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Abstract: Near-infrared spectroscopy (NIRS) is a fast and powerful analytical tool in the food in-

dustry. As an advanced chemometrics tool, a multi-way analysis shows great potential for solving 

a wide range of food problems and analyzing complex spectroscopic data. This paper describes the 

representative multi-way models which were used for analyzing NIRS data, as well as the advances, 

advantages and limitations of different multi-way models. The applications of a multi-way analysis 

in NIRS for the food industry in terms of food process control, quality evaluation and fraud, identi-

fication and classification, prediction and quantification, and image analysis are also reviewed. It is 

evident from this report that a multi-way analysis is presently an attractive tool for modeling com-

plex NIRS data in the food industry while its full potential is far from reached. The combination of 

a multi-way analysis with NIRS will be a promising practice for turning food data information into 

operational knowledge, conducting reliable food analyses and improving our understanding about 

food systems and food processes. To the best of our knowledge, this is the first paper that system-

atically reports the advances on models and applications of a multi-way analysis in NIRS for the 

food industry. 

Keywords: near-infrared spectroscopy; food industry; chemometrics; multi-way analysis;  
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1. Introduction 

Near-infrared spectroscopy (NIRS) is a fast and powerful analytical tool. It has 

gained widespread acceptance in both the scientific community and industry. NIRS uses 

the near-infrared region of the spectrum, commonly defined from 780 nm to 2500 nm, 

where most absorption bands are molecular overtones or combination vibrations bands 

[1]. Compared with other spectroscopy methods, NIRS is deemed to be more attractive 

by virtue of its non-destructive nature, high speed of analysis, ease-of-use and low cost 

[2]. It is widely applied in various fields, such as environment [3,4], agriculture [5,6], food 

[7,8], pharmaceutical [9,10], clinical medicine [11,12], and remote sensing [13,14]. As one 

of the dominant vibrational spectroscopies in the food industry, NIRS is extensively used 

for food classification, component characterization, quality evaluation and process con-

trol, where its effectiveness for fingerprinting food materials and analyzing different crit-

ical parameters has been proven [15]. 
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The rapid development of chemometrics during the past decades is progressing and 

advancing a lot of scientific areas which are highly overlapped with analytical science, 

including food science [16]. Combined with an instrumental analysis, the use of chemo-

metrics tools leads to more advances in understanding food products and food systems 

[17]. However, some challenges arise in food science when entering a digital and instru-

ment-heavy area. One of the biggest challenges is to effectively explore and model the 

complex and large data sets; NIRS data are one such data source. It is well known that 

NIRS suffers from the problems of nonlinear behavior, the scatter effect and broad over-

lapped bands, as well as the artifact effect, such as temperature disturbances, which easily 

lead to models with bad predictions and challenging interpretations. Previous studies 

have shown that rearranging data with nonlinear behavior into higher-order arrays can 

be a promising way to improve the predictions of the chemometrics model [18]. Dealing 

with this kind of high-order array requires high-order chemometrics tools which are com-

plex but more promising for producing satisfying results. Meanwhile, the widely used 

two-way chemometrics tools for modeling NIRS related data, such as a principal compo-

nent analysis (PCA) [19,20] and partial least square (PLS) [21,22], have different draw-

backs in practice. For example, they have difficulty in predicting the new samples with a 

slightly different nature (e.g., due to unexpected temperature variations), and sometimes 

the interpretation of the models’ results can be very difficult because of the rotation free-

dom [20]. Moreover, the model performance can be easily affected if too much redundant 

information existed in the modeled spectra. Even though variable selection methods can 

be beneficial for improving models to some extent, the risk of overfitting cannot be ig-

nored in this approach. Advanced chemometrics tools such as multi-way analysis meth-

ods could thus be considered by food technologists and researchers for the purpose of 

analyzing complex NIRS data and establishing valuable models with more flexibility, sim-

ple interpretations, and robust results [23]. 

