicine to detect
breast cancer. Since these image-processing techniques are automatic and display most
of the information contained in the grayscale image, we expected to obtain a clearer
identification of morphologic features of the insect and damages to the grain. Accordingly,
our results showed that these algorithms enable a more accurate identification of insect
attack, regardless of the grain location and insect growth (Figures 3 and 4).

For image recognition, we proposed a method for classifying infested and non-infested
maize grains based on CNN architectures, i.e., mathematical models that have been mo-
tivated by the functioning of the brain with the purpose to analyze data [11]. CNN
architectures are composed of several layers of processing to learn representations of
data with various levels of abstraction [12]. Therefore, we compared the performance of
Inception-ResNet v2, Xception and MobileNetV2 architectures, which have improved the
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state of the art in object detection, segmentation and classification. The results showed that
although the Inception-ResNet v2 model had a greater number of parameters (Table 1), the
performance of MobileNetV2 and Xception models was superior as classifiers (Figures 5–7).
According to Chollet [30], the performance gains are not due to increased capacity but
rather to a more efficient use of model parameters.

Modern deep neural network methods have revolutionized many areas of life science;
however, their accuracy depends on advanced computing resources and the capacity of
many mobile and embedded applications [31]. Despite this, the neural network architecture
in the MobileNetV2 is suitable for mobile devices with limited resources, requiring no
special operator, while maintaining accuracy. Hence, the new approach proposed based
on X-ray images combined with MobileNetV2 architecture provides a markedly easier
way to control Sitophilus zeamais infestation for safe human consumption of products with
structural physical integrity.

The first successful application of CNNs as a deep learning application to images
was shaped by LeCun, Bengio and Haffner in 1998 [41], but only in 2012 with the new
architecture of CNN, AlexNet, did the statistical results for the image classification task
really advance the state of the art [42]. Thereafter, progress on exploring computer vision
has driven advances in the analysis of food images [43]. In this context, deep learning archi-
tectures such as MobileNetV2 combined with X-ray images can provide rapid predictions
and recommendations for the next steps of the maize grain quality evaluation.

Currently, pest identification still depends on specialized technicians that may experi-
ence errors because the insect feeding damage does not exhibit external symptoms. High
levels of insect debris cause odor and affect grain quality, making it unsuitable for food
use [44]. Hence, rapid and accurate diagnosis of contaminated products allows for quick
intervention. The method proposed does not require manual features; i.e., it can automati-
cally learn how to recognize food contaminated with hidden storage pests, which makes it
more reliable for grain inspection. Moreover, in the modern food industry, the application
of computational techniques improves the speed of processing systems, reducing waste
accumulation in the environment. However, the high cost of X-ray systems coupled with
advanced image processing techniques may be a limitation for automatic inspection of
Sitophilus zeamais infestation using enhanced radiographs of maize grains. Nevertheless,
due to the rapid advancement in image analysis technologies and the growing demand for
food, these tools may become more affordable in the near future.

5. Conclusions

The MobileNet and Xception architectures using enhanced radiographs are sensitive
methods to distinguish non-infested grains from maize grain infested by Sitophilus zeamais,
with overall accuracies higher than 0.88 for validation and test sets. The use of contrast en-
hancement techniques for X-ray images based on peripheral equalization and calcification
emphasis algorithms improves the visualization of Sitophilus zeamais attack in such a way
that it can be easily perceived during the initial infestation period. Therefore, the proposed
deep learning approach provides an opportunity to make maize grain classification more
predictable and efficient considering their internal patterns exhibited in X-ray images.
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