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Abstract: Near-infrared spectroscopy (NIRS) is a fast and powerful analytical tool in the food industry.
As an advanced chemometrics tool, multi-way analysis shows great potential for solving a wide range
of food problems and analyzing complex spectroscopic data. This paper describes the representative
multi-way models which were used for analyzing NIRS data, as well as the advances, advantages
and limitations of different multi-way models. The applications of multi-way analysis in NIRS for
the food industry in terms of food process control, quality evaluation and fraud, identification and
classification, prediction and quantification, and image analysis are also reviewed. It is evident
from this report that multi-way analysis is presently an attractive tool for modeling complex NIRS
data in the food industry while its full potential is far from reached. The combination of multi-way
analysis with NIRS will be a promising practice for turning food data information into operational
knowledge, conducting reliable food analyses and improving our understanding about food systems
and food processes. To the best of our knowledge, this is the first paper that systematically reports
the advances on models and applications of multi-way analysis in NIRS for the food industry.

Keywords: near-infrared spectroscopy; food industry; chemometrics; multi-way analysis; applications

1. Introduction

Near-infrared spectroscopy (NIRS) is a fast and powerful analytical tool. It has
gained widespread acceptance in both the scientific community and industry. NIRS uses
the near-infrared region of the spectrum, commonly defined from 780 nm to 2500 nm,
where most absorption bands are molecular overtones or combination vibrations bands [1].
Compared with other spectroscopy methods, NIRS is deemed to be more attractive by
virtue of its non-destructive nature, high speed of analysis, ease-of-use and low cost [2].
It is widely applied in various fields, such as environment [3,4], agriculture [5,6], food [7,8],
pharmaceutical [9,10], clinical medicine [11,12], and remote sensing [13,14]. As one of the
dominant vibrational spectroscopies in the food industry, NIRS is extensively used for
food classification, component characterization, quality evaluation and process control,
where its effectiveness for fingerprinting food materials and analyzing different critical
parameters has been proven [15].

The rapid development of chemometrics during the past decades is progressing and
advancing a lot of scientific areas which are highly overlapped with analytical science,
including food science [16]. Combined with an instrumental analysis, the use of chemomet-
rics tools leads to more advances in understanding food products and food systems [17].
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However, some challenges arise in food science when entering a digital and instrument-
heavy area. One of the biggest challenges is to effectively explore and model the complex
and large data sets; NIRS data are one such data source. It is well known that NIRS
suffers from the problems of nonlinear behavior, the scatter effect and broad overlapped
bands, as well as the artifact effect, such as temperature disturbances, which easily lead
to models with bad predictions and challenging interpretations. Previous studies have
shown that rearranging data with nonlinear behavior into higher-order arrays can be a
promising way to improve the predictions of the chemometrics model [18]. Dealing with
this kind of high-order array requires high-order chemometrics tools which are complex
but more promising for producing satisfying results. Meanwhile, the widely used two-way
chemometrics tools for modeling NIRS related data, such as a principal component analysis
(PCA) [19,20] and partial least square (PLS) [21,22], have different drawbacks in practice.
For example, they have difficulty in predicting the new samples with a slightly different
nature (e.g., due to unexpected temperature variations), and sometimes the interpretation
of the models’ results can be very difficult because of the rotation freedom [20]. More-
over, the model performance can be easily affected if too much redundant information
existed in the modeled spectra. Even though variable selection methods can be beneficial
for improving models to some extent, the risk of overfitting cannot be ignored in this
approach. Advanced chemometrics tools such as multi-way analysis methods could thus
be considered by food technologists and researchers for the purpose of analyzing complex
NIRS data and establishing valuable models with more flexibility, simple interpretations,
and robust results [23].

In many scientific fields, a multi-way data analysis is popular and frequently ap-
pears under the name tensor analysis [24]. The multi-way analysis originated from the
1960s in social science [25,26]. Subsequently, many chemometricians contributed to the
development of multi-way models and solved many issues in this area [27]. For example,
Wold et al. [28] provided the initial idea of N-way partial least square regression (N-PLS)
in the 1980s and illustrated it with chemical mixture data recorded from liquid chromatog-
raphy and ultraviolet spectrometry. Bro [29] further developed the real N-PLS model for
both three-way and higher order arrays, and illustrated the algorithms with an example
from the sugar industry. The application of the multi-way analysis for solving food science
problems is relatively new. It has, however, shown a great deal of success in analyzing
complex food data and solving a wide range of food-related problems [30–32]. Owing to
the so-called second order advantage [33], most of the multi-way analysis models have the
ability to extract hidden information from complex data, finding the latent relationship
between variables, while avoiding using a large number of different calibration sets [34].
For instance, the combination of multi-way analysis with spectroscopy can be used for the
real-time reaction process monitoring of compounds of interest for a complex food system.
It was reported that the combination of NIRS, multi-way chemometrics and process knowl-
edge is taking place in process analytical technology (PAT) [23]; that is to say, multi-way
analysis provides a useful tool for analyzing complex process data [35]. Moreover, other
“higher-order advantages” of multi-way analyses, e.g., increasing sensitivity when the data
dimension increases and the ability to solve high collinearity, are also beneficial for solving
many practical problems [36].