In many scientific fields, a multi-way data analysis is popular and frequently appears 

under the name tensor analysis [24]. The multi-way analysis originated from the 1960s in 

social science [25,26]. Subsequently, many chemometricians contributed to the develop-

ment of multi-way models and solved many issues in this area [27]. For example, Wold et 

al. [28] provided the initial idea of N-way partial least square regression (N-PLS) in the 

1980s and illustrated it with chemical mixture data recorded from liquid chromatography 

and ultraviolet spectrometry. Bro [29] further developed the real N-PLS model for both 

three-way and higher order arrays, and illustrated the algorithms with an example from 

the sugar industry. The application of the multi-way analysis for solving food science 

problems is relatively new. It has, however, shown a great deal of success in analyzing 

complex food data and solving a wide range of food-related problems [30–32]. Owing to 

the so-called second order advantage [33], most of the multi-way analysis models have 

the ability to extract hidden information from complex data, finding the latent relation-

ship between variables, while avoiding using a large number of different calibration sets 

[34]. For instance, the combination of a multi-way analysis with spectroscopy can be used 

for the real-time reaction process monitoring of compounds of interest for a complex food 

system. It was reported that the combination of NIRS, multi-way chemometrics and pro-

cess knowledge is taking place in process analytical technology (PAT) [23]; that is to say, 

a multi-way analysis provides a useful tool for analyzing complex process data [35]. More-

over, other “higher-order advantages” of multi-way analyses, e.g., increasing sensitivity 

when the data dimension increases and the ability to solve high collinearity, are also ben-

eficial for solving many practical problems [36]. 

In this paper, we focus on models and applications of a multi-way analysis combined 

with NIRS for both food products and food process analyses. The contents of this paper 

are organized as follows. The second part explains the used notations and abbreviations. 

The third part describes the multi-way models which were used for analyzing NIRS data, 

as well as the advances, advantages and limitations of different models. The prepro-

cessing techniques for a multi-way analysis for analyzing NIRS data are briefly described 
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in the fourth part. In the fifth part, the applications of a multi-way analysis in NIRS for the 

food industry are reviewed in terms of food process control, quality evaluation and fraud, 

identification and classification, prediction and quantification, and image analysis. The 

available software and algorithms for multi-way analysis are introduced in the sixth part. 

The conclusions are formulated in the last part. To the best of our knowledge, this is the 

first paper that systematically reports the advances on models and applications of a multi-

way analysis in NIRS for the food industry. 

2. Notation and Abbreviations 

In order to avoid confusion, we will use the conventional and standard notations 

from the multi-way analysis community. Consistent with the notation used in Kiers [37], 

we use non-bold italic letters, boldface lower-case italic letters and boldface upper-case 

letters to denote the scalars, vectors and matrixes, respectively, e.g., � is a matrix, �� is the 

ith column of matrix � and � is the number of components of the model. A three-way array 

is denoted by �. Each dimension of the three-way array is called a mode. The element of 

the three-way array is denoted by ����where i, j and k mean the indexes belonging to each 

of three modes of �. The symbol ⨂ is used to represent the Kronecker product, while ∗ 

denotes the Hadamard product [38]. All the used abbreviations in this paper are shown 

in Table 1. 

Table 1. The meaning of used abbreviations in the paper. 

Abbreviations Explanations Abbreviations Explanations 

NIRS Near-infrared spectroscopy N-PLS-DA 
N-way partial least square regression-

discriminant analysis 

N-PLS N-way partial least square regression ATLD Alternating tri-linear decomposition 

PARAFAC Parallel factor analysis M-PCA Multiway principal component analysis 

PARAFAC2 Parallel factor analysis 2 PAT Process analytical technology 

Tucker3 A tensor decomposition method proposed by Tucker MLR Multiple linear regression 

CP 
The combination name of canonical decomposition 

and PARAFAC 
COMDIM 

Analysis of common dimensions and 

specific weights 

SNV Standard normal variate MSC Multiplicative scatter correction 

PCA Principal component analysis PLS Partial least square 

DTLD Direct trilinear decomposition VIS/NIR Visible-near-infrared spectroscopy 

FT-NIR Fourier transform near-infrared spectroscopy FT-IR Fourier-transform infrared spectroscopy 

3. Multi-Way Models 

3.1. N-PLS 

N-way partial least squares (N-PLS) is a regression algorithm combining tri-linear 

decomposition and the classical PLS. In fact, it is an extension of the two-way PLS model 

to the multi-way case. The real N-PLS model was proposed by Bro [29] in 1996, which can 

be expressed as: 

� = �(��⨂��)� + �� (1)

where the � × �� matrix � is the unfold version of three-way array � (� × � × �), �� and 

�� are the weights matrixes of the second and third modes, � is the score matrix of the 

first mode, and �� is the residual matrix. Imagine � contains the dependent variable, then 

� = �� + ��, where � and � are the scores matrix and loading matrix of �, and �� is the 

residual for �. The aim of the N-PLS model is to find the weight matrixes �� and �� that 

maximize the covariance between � and �. It is necessary to point out that this initial N-

PLS model was limited by some problematic issues such as the perfect fit problem, 

uniqueness issues and impossible validation assessments of the parameters [39]. In order 
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to fix these problems, Bro et al. [39] later proposed a modified N-PLS model by introduc-

ing a core array in the model of �, and the new version of N-PLS model is widely used in 

different software today. The modified N-PLS model can be written as: 

� = ���(��⨂��)� + �� (2)

The difference with the old N-PLS model is the core array ��. It is the matricized 

core array of size  � × � × � , and it equals ���((��)�⨂(��)�)� , where +  means the 

Moore–Penrose pseudo inverse. The new N-PLS model produces the same predictions as 

the original N-PLS model since only the way for modeling � was optimized and nothing 

happened for the prediction part in the modified N-PLS model. More details about the 

calculation of the parameters can be found in Bro et al. [39]. The so-called N-way partial 

least square regression-discriminant analysis (N-PLS-DA) model is just the discriminant 

version of the N-PLS model. In N-PLS-DA, the dependent variable holds the class infor-

mation, where each response variable is defined as a dummy variable with different val-

ues indicating a different category. A graphical representation of the reported multi-way 

models for three-way array with two components is shown in Figure 1. 

Compared with the two-way PLS model, the N-PLS model retains the multi-way in-

formation of the data, avoids the huge number of parameters caused by unfolding the 

multi-way array and the difficult model interpretation caused by the confounding of 

modes. It is capable of identifying multi-way data patterns and complex feature correla-

tion. Apart from these advantages, N-PLS also has advantages in better modeling accu-

racy, robustness to noise, stabilized solution, increased predictability, etc. [40]. Some pro-

gress concerning the algorithm has been accomplished in recent years. Faber and Bro [41] 

investigated two methods for estimating the standard error of prediction in N-PLS models 

by calculating the estimates of all error variance and calculating an estimate of the stand-

ard deviation of the measurement error in the reference. In order to conduct variable se-

lection for multi-way array with two spectral dimensions, Favilla et al. [42] extended the 

Variable Importance in Projection (VIP) method to the N-PLS model, which was illus-

trated to work well. Recently, Biancolillo et al. [43] proposed a sequential and orthogo-

nalized N-PLS (SO-N-PLS) algorithm for analyzing multi-way data blocks by combining 

N-PLS and the so-called Sequential and Orthogonalized-PLS, and better model perfor-

mances on small data sets and noisy data were achieved by this algorithm. Even though 

N-PLS is an attractive multi-way regression algorithm, it is important to point out that N-

PLS models do not have second order advantages since they work under the same prem-

ises as ordinary PLS. This means that N-PLS cannot handle new interferences that were 

not in the calibration set. Furthermore, proper variable selection and preprocessing pro-

cedures are strongly recommended when using N-PLS for analyzing NIRS data in prac-

tice. Modeling the most interesting region by multi-way methods can always increase the 

knowledge of the studied system. 
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Figure 1. Graphical representation of the modeling process of: (a) N-way partial least square 

regression (N-PLS); (b) parallel factor analysis (PARAFAC) and (c) parallel factor analysis 2 

(PARAFAC2) on three-way data with two components. 

3.2. PARAFAC (Parallel Factor Analysis) 

PARAFAC was first proposed by Harshman [44] in 1970. In the same year, Carroll 

and Chang [45] also proposed an identical model called Canonical Decomposition (CAN-

DECOMP) in the context of multidimensional scaling. Since the name CANDECOMP is 

more common in other fields than in chemometrics, we will use name PARAFAC in this 

paper. PARAFAC can be regarded as an extension of PCA but with many other ad-

vantages for decomposing multi-way arrays [46]. Instead of containing a score vector and 

a loading vector in a component like in PCA, PARAFAC decomposes the data into a set 

of tri-linear components and each component is composed of three vectors representing 

the three modes, respectively. For a three-way array, the model for PARAFAC can be ex-

pressed as: 

�� = ���(�)� + ��, � = 1, … , � (3)

where �� is a � × � matrix denoting the kth slab of three-way array �, and the dimension of 

the three-way array � is � × � × �. Assuming � is the number of components of the PAR-

AFAC model, � is a � × �  matrix for the first mode, � is a � × �  matrix for the second 

mode, �� is a � × � diagonal matrix in which the diagonal elements are the kth row of ma-

trix � and represent the profiles of � components for the kth observation of the third mode, 

and �� is the residual matrix with the same dimension of ��. From a perspective of vec-

tors, the PARAFAC model can be also expressed using the Kronecker product: 
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� = � ��⨂��⨂�� + �

�

���

, � = 1, … , � (4)

where ��, ��, �� denotes the fth column vector of loading matrixes �, � and � respectively, 

and � is the three-way residual array with the same dimension as �. 