In this paper, we focus on models and applications of multi-way analysis combined
with NIRS for both food products and food process analyses. The contents of this paper
are organized as follows. The second part explains the used notations and abbreviations.
The third part describes the multi-way models which were used for analyzing NIRS data,
as well as the advances, advantages and limitations of different models. The preprocessing
techniques for multi-way analysis for analyzing NIRS data are briefly described in the
fourth part. In the fifth part, the applications of multi-way analysis in NIRS for the food
industry are reviewed in terms of food process control, quality evaluation and fraud, identi-
fication and classification, prediction and quantification, and image analysis. The available
software and algorithms for multi-way analysis are introduced in the sixth part. The con-
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clusions are formulated in the last part. To the best of our knowledge, this is the first paper
that systematically reports the advances on models and applications of multi-way analysis
in NIRS for the food industry.

2. Notation and Abbreviations

In order to avoid confusion, we will use the conventional and standard notations from
the multi-way analysis community. Consistent with the notation used in Kiers [37], we use
non-bold italic letters, boldface lower-case italic letters and boldface upper-case letters
to denote the scalars, vectors and matrixes, respectively, e.g., A is a matrix, a f is the ith
column of matrix A and F is the number of components of the model. A three-way array
is denoted by X. Each dimension of the three-way array is called a mode. The element of
the three-way array is denoted by xijk where i, j and k mean the indexes belonging to each
of three modes of X. The symbol ⊗ is used to represent the Kronecker product, while ∗
denotes the Hadamard product [38]. All the used abbreviations in this paper are shown
in Table 1.

Table 1. The meaning of used abbreviations in the paper.

Abbreviations Explanations Abbreviations Explanations

NIRS Near-infrared
spectroscopy N-PLS-DA

N-way partial least
square regression-

discriminant
analysis

N-PLS N-way partial least
square regression ATLD Alternating tri-linear

decomposition

PARAFAC Parallel factor
analysis M-PCA Multiway principal

component analysis

PARAFAC2 Parallel factor
analysis 2 PAT Process analytical

technology

Tucker3

A tensor
decomposition

method proposed by
Tucker

MLR Multiple linear
regression

CP

The combination
name of canonical

decomposition and
PARAFAC

COMDIM
Analysis of common

dimensions and
specific weights

SNV Standard normal
variate MSC Multiplicative scatter

correction

PCA Principal component
analysis PLS Partial least square

DTLD Direct trilinear
decomposition VIS/NIR Visible-near-infrared

spectroscopy

FT-NIR
Fourier transform

near-infrared
spectroscopy

FT-IR Fourier-transform
infrared spectroscopy

3. Multi-Way Models
3.1. N-PLS

N-way partial least squares (N-PLS) is a regression algorithm combining tri-linear
decomposition and the classical PLS. In fact, it is an extension of the two-way PLS model
to the multi-way case. The real N-PLS model was proposed by Bro [29] in 1996, which can
be expressed as:

X = T
(

WK ⊗ WJ
)T

+ EX (1)

where the I × JK matrix X is the unfold version of three-way array X (I × J × K), WJ and
WK are the weights matrixes of the second and third modes, T is the score matrix of the
first mode, and EX is the residual matrix. Imagine Y contains the dependent variable, then
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Y = UH + EY, where U and H are the scores matrix and loading matrix of Y, and EY is
the residual for Y. The aim of the N-PLS model is to find the weight matrixes WJ and
WK that maximize the covariance between U and T. It is necessary to point out that this
initial N-PLS model was limited by some problematic issues such as the perfect fit problem,
uniqueness issues and impossible validation assessments of the parameters [39]. In order
to fix these problems, Bro et al. [39] later proposed a modified N-PLS model by introducing
a core array in the model of X, and the new version of N-PLS model is widely used in
different software today. The modified N-PLS model can be written as:

X = TMX

(
WK ⊗ WJ

)T
+ EX (2)

The difference with the old N-PLS model is the core array MX. It is the matricized

core array of size F × F × F, and it equals T+X
(
(WK)

+ ⊗
(

WJ
)+)T

, where + means the

Moore–Penrose pseudo inverse. The new N-PLS model produces the same predictions
as the original N-PLS model since only the way for modeling X was optimized and
nothing happened for the prediction part in the modified N-PLS model. More details
about the calculation of the parameters can be found in Bro et al. [39]. The so-called N-
way partial least square regression-discriminant analysis (N-PLS-DA) model is just the
discriminant version of the N-PLS model. In N-PLS-DA, the dependent variable holds
the class information, where each response variable is defined as a dummy variable with
different values indicating a different category. A graphical representation of the reported
multi-way models for three-way array with two components is shown in Figure 1.

Compared with the two-way PLS model, the N-PLS model retains the multi-way
information of the data, avoids the huge number of parameters caused by unfolding
the multi-way array and the difficult model interpretation caused by the confounding of
modes. It is capable of identifying multi-way data patterns and complex feature correlation.
Apart from these advantages, N-PLS also has advantages in better modeling accuracy,
robustness to noise, stabilized solution, increased predictability, etc. [40]. Some progress
concerning the algorithm has been accomplished in recent years. Faber and Bro [41]
investigated two methods for estimating the standard error of prediction in N-PLS models
by calculating the estimates of all error variance and calculating an estimate of the standard
deviation of the measurement error in the reference. In order to conduct variable selection
for multi-way array with two spectral dimensions, Favilla et al. [42] extended the Variable
Importance in Projection (VIP) method to the N-PLS model, which was illustrated to
work well. Recently, Biancolillo et al. [43] proposed a sequential and orthogonalized
N-PLS (SO-N-PLS) algorithm for analyzing multi-way data blocks by combining N-PLS
and the so-called Sequential and Orthogonalized-PLS, and better model performances
on small data sets and noisy data were achieved by this algorithm. Even though N-PLS
is an attractive multi-way regression algorithm, it is important to point out that N-PLS
models do not have second order advantages since they work under the same premises as
ordinary PLS. This means that N-PLS cannot handle new interferences that were not in the
calibration set. Furthermore, proper variable selection and preprocessing procedures are
strongly recommended when using N-PLS for analyzing NIRS data in practice. Modeling
the most interesting region by multi-way methods can always increase the knowledge of
the studied system.
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Figure 1. Graphical representation of the modeling process of: (a) N-way partial least square regres-
sion (N-PLS); (b) parallel factor analysis (PARAFAC) and (c) parallel factor analysis 2 (PARAFAC2)
on three-way data with two components.