One of the most attractive advantages of PARAFAC is the uniqueness of the solution 

[47], which means that the PARAFAC model cannot be rotated without a loss in fit. For 

PCA, it is well known that the inherent rotation freedom problem makes either external 

information or post-rotations necessary for the purpose of accurately identifying pure 

spectra. This is not the case in PARAFAC. If the data have a tri-linear structure and the 

noise in the data is appropriate, PARAFAC will always estimate the unique solutions (e.g., 

pure spectra) when using an appropriate number of components [46]. From a mathemat-

ical perspective, Kruskal [48] suggested the appropriate � should fulfill the condition of 

�� + �� + �� ≥ 2� + 2 in order to get the unique solution, where ��, �� and �� are the k-

ranks of matrixes �, � and �, respectively. Regarding more practical details about how to 

select the appropriate number of components for the PARAFAC model, we recommend 

to look into the paper written by Bro and Kiers [49]. Like many other multi-way models, 

PARAFAC is also less sensitive to the noise in the data and produces models with less 

complexity than two-way chemometrics methods; a detailed illustration regarding this 

can be found in Bro [46]. Furthermore, PARAFAC is also capable of analyzing multi-way 

data with large amounts of miss values. Tomasi and Bro [50] proposed that incorporating 

the ALS (alternating least squares) procedure with a single imputation or implementing 

the Levenberg–Marquadt procedure in the PARAFAC algorithm can deal with the data 

with a large number of missing values. Besides the aforementioned benefits, PARAFAC 

is also advantageous in its simple model structure, yielding more adequate and interpret-

able models, and dealing with a big and complex dataset [23,51]. 

Even though PARAFAC has gained extensive acceptance nowadays, there are still 

some issues hampering the use of PARAFAC in practice. For example, multi-way analysis 

and data arrangement experiences are needed; such knowledge can be challenging for 

people who are accustomed to using only two-way chemometrics tools. Apart from this, 

algorithm problems are maybe another major concern. For instance, slow convergence 

occurs especially when facing seriously collinear data. The two-factor degeneracy prob-

lem, which means two components become almost identical but with opposite signs, is 

also a practical concern. In order to improve the convergence speed of the conventional 

PARAFAC-ALS algorithm, a wide range of remedies have been developed, such as line 

search [52], enhanced line search [53], extrapolation with optimized step size and search 

direction [54] and compression [46]. Besides the ALS algorithm, some alternatives for cal-

culating PARAFAC models have also been proposed, including the all-at-once algorithm 

[55], the hierarchical conjugate gradient algorithm [56], a random gradient algorithm 

[57,58], the fast damped Gauss–Newton algorithm [52], etc. These new alternatives were 

reported to have better convergence speed for many real cases. When fast convergence is 

required, these algorithms are valuable for exploration and test in the specific case. Re-

garding the two-factor degeneracy problem, it happens mostly from using too many com-

ponents or because the established PARAFAC model is not appropriate for the data. Gen-

erally, the Tuckers congruence [59] and components plot can be used to detect the possible 

degeneracy problem. It was also reported that imposing some constraints on the PARA-

FAC model was beneficial for avoiding the degeneracy problem to some extent [60]. 

3.3. PARAFAC2 (Parallel Factor Analysis 2) 

PARAFAC2 was also proposed by Harshman [61] in the 1970s. It is an important 

extension of the PARAFAC model because it allows the loading matrix in one mode to be 

shifted or have different lengths for different entities in one mode. Following Kiers et al. 