3.2. PARAFAC (Parallel Factor Analysis)

PARAFAC was first proposed by Harshman [44] in 1970. In the same year, Carroll
and Chang [45] also proposed an identical model called Canonical Decomposition (CAN-
DECOMP) in the context of multidimensional scaling. Since the name CANDECOMP is
more common in other fields than in chemometrics, we will use name PARAFAC in this
paper. PARAFAC can be regarded as an extension of PCA but with many other advantages
for decomposing multi-way arrays [46]. Instead of containing a score vector and a loading
vector in a component like in PCA, PARAFAC decomposes the data into a set of tri-linear
components and each component is composed of three vectors representing the three
modes, respectively. For a three-way array, the model for PARAFAC can be expressed as:

Xk = ADk(B)
T + Ek, k = 1, . . . , K (3)

where Xk is a I × J matrix denoting the kth slab of three-way array X, and the dimension
of the three-way array X is I × J × K. Assuming F is the number of components of the
PARAFAC model, A is a I × F matrix for the first mode, B is a J × F matrix for the second
mode, Dk is a F × F diagonal matrix in which the diagonal elements are the kth row of
matrix C and represent the profiles of F components for the kth observation of the third
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mode, and Ek is the residual matrix with the same dimension of Xk. From a perspective of
vectors, the PARAFAC model can be also expressed using the Kronecker product:

X
_
=

F

∑
f=1

a f ⊗ b f ⊗ c f + E
_
, f = 1, . . . , F (4)

where a f , b f , c f denotes the f th column vector of loading matrixes A, B and C respectively,
and E is the three-way residual array with the same dimension as X.

One of the most attractive advantages of PARAFAC is the uniqueness of the solu-
tion [47], which means that the PARAFAC model cannot be rotated without a loss in fit. For
PCA, it is well known that the inherent rotation freedom problem makes either external
information or post-rotations necessary for the purpose of accurately identifying pure
spectra. This is not the case in PARAFAC. If the data have a tri-linear structure and the
noise in the data is appropriate, PARAFAC will always estimate the unique solutions
(e.g., pure spectra) when using an appropriate number of components [46]. From a mathe-
matical perspective, Kruskal [48] suggested the appropriate F should fulfill the condition
of kA + kB + kC ≥ 2F + 2 in order to get the unique solution, where kA, kB and kC are the
k-ranks of matrixes A, B and C, respectively. Regarding more practical details about how to
select the appropriate number of components for the PARAFAC model, we recommend
to look into the paper written by Bro and Kiers [49]. Like many other multi-way models,
PARAFAC is also less sensitive to the noise in the data and produces models with less
complexity than two-way chemometrics methods; a detailed illustration regarding this
can be found in Bro [46]. Furthermore, PARAFAC is also capable of analyzing multi-way
data with large amounts of miss values. Tomasi and Bro [50] proposed that incorporating
the ALS (alternating least squares) procedure with a single imputation or implementing
the Levenberg–Marquadt procedure in the PARAFAC algorithm can deal with the data
with a large number of missing values. Besides the aforementioned benefits, PARAFAC is
also advantageous in its simple model structure, yielding more adequate and interpretable
models, and dealing with a big and complex dataset [23,51].

Even though PARAFAC has gained extensive acceptance nowadays, there are still
some issues hampering the use of PARAFAC in practice. For example, multi-way analysis
and data arrangement experiences are needed; such knowledge can be challenging for
people who are accustomed to using only two-way chemometrics tools. Apart from this, al-
gorithm problems are maybe another major concern. For instance, slow convergence occurs
especially when facing seriously collinear data. The two-factor degeneracy problem, which
means two components become almost identical but with opposite signs, is also a practical
concern. In order to improve the convergence speed of the conventional PARAFAC-ALS
algorithm, a wide range of remedies have been developed, such as line search [52], en-
hanced line search [53], extrapolation with optimized step size and search direction [54] and
compression [46]. Besides the ALS algorithm, some alternatives for calculating PARAFAC
models have also been proposed, including the all-at-once algorithm [55], the hierarchical
conjugate gradient algorithm [56], a random gradient algorithm [57,58], the fast damped
Gauss–Newton algorithm [52], etc. These new alternatives were reported to have better
convergence speed for many real cases. When fast convergence is required, these algo-
rithms are valuable for exploration and test in the specific case. Regarding the two-factor
degeneracy problem, it happens mostly from using too many components or because the
established PARAFAC model is not appropriate for the data. Generally, the Tuckers con-
gruence [59] and components plot can be used to detect the possible degeneracy problem.
It was also reported that imposing some constraints on the PARAFAC model was beneficial
for avoiding the degeneracy problem to some extent [60].