[62], the PARAFAC2 model can be written as: 
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�� = ���(��)� + ��, � = 1, … , � (5)

where ��, � and �� are defined in the same way as in the PARAFAC model. The differ-

ence is that the second mode matrix � of PARAFAC is changed into �� in PARAFAC2, 

which means there is a specific and individual �� for each k of the—in this case—third 

mode. Thus, the strict tri-linearity assumption is actually relaxed in one mode in the PAR-

AFAC2 model. Compared with the assumption of PARAFAC which is requiring � to keep 

the same shape for each k, only the cross products of �� are constrained to be constant for 

each k in the third mode in PARAFAC2 [62]. This less strict constraint was illustrated to 

be a precondition for obtaining the uniqueness in PARAFAC2 by Ten Berge and Kiers 

[63]. The constant cross product property is obtained by making �� = ���, where �� is an 

orthogonal matrix with dimension of � × � thus ��
��� = � and � is a common matrix with 

dimension � × �. Details about the mathematical proof can be found in the initial paper 

[62]. Hence, �� is concerned with the uniqueness for each observation in the varying mode 

(shift or different length) while � is concerned with the observations [64]. Understanding 

the uniqueness and the model assumption of the PARAFAC2 model is of vital importance 

since it will directly affect whether it is applied in a proper way for real data. 

Owing to the advantage of the less strict tri-linearity requirement, which is often 

more realistic in the real world, PARAFAC2 is widely applied for solving a wide range of 

complex data analysis problems, e.g., the problem of varying batch trajectories in food 

process analyses (different batches have different numbers of NIRS spectra) or analyzing 

complex NIRS image data. As an important multi-way analysis model, PARAFAC2 has 

all the advantages of the general PARAFAC model. One of the challenges of the PARA-

FAC2 algorithm is how to impose the non-negativity constraints on all three modes. For 

the conventional PARAFAC2-ALS algorithm, it is not possible to impose a non-negativity 

constraint on the shifted mode, thus only two modes can be constrained. Recently, Cohen 

and Bro [65] proposed a flexible PARAFAC2 algorithm and made it possible to impose 

non-negativity constraints on all the three modes by casting the PARAFAC2 model as a 

coupled matrix factorization model. For the applications where all the modes are required 

to be non-negative, this flexible PARAFAC2 algorithm will be of great value. Furthermore, 

a core based PARAFAC algorithm has also been proposed recently with a possibility of 

imposing non-negativity constraints [66]. However, strict non-negativity cannot be guar-

anteed in this algorithm since the transformation matrixes operate on orthogonal factor 

matrixes. Another practical concern is the local minima problem. The PARAFAC2 decom-

position is inherently a non-convex optimization problem, and thus it is a NP-hard prob-

lem [67] with one of its aspects being the local minima. A useful remedy for avoiding the 

local minimum is to repeat the PARAFAC2 model calculation for several times, then 

choose the model with the best fit as the global minimum model. However, it is very ad 

hoc. More explorations from the algorithm perspectives will be important for avoiding 

such problems. The convergence speed is also an issue for the PARAFAC2 algorithm. A 

recent research of Tian et al. [68] reported the effects of different line search strategies for 

accelerating PARAFAC2-ALS convergence, and proposed an acceleration procedure 

called geometric search which was faster than the non-accelerated PARAFAC2-ALS algo-

rithm. However, seeking the efficient alternatives of the ALS algorithm for estimating 

PARAFAC2 model is still needed for the future. 

3.4. Other Multi-Way Models 

There are many alternative multi-way analysis models available for analyzing multi-

way dataset. For instance, Tucker3 is a multi-way model of the Tucker family, also called 

the three-mode principal components analysis [25,69,70]. Compared with the PARAFAC 

model, a super-diagonal core array exists in Tucker3 models. It basically compresses all 

three modes of the data so that the main information can be summarized by a few com-

ponents for each mode. Therefore, the number of components in a Tucker3 model can be 

different for each mode. It is important to notice that the unique and best subspace can be 
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found by the Tucker3 model, while the decomposed loadings are generally not unique 

due to the rotation freedom problem. Another promising multi-way model is alternating 

tri-linear decomposition (ATLD) [71]. It was used for decomposing three-way data but 

was shown to have faster convergence than the PARAFAC-ALS algorithm in the original 

paper [71]. It was also based on the ALS principle but with an improved iterative proce-

dure using the Moore–Penrose generalized inverse with a singular value decomposition. 

Limited by the length of this paper, only simple descriptions about these models are in-

troduced here. More details about many other different multi-way models can be found 

in the reference [23,72]. 