3.3. PARAFAC2 (Parallel Factor Analysis 2)

PARAFAC2 was also proposed by Harshman [61] in the 1970s. It is an important
extension of the PARAFAC model because it allows the loading matrix in one mode to
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be shifted or have different lengths for different entities in one mode. Following Kiers
et al. [62], the PARAFAC2 model can be written as:

Xk = ADk(Bk)
T + Ek, k = 1, . . . , K (5)

where Xk, A and Dk are defined in the same way as in the PARAFAC model. The difference
is that the second mode matrix B of PARAFAC is changed into Bk in PARAFAC2, which
means there is a specific and individual Bk for each k of the—in this case—third mode. Thus,
the strict tri-linearity assumption is actually relaxed in one mode in the PARAFAC2 model.
Compared with the assumption of PARAFAC which is requiring B to keep the same shape
for each k, only the cross products of Bk are constrained to be constant for each k in the third
mode in PARAFAC2 [62]. This less strict constraint was illustrated to be a precondition
for obtaining the uniqueness in PARAFAC2 by Ten Berge and Kiers [63]. The constant
cross product property is obtained by making Bk = PkG, where Pk is an orthogonal matrix
with dimension of J × F thus PT

k Pk = I and G is a common matrix with dimension F × F.
Details about the mathematical proof can be found in the initial paper [62]. Hence, Pk is
concerned with the uniqueness for each observation in the varying mode (shift or different
length) while G is concerned with the observations [64]. Understanding the uniqueness
and the model assumption of the PARAFAC2 model is of vital importance since it will
directly affect whether it is applied in a proper way for real data.

Owing to the advantage of the less strict tri-linearity requirement, which is often
more realistic in the real world, PARAFAC2 is widely applied for solving a wide range
of complex data analysis problems, e.g., the problem of varying batch trajectories in food
process analyses (different batches have different numbers of NIRS spectra) or analyzing
complex NIRS image data. As an important multi-way analysis model, PARAFAC2 has all
the advantages of the general PARAFAC model. One of the challenges of the PARAFAC2
algorithm is how to impose the non-negativity constraints on all three modes. For the
conventional PARAFAC2-ALS algorithm, it is not possible to impose a non-negativity
constraint on the shifted mode, thus only two modes can be constrained. Recently, Cohen
and Bro [65] proposed a flexible PARAFAC2 algorithm and made it possible to impose
non-negativity constraints on all the three modes by casting the PARAFAC2 model as a
coupled matrix factorization model. For the applications where all the modes are required
to be non-negative, this flexible PARAFAC2 algorithm will be of great value. Furthermore,
a core based PARAFAC algorithm has also been proposed recently with a possibility
of imposing non-negativity constraints [66]. However, strict non-negativity cannot be
guaranteed in this algorithm since the transformation matrixes operate on orthogonal
factor matrixes. Another practical concern is the local minima problem. The PARAFAC2
decomposition is inherently a non-convex optimization problem, and thus it is a NP-hard
problem [67] with one of its aspects being the local minima. A useful remedy for avoiding
the local minimum is to repeat the PARAFAC2 model calculation for several times, then
choose the model with the best fit as the global minimum model. However, it is very ad
hoc. More explorations from the algorithm perspectives will be important for avoiding
such problems. The convergence speed is also an issue for the PARAFAC2 algorithm.
A recent research of Tian et al. [68] reported the effects of different line search strategies for
accelerating PARAFAC2-ALS convergence, and proposed an acceleration procedure called
geometric search which was faster than the non-accelerated PARAFAC2-ALS algorithm.
However, seeking the efficient alternatives of the ALS algorithm for estimating PARAFAC2
model is still needed for the future.

3.4. Other Multi-Way Models

There are many alternative multi-way analysis models available for analyzing multi-
way dataset. For instance, Tucker3 is a multi-way model of the Tucker family, also called
the three-mode principal components analysis [25,69,70]. Compared with the PARAFAC
model, a super-diagonal core array exists in Tucker3 models. It basically compresses
all three modes of the data so that the main information can be summarized by a few
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components for each mode. Therefore, the number of components in a Tucker3 model can
be different for each mode. It is important to notice that the unique and best subspace
can be found by the Tucker3 model, while the decomposed loadings are generally not
unique due to the rotation freedom problem. Another promising multi-way model is
alternating tri-linear decomposition (ATLD) [71]. It was used for decomposing three-way
data but was shown to have faster convergence than the PARAFAC-ALS algorithm in
the original paper [71]. It was also based on the ALS principle but with an improved
iterative procedure using the Moore–Penrose generalized inverse with a singular value
decomposition. Limited by the length of this paper, only simple descriptions about these
models are introduced here. More details about many other different multi-way models
can be found in the reference [23,72].

4. Preprocessing Techniques

Preprocessing plays an important role in chemometrics; however, it is more compli-
cated when used for a multi-way array compared with two-way cases [60]. Some studies
have been done in terms of centering and scaling for a multi-way array [46,72–74]. Basi-
cally, three ways of centering can be performed on a multi-way array, including single-
centering, double-centering and triple-centering [46]. Single-centering can be done by
unfolding the three-way array into a matrix, and then centering the matrix as in an ordi-
nary two-way chemometrics method, such as PCA: for example, unfolding the I × J × K
array into I × JK matrix and centering it across the first mode. People can also center
the data across one of other modes depending on the specific problem. Double-centering
means two modes of the three modes are centered by first centering one mode; then, the
outcomes of this centering are centered. In triple-centering, centering across all the three
modes at a time will be performed. As stated by Bro et al. [60], single-centering is the
only appropriate choice for performing centering on a multi-way array in order to fulfill
the assumptions of multilinear models, e.g., the PARAFAC model. Regarding scaling, the
assumptions of multilinear models also need to be considered. Since scaling column-wise
(as in centering) will distort the underlying trilinear structure of the data [74], it is necessary
to scale the whole slab within a specific mode instead of the columns. Several issues need
to be taken into account when performing scaling on multi-way array. One of them is that
scaling one mode will always affect the scale of other modes, which means that scaling
within several modes can be more complicated. The amount of noise and unsystematic
variation in the data may be increased after performing scaling on some types of multi-way
data [74]; hence, centering across one mode or scaling within one mode is always the
straightforward way to preprocess the multi-way array. More details about centering and
scaling for a multi-way array can be found in the aforementioned references. For multi-way
NIRS data, the conventional preprocessing techniques for NIR spectra can be used before
rearranging the two-way NIR spectra into the multi-way array. Scatter correction and
derivatives methods are the most widely used preprocessing techniques for NIR spectra.
MSC [75], Inverse MSC [76], Extended MSC [77] and SNV [78] are commonly used for scat-
ter correction, while first or second order Savitzky–Golay derivatives and Norris–Williams
derivatives [79] are the widely used spectral derivative techniques. Moreover, the interval
and combined versions of different preprocessing techniques are also frequently used in
practice. For more details regarding parameters settings, the effects comparison and the
methods selection for different preprocessing techniques for NIR spectra, we recommend
the specific preprocessing references [80,81].

5. Applications of Multi-Way Analysis and NIRS in Food Industry
5.1. Process Analysis and Control

Food industrial processes and food productions often involve multi-way data. A num-
ber of reports have shown the great potential of multi-way analysis tools for analyzing
high dimensional and complex food process data [82–85]. NIRS is widely applied in the
process analysis, and a multi-way data analysis coupled with NIRS is gaining more and
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more acceptance in the food industry. Allosio-Ouarnier et al. [86] used PARAFAC to in-
vestigate the variation of barley during the malting process by analyzing the three-way
array of wavelengths × batches × malting time. The batch difference and sample differ-
ences within a batch were both successfully observed. In order to confront the challenge
of industrial complexity, Liu et al. [87] developed an industrial process analysis method
by combining on-line NIRS and ATLD. The industrial process could be monitored by
observing the variation of common property extracted from the ATLD model in different
batches, and an application of tobacco production indicated that the multi-way analysis,
such as ATLD, was more capable of extracting the intrinsic information hidden in the
NIR spectra. This achieved a better performance in the process analysis compared with
the conventional two-way analysis tools. Furthermore, Nielsen et al. [88] also applied an
analysis of common dimensions and specific weights (COMDIM) [89] to analyze the NIRS
data of wheat flours and argued that their proposal was a powerful tool for process control
in the flour mill. The authors of this paper said that multi-way analysis was advantageous
in simultaneously considering the variation in both the particle size and chemical data,
while the two-way PCA analysis was insufficient. By doing so, different quality parameters
could be optimized during the flour production. Temperature is a critical factor that cannot
be ignored in NIRS in the process analysis. Peinado et al. [90] used PARAFAC-MLR to
model the batch process of the in-line NIRS dataset of water and ethanol by considering
temperature information as an additional parameter in the tensor. Even though the dataset
has simultaneous changes in temperature and chemical composition, the physical–chemical
changes happening in the evolving systems were extracted successfully by the PARAFAC
model. The proposed tensor-based strategy was more attractive than PCA or PLS, and it
was recommended to be implemented in various industrial applications. In the scientific
literature, different multi-way analysis models have also been compared for food process
analyses. Lillhonga and Geladi [91] monitored the fermentation of food waste mixture
batches over time by combining multi-way analysis models and NIRS. They showed that
PARAFAC and Tucker3 produce common time profiles for all the batches and that the half-
lives can be estimated successfully, while PARAFAC2 yields an individual time profile for
each batch with a little more noise and convergence problems. Vigni and Cocchi [92] stud-
ied the formulation effects on wheat flour during a leavening process by using PARAFAC
and N-PLS. The mixtures’ differences regarding the leavening time were detected by the
PARAFAC decomposition of the three-way NIRS dataset. The established N-PLS model
on baked bread parameters successfully found the relationship among flour formulation,
leavening time and the final product. The multi-way analysis was proven to be an effective
tool for monitoring the industrial leavening process of wheat flours.

5.2. Fraud and Quality Evaluation

NIRS is widely used for the purpose of food quality evaluation and fraud detection [93–95].
Many studies have reported the effectiveness of the combination of NIRS and the multi-way
analysis in dealing with such issues in the food industry. For example, the accurate information
of adulterants in milk was generally difficult to be captured by two-way chemometric tools
because of the weak and overlapped absorption bands of the adulterants [96]. Yang et al. [96]
successfully used N-PLS to model the 2D NIR spectra data of melamine adulterated milk.
By comparing with the PLS model results on 1D NIR spectra, the multi-way model was
deemed to be more accurate and robust since its average relative error is only 22.9% while
the average relative error of PLS model is 122.4%. Recently, some studies have reported the
effectiveness of the multi-way analysis and NIRS in the oxidative stability evaluation of oil.
Rosa et al. [97] reported that PARAFAC coupled with NIRS was powerful for evaluating the
protective effect of plant-based substances and synthetic antioxidants against oxidation in
soybean oil. The NIRS data were rearranged into a three-way array of samples by temperature
by wavenumbers. They concluded that the proposed method was a simple and fast way to
achieve the anti-oxidation evaluation for soybean oil. Furthermore, PARAFAC coupled with
NIRS was also used for evaluating the degradation of thermal rice oil by Rosa et al. [98]. The
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oxidative stability of rice oils was evaluated in a fast way by combining the multi-way analysis
and NIRS. Moreover, Favilla et al. [42] used NIRS and the N-PLS model to accurately model
the critical properties of bread loaves. The flour performance of the leavening phase was then
successfully and accurately predicted.