4. Preprocessing Techniques 

Preprocessing plays an important role in chemometrics; however, it is more compli-

cated when used for a multi-way array compared with two-way cases [60]. Some studies 

have been done in terms of centering and scaling for a multi-way array [46,72–74]. Basi-

cally, three ways of centering can be performed on a multi-way array, including single-

centering, double-centering and triple-centering [46]. Single-centering can be done by un-

folding the three-way array into a matrix, and then centering the matrix as in an ordinary 

two-way chemometrics method, such as PCA: for example, unfolding the � × � × � array 

into � × �� matrix and centering it across the first mode. People can also center the data 

across one of other modes depending on the specific problem. Double-centering means 

two modes of the three modes are centered by first centering one mode; then, the out-

comes of this centering are centered. In triple-centering, centering across all the three 

modes at a time will be performed. As stated by Bro et al. [60], single-centering is the only 

appropriate choice for performing centering on a multi-way array in order to fulfill the 

assumptions of multilinear models, e.g., the PARAFAC model. Regarding scaling, the as-

sumptions of multilinear models also need to be considered. Since scaling column-wise 

(as in centering) will distort the underlying trilinear structure of the data [74], it is neces-

sary to scale the whole slab within a specific mode instead of the columns. Several issues 

need to be taken into account when performing scaling on multi-way array. One of them 

is that scaling one mode will always affect the scale of other modes, which means that 

scaling within several modes can be more complicated. The amount of noise and unsys-

tematic variation in the data may be increased after performing scaling on some types of 

multi-way data [74]; hence, centering across one mode or scaling within one mode is al-

ways the straightforward way to preprocess the multi-way array. More details about cen-

tering and scaling for a multi-way array can be found in the aforementioned references. 

For multi-way NIRS data, the conventional preprocessing techniques for NIR spectra can 

be used before rearranging the two-way NIR spectra into the multi-way array. Scatter 

correction and derivatives methods are the most widely used preprocessing techniques 

for NIR spectra. MSC [75], Inverse MSC [76], Extended MSC [77] and SNV [78] are com-

monly used for scatter correction, while first or second order Savitzky–Golay derivatives 

and Norris–Williams derivatives [79] are the widely used spectral derivative techniques. 

Moreover, the interval and combined versions of different preprocessing techniques are 

also frequently used in practice. For more details regarding parameters settings, the effects 

comparison and the methods selection for different preprocessing techniques for NIR 

spectra, we recommend the specific preprocessing references  [80,81]. 

5. Applications of Multi-Way Analysis and NIRS in Food Industry 

5.1. Process Analysis and Control 

Food industrial processes and food productions often involve multi-way data. A 

number of reports have shown the great potential of multi-way analysis tools for analyz-

ing high dimensional and complex food process data [82–85]. NIRS is widely applied in 

the process analysis, and a multi-way data analysis coupled with NIRS is gaining more 

and more acceptance in the food industry. Allosio-Ouarnier et al. [86] used PARAFAC to 
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investigate the variation of barley during the malting process by analyzing the three-way 

array of wavelengths × batches × malting time. The batch difference and sample differ-

ences within a batch were both successfully observed. In order to confront the challenge 

of industrial complexity, Liu et al. [87] developed an industrial process analysis method 

by combining on-line NIRS and ATLD. The industrial process could be monitored by ob-

serving the variation of common property extracted from the ATLD model in different 

batches, and an application of tobacco production indicated that the multi-way analysis, 

such as ATLD, was more capable of extracting the intrinsic information hidden in the NIR 

spectra. This achieved a better performance in the process analysis compared with the 

conventional two-way analysis tools. Furthermore, Nielsen et al. [88] also applied an anal-

ysis of common dimensions and specific weights (COMDIM) [89] to analyze the NIRS 

data of wheat flours and argued that their proposal was a powerful tool for process control 

in the flour mill. The authors of this paper said that multi-way analysis was advantageous 

in simultaneously considering the variation in both the particle size and chemical data, 

while the two-way PCA analysis was insufficient. By doing so, different quality parame-

ters could be optimized during the flour production. Temperature is a critical factor that 

cannot be ignored in NIRS in the process analysis. Peinado et al. [90] used PARAFAC-

MLR to model the batch process of the in-line NIRS dataset of water and ethanol by con-

sidering temperature information as an additional parameter in the tensor. Even though 

the dataset has simultaneous changes in temperature and chemical composition, the phys-

ical–chemical changes happening in the evolving systems were extracted successfully by 

the PARAFAC model. The proposed tensor-based strategy was more attractive than PCA 

or PLS, and it was recommended to be implemented in various industrial applications. In 

the scientific literature, different multi-way analysis models have also been compared for 

food process analyses. Lillhonga and Geladi [91] monitored the fermentation of food 

waste mixture batches over time by combining multi-way analysis models and NIRS. 

They showed that PARAFAC and Tucker3 produce common time profiles for all the 

batches and that the half-lives can be estimated successfully, while PARAFAC2 yields an 

individual time profile for each batch with a little more noise and convergence problems. 

Vigni and Cocchi [92] studied the formulation effects on wheat flour during a leavening 

process by using PARAFAC and N-PLS. The mixtures’ differences regarding the leaven-

ing time were detected by the PARAFAC decomposition of the three-way NIRS dataset. 

The established N-PLS model on baked bread parameters successfully found the relation-

ship among flour formulation, leavening time and the final product. The multi-way anal-

ysis was proven to be an effective tool for monitoring the industrial leavening process of 

wheat flours. 

5.2. Fraud and Quality Evaluation 

NIRS is widely used for the purpose of food quality evaluation and fraud detection 

[93–95]. Many studies have reported the effectiveness of the combination of NIRS and the 

multi-way analysis in dealing with such issues in the food industry. For example, the ac-

curate information of adulterants in milk was generally difficult to be captured by two-

way chemometric tools because of the weak and overlapped absorption bands of the adul-

terants [96]. Yang et al. [96] successfully used N-PLS to model the 2D NIR spectra data of 

melamine adulterated milk. By comparing with the PLS model results on 1D NIR spectra, 

the multi-way model was deemed to be more accurate and robust since its average relative 

error is only 22.9% while the average relative error of PLS model is 122.4%. Recently, some 

studies have reported the effectiveness of the multi-way analysis and NIRS in the oxida-

tive stability evaluation of oil. Rosa et al. [97] reported that PARAFAC coupled with NIRS 

was powerful for evaluating the protective effect of plant-based substances and synthetic 

antioxidants against oxidation in soybean oil. The NIRS data were rearranged into a three-

way array of samples by temperature by wavenumbers. They concluded that the pro-

posed method was a simple and fast way to achieve the anti-oxidation evaluation for soy-

bean oil. Furthermore, PARAFAC coupled with NIRS was also used for evaluating the 
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degradation of thermal rice oil by Rosa et al. [98]. The oxidative stability of rice oils was 

evaluated in a fast way by combining the multi-way analysis and NIRS. Moreover, Favilla 

et al. [42] used NIRS and the N-PLS model to accurately model the critical properties of 

bread loaves. The flour performance of the leavening phase was then successfully and 

accurately predicted. 

5.3. Identification and Classification 

Identification and classification are important application fields of NIRS and chemo-

metrics [99], and are also used for the consideration of the multi-way analysis. Cui et al. 

[100] compared the effects of M-PCA, ATLD and PARAFAC on both three-way and four-

way temperature-dependent NIRS data. Their results showed that ATLD and PARAFAC 

were capable of capturing the spectral variation information for each component, while 

the loadings of M-PCA contained the mixed spectral information of all the components, 

even though it explained the variance of whole data. The authors concluded that the 

multi-way analysis model can determine the chemicals of aqueous solutions and it can be 

the best way for analyzing temperature-dependent NIR spectra. In order to find differ-

ences between the cultivars and localities, Geladi and Manley [101] used PARAFAC to 

analyze the three-way NIRS data of wheat flours and made a comparison with the two-

way chemometric models. They showed that PARAFAC can detect the variation infor-

mation of protein content and hardness values, which were associated with localities and 

cultivars separately, and merging the information of the cultivars and the localities in one-

way and then building PCA or PLS models are not proper for their case. Allosio et al. [102] 

reported PARAFAC was useful for separating barley batches according to the malting 

process. Such classifications can be achieved by connecting the decomposed time mode 

profiles with wavelength mode information expressed as NIR spectral intensities. The au-

thors state that PARAFAC had great potential in analyzing the time series NIR dataset. 

Recently, the multi-way analysis has been applied to the classification of milk. Yang et al. 