5.3. Identification and Classification

Identification and classification are important application fields of NIRS and chemo-
metrics [99], and are also used for the consideration of the multi-way analysis. Cui et al. [100]
compared the effects of M-PCA, ATLD and PARAFAC on both three-way and four-way
temperature-dependent NIRS data. Their results showed that ATLD and PARAFAC were
capable of capturing the spectral variation information for each component, while the
loadings of M-PCA contained the mixed spectral information of all the components, even
though it explained the variance of whole data. The authors concluded that the multi-way
analysis model can determine the chemicals of aqueous solutions and it can be the best way
for analyzing temperature-dependent NIR spectra. In order to find differences between the
cultivars and localities, Geladi and Manley [101] used PARAFAC to analyze the three-way
NIRS data of wheat flours and made a comparison with the two-way chemometric models.
They showed that PARAFAC can detect the variation information of protein content and
hardness values, which were associated with localities and cultivars separately, and merg-
ing the information of the cultivars and the localities in one-way and then building PCA
or PLS models are not proper for their case. Allosio et al. [102] reported PARAFAC was
useful for separating barley batches according to the malting process. Such classifications
can be achieved by connecting the decomposed time mode profiles with wavelength mode
information expressed as NIR spectral intensities. The authors state that PARAFAC had
great potential in analyzing the time series NIR dataset. Recently, the multi-way analysis
has been applied to the classification of milk. Yang et al. [103] combined N-PLS-DA and 2D
NIR correlation spectra to illustrate the feasibility of classifying normal milk and tainted
milk. They compared the effects of the N-PLS-DA model on 2D IR/IR, 2D NIR/NIR and
2D IR/NIR spectra using the correct classification rate (CCR). The results showed that
N-PLS-DA models on 2D IR/NIR spectra can provide the best classification of milk with a
CCR of 96.1%.

5.4. Prediction and Quantification

Multi-way analysis was also used for quantification and prediction purposes in the
food industry [104]. In particular, the multi-way analysis coupled with NIRS has been
successfully applied in many practical cases by virtue of better model predictive perfor-
mance and the ability to simultaneously analyze chemical and physical variations [105,106].
Letíci et al. [107] used N-PLS models to predict the content of limonene and water in the
spray-dried systems by analyzing the three-way NIRS data. The temperature variation can
be modeled successfully and the prediction error of N-PLS model is only 0.2%, which was
small compared with that of the two-way model. The conventional two-way NIRS calibra-
tion model faces many challenges because of its weak robustness when it is applied for
analyzing the samples with a large amount of water [108]. To circumvent such a challenge,
Peng et al. [108] developed a hybrid algorithm called wavelet packet transform orthogonal
signal correction N-PLS (WPNOSC-N-PLS) by applying a wavelet packet transform and
orthogonal signal correction into the N-PLS model. In combination with NIR, WPNOSC-N-
PLS accurately determined the main components in the concentration of milk even in the
presence of temperature variation interference. The authors argued that WPNOSC-N-PLS
can provide better models with better precision and robustness, and it is attractive in
solving a wide range of multidimensional problems. Recently, the multi-way analysis
and NIRS has been applied to the component quantification in corn. Zhang et al. [109]
reported the application of N-PLS on self-constructed three-dimensional NIR spectra which
can capture accurate quantitative information of four components (moisture, oil, protein,
and starch). Compared with the two-way PLS model, the proposed multi-way models
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achieved better predictive performance for the target compounds with a lower RMSEP
(root mean square error of prediction). Benefiting from the multi-way advantage, N-PLS
coupled with 3D NIR spectra was deemed to be a rapid and robust tool for the accurate
quantification of food compounds.

5.5. Hyperspectral Image Analysis

Very little work has been done on a dedicated multi-way analysis for analyzing NIR
image data even though multi-way methods have shown great potential for dealing with
such types of structures. Folch-Fortuny et al. [110] used an N-PLS-DA model to detect
the symptoms of Penicillium digitatum in citrus fruits by analyzing the multi-way features
array of the NIR hyperspectral image. It was reported that almost 91% of citrus fruit
infected by Penicillium digitatum can be successfully detected by the multi-way model
at early stages of the harvest, which will be of great importance for automating fruit
sorting systems so that infected citrus fruits can be expelled before affecting the normal
fruits. Yang et al. [111] developed a combination system using a NIR hyperspectral image,
wavelet transformation and N-PLS to predict the total viable count (TVC) of spiced beef
during storage. The three-way array was organized as spiced beef samples by wavelength
variables by the wavelet detail coefficient, then it was concluded that the three-way tri-
linear data structures yield a more accurate model with better interpretations of TVC
than the two-way data. The N-PLS model produced a better prediction and lower errors.
Recently, PARAFAC2 was also applied for analyzing complex NIR image data and showed
a satisfactory performance. For instance, Alexandrino et al. [112] monitored multiple
solid-state transitions of lactose by analyzing the temperature series NIR hyperspectral
image using PARAFAC and PARAFAC2 models. Their results showed that the PARAFAC
model cannot work well in that case since the pixels data did not conform to the tri-linearity
assumption strictly, while PARAFAC2 extracted the profile of the compounds successfully.
This allowed one mode of the three-way data to be shifted. PARAFAC2 was recommended
to be the best for analyzing the series hyperspectral image data. Obviously, the NIR
hyperspectral image analysis is a promising technology for solving practical problems in the
food industry. However, some inherent drawbacks, such as high dimensionality [113], huge
amount of acquired data [114] and considerably time consumption of the analysis [115],
cannot be ignored. How to build efficient models for analyzing such a large number of
NIR image data is a challenge [116]. By virtue of the multi-way advantages in handling
large datasets, the application of multi-way tools will be beneficial for dealing with such
tasks. As stated by Koljonen et al. [117], the multi-way analysis is a potential field of
future research for the hyperspectral NIR image analysis. The representative applications
of the multi-way analysis coupled with NIRS for analyzing food related data in terms of
process analysis and control, quality evaluation and fraud, identification and classification,
quantification and prediction, and image analysis are summarized in Table 2.
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Table 2. Representative applications of multi-way analysis models coupled with near-infrared spectroscopy (NIRS) for analyzing food data.

Applications Analyte Data Arrangement Preprocessing Variable Selection
Multi-Way
Analysis

Algorithm

Spectral Range
(Wavenumber or

Wavelength)

Analytical
Technique Reference

Process analysis
and control

Malt Wavelengths × batches × time Centering Manual PARAFAC 400–2500 nm NIR [86]
Tobacco Samples × variables × batches Continuous wavelet transform Not specified ATLD 4000–12,000 cm−1 NIR [87]

Wheat flour
Samples × wavelengths/laser

particle size/chemical × number of
data matrices

SNV Not specified COMDIM 1100–2500 nm NIR [88]

Food waste Batches × time × wavelengths Derivatives Manual
PARAFAC,

Tucker3 and
PARAFAC2

905–1682 nm NIR [91]

Water and ethanol
mixture

Batches × wavelengths ×
temperature Centering Manual PARAFAC 580–1090 nm NIR [90]

Wheat flour Mixtures × wavelengths ×
leavening times Savitsky–Golay and SNV Not specified PARAFAC and

N-PLS 1380–2250 nm NIR [92]

Fraud and quality
evaluation

Milk Samples × wavelengths ×
wavelengths Fourier transformation Manual N-PLS 4000–10,000 cm−1 FT-IR [96]

Soybean oil Samples × temperature ×
wavenumbers Savitzky–Golay derivatives Not specified PARAFAC 900–1680 nm NIR [97]

Rice oil Samples × temperature × spectra Baseline correction and
Savitzky–Golay derivatives Not specified PARAFAC 900–1680 nm NIR [98]

Bread Leavening times × flour
formulations × wavelengths

Savitsky–Golay derivatives
and SNV

Variable importance in
Projection N-PLS 1380–2250 nm NIR [42]

Identification and
classification

Ethanol Temperature × wavelengths ×
samples

Continuous wavelet transform
with a vanishing moment 2 Not specified PARAFAC and

ATLD 5500–12,000 cm−1 NIR [100]

Wheat flour Locality × cultivar × wavelengths Savitzy–Golay derivatives Manual PARAFAC 4000–10,000 cm−1 FT-NIR [101]

Milk Samples × wavelengths ×
wavelengths Mean-center Manual NPLS-DA 4000–10,000 cm−1 FT-IR [103]

Barley Wavelengths × batches × time Centering Not specified PARAFAC 1100–2500 nm NIR [102]

Prediction and
quantification

Microcrystalline
cellulose mixture

Concentration levels ×
wavelengths × compaction

pressure levels

Centering, SNV, and
Savitzky–Golay derivatives Not specified PARAFAC 1097–2200 nm NIR [105]

Limonene and
water

Samples × temperatures ×
wavelengths

Extended inverted signal
correction, and direct

orthogonalization
Interval-PLS N-PLS 1100–2498 nm NIR [107]

Milk Samples × temperatures ×
wavelengths

Discrete wavelet packet
transform and 3D orthogonal

signal correction
Not specified WPNOSC N-PLS 1100–2300 nm FT-IR [108]

Corn Spectral number × wavelengths ×
samples Not specified Not specified N-PLS 1100–2498 nm NIR [109]

NIR image
analysis

Citrus fruits Fruit variety × features
×wavelengths MSC and SNV Permutation testing NPLS-DA 650–1080 nm

VIS/NIR
hyperspectral

imaging
[110]

Spiced beef
Spiced beef sample × wavelength

variables × wavelet detail
coefficient

Wavelet transform Manual N-PLS 400–1000 nm
VIS/NIR

hyperspectral
imaging

[111]

Lactose Pixels × spectra ×
time/temperature

Logarithmization, SNV and
Savitzky–Golay derivatives Hypertools [118] PARAFAC and

PARAFAC2 1000–1700 nm NIR hyperspectral
imaging [112]
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6. Software and Algorithms

During the past decades, a number of software packages have been developed for
performing multi-way analysis. One of the original software is the N-way toolbox [119]
for Matlab. Most of the multi-way analysis algorithms, such as PARAFAC, PARAFAC2,
N-PLS, Tucker3 and DTLD, are available in this source. Users can easily impose a variety
of constraints on these algorithms and run them with different initialization methods, such
as SVD, random initialization and ATLD. Another software is CuBatch [35] which was orig-
inally built for the process analysis. It also contains many multi-way analysis algorithms
including PARAFAC, Tucker models, etc. There are also some other open-source software
implementations used for multi-way analyses from other communities. For instance, the
Tensor toolbox developed by Kolda and Bader [120] is powerful for analyzing a wide types
of tensor, including dense, sparse, and symmetric tensors. Phan et al. [121] also devel-
oped a tensor decomposition Matlab package called Tensorbox which contains various
optimized algorithms for decomposing a tensor, such as the fast damped Gauss–Newton
CP algorithm [122]. In addition to these free software, there is also a commercial software
called PLS_Toolbox [123], widely used in the chemometrics community by virtue of its
advantages in its easy-to-use, user-friendly interfaces and powerful visualization. All the
aforementioned packages run under the Matlab environment. Recently, some multi-way
analysis software packages running under the R environment have also been developed,
such as ThreeWay [124] and multiway [125] packages developed by social science statisti-
cians. Meanwhile, there are also some Python packages for multi-way analyses available,
such as Tensorly [126] and TensorD [127]. The details of all the mentioned software are
shown in Table 3, and simple introductions of different multi-way analysis algorithms can
be found on the corresponding download websites.

Table 3. Free and commercial multi-way analysis software.

Software Running
Environment Multi-Way Analysis Algorithms Website for Installation

N-way toolbox Matlab PARAFAC, PARAFAC2, N-PLS, Tucker models,
GRAM, DTLD, etc.

http://www.models.life.ku.dk/nwaytoolbox (7 April
2021)

CuBatch Matlab PARAFAC, PARAFAC2, N-PLS, Tucker models, etc. http://www.models.life.ku.dk/cubatch (accessed on 7
April 2021)

Tensor toolbox Matlab
PARAFAC, Tucker models, Poisson tensor

factorization, Generalized CP tensor factorization,
Symmetric CP tensor factorization, etc.

https://www.tensortoolbox.org/ (accessed on 7 April
2021)

Tensorbox Matlab
PARAFAC, Tucker models, Generalized Kronecker

tensor decomposition, Tensor deconvolution, Tensor
train decomposition, etc.

https://github.com/phananhhuy/TensorBox
(accessed on 7 April 2021)

PLS_Toolbox Matlab MPCA, PARAFAC, PARAFAC2, N-PLS, etc. https://eigenvector.com/ (accessed on 7 April 2021)

ThreeWay R PARAFAC, Tucker models, etc. https://cran.r-project.org/web/packages/ThreeWay/
index.html (accessed on 7 April 2021)

multiway R PARAFAC, PARAFAC2, Tucker models, etc. https://cran.r-project.org/web/packages/multiway/
index.html (accessed on 7 April 2021)

Tensorly Python PARAFAC, Tucker models, Tensor train decomposition,
etc.

http://tensorly.org/dev/index.html (accessed on 7
April 2021)

TensorD Python PARAFAC, Tucker models, Pairwise interaction tensor
decomposition, etc.

https://github.com/Large-Scale-Tensor-
Decomposition/tensorD (accessed on 7 April 2021)

7. Conclusions

The application of multi-way analysis combined with NIR spectroscopy is still located
at the initial stage for the food industry. So far, what we have seen about the synergy be-
tween rapid spectroscopic sensors and data analytic technologies, which has revolutionized
the food industry, is only the beginning. Even though NIR spectroscopy can rapidly obtain
thousands of data points in a short time, the potential of these big data sets has not been
fully investigated. Deeper statistical and chemometric knowledge is desired by the food
technologists, owing to the challenges of the high complexity of food processes and food
products. As an advanced chemometric tool, multi-way analysis not only shows powerful
advantages in food process analysis, quality evaluation, determination of chemical compo-
sition and structure, food image analysis, etc., but also makes the analysis process greener
with the help of green and smart “mathematical separation” [36], fulfilling the requirement
of a sustainable food industry. Therefore, the combination of multi-way analysis with
NIR spectroscopy will be a promising practice for turning food data information into
operational knowledge, conducting reliable food analyses, and improving our understand-
ing about food systems and food processes. For the future of the research, making the

http://www.models.life.ku.dk/nwaytoolbox
http://www.models.life.ku.dk/cubatch
https://www.tensortoolbox.org/
https://github.com/phananhhuy/TensorBox
https://eigenvector.com/
https://cran.r-project.org/web/packages/ThreeWay/index.html
https://cran.r-project.org/web/packages/ThreeWay/index.html
https://cran.r-project.org/web/packages/multiway/index.html
https://cran.r-project.org/web/packages/multiway/index.html
http://tensorly.org/dev/index.html
https://github.com/Large-Scale-Tensor-Decomposition/tensorD
https://github.com/Large-Scale-Tensor-Decomposition/tensorD
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multi-way algorithms more efficient and less prone to numerical problems, such as local
minima and two factor degeneracy, are the main numerical challenges. How to analyze
larger amounts of data coming from the food industry process and food products is also a
practical issue. Parallel processor computing will be valuable for alleviating such issues.
Moreover, extending preprocessing techniques used for two-way chemometric methods
for multi-way cases and dealing with systematically missing data are also important issues.
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