[103] combined N-PLS-DA and 2D NIR correlation spectra to illustrate the feasibility of 

classifying normal milk and tainted milk. They compared the effects of the N-PLS-DA 

model on 2D IR/IR, 2D NIR/NIR and 2D IR/NIR spectra using the correct classification 

rate (CCR). The results showed that N-PLS-DA models on 2D IR/NIR spectra can provide 

the best classification of milk with a CCR of 96.1%. 

5.4. Prediction and Quantification 

A multi-way analysis was also used for quantification and prediction purposes in the 

food industry [104]. In particular, the multi-way analysis coupled with NIRS has been 

successfully applied in many practical cases by virtue of better model predictive perfor-

mance and the ability to simultaneously analyze chemical and physical variations 

[105,106]. Letíci et al. [107] used N-PLS models to predict the content of limonene and 

water in the spray-dried systems by analyzing the three-way NIRS data. The temperature 

variation can be modeled successfully and the prediction error of N-PLS model is only 

0.2%, which was small compared with that of the two-way model. The conventional two-

way NIRS calibration model faces many challenges because of its weak robustness when 

it is applied for analyzing the samples with a large amount of water [108]. To circumvent 

such a challenge, Peng et al. [108] developed a hybrid algorithm called wavelet packet 

transform orthogonal signal correction N-PLS (WPNOSC-N-PLS) by applying a wavelet 

packet transform and orthogonal signal correction into the N-PLS model. In combination 

with NIR, WPNOSC-N-PLS accurately determined the main components in the concen-

tration of milk even in the presence of temperature variation interference. The authors 

argued that WPNOSC-N-PLS can provide better models with better precision and robust-

ness, and it is attractive in solving a wide range of multidimensional problems. Recently, 

the multi-way analysis and NIRS has been applied to the component quantification in 

corn. Zhang et al. [109] reported the application of N-PLS on self-constructed three-di-
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mensional NIR spectra which can capture accurate quantitative information of four com-

ponents (moisture, oil, protein, and starch). Compared with the two-way PLS model, the 

proposed multi-way models achieved better predictive performance for the target com-

pounds with a lower RMSEP (root mean square error of prediction). Benefiting from the 

multi-way advantage, N-PLS coupled with 3D NIR spectra was deemed to be a rapid and 

robust tool for the accurate quantification of food compounds. 

5.5. Hyperspectral Image Analysis 

Very little work has been done on a dedicated multi-way analysis for analyzing NIR 

image data even though multi-way methods have shown great potential for dealing with 

such types of structures. Folch-Fortuny et al. [110] used an N-PLS-DA model to detect the 

symptoms of Penicillium digitatum in citrus fruits by analyzing the multi-way features ar-

ray of the NIR hyperspectral image. It was reported that almost 91% of citrus fruit infected 

by Penicillium digitatum can be successfully detected by the multi-way model at early 

stages of the harvest, which will be of great importance for automating fruit sorting sys-

tems so that infected citrus fruits can be expelled before affecting the normal fruits. Yang 

et al. [111] developed a combination system using a NIR hyperspectral image, wavelet 

transformation and N-PLS to predict the total viable count (TVC) of spiced beef during 

storage. The three-way array was organized as spiced beef samples by wavelength varia-

bles by the wavelet detail coefficient, then it was concluded that the three-way tri-linear 

data structures yield a more accurate model with better interpretations of TVC than the 

two-way data. The N-PLS model produced a better prediction and lower errors. Recently, 

PARAFAC2 was also applied for analyzing complex NIR image data and showed a satis-

factory performance. For instance, Alexandrino et al. [112] monitored multiple solid-state 

transitions of lactose by analyzing the temperature series NIR hyperspectral image using 

PARAFAC and PARAFAC2 models. Their results showed that the PARAFAC model can-

not work well in that case since the pixels data did not conform to the tri-linearity assump-

tion strictly, while PARAFAC2 extracted the profile of the compounds successfully. This 

allowed one mode of the three-way data to be shifted. PARAFAC2 was recommended to 

be the best for analyzing the series hyperspectral image data. Obviously, the NIR hyper-

spectral image analysis is a promising technology for solving practical problems in the 

food industry. However, some inherent drawbacks, such as high dimensionality [113], 

huge amount of acquired data [114] and considerably time consumption of the analysis 

[115], cannot be ignored. How to build efficient models for analyzing such a large number 

of NIR image data is a challenge [116]. By virtue of the multi-way advantages in handling 

large datasets, the application of multi-way tools will be beneficial for dealing with such 

tasks. As stated by Koljonen et al. [117], the multi-way analysis is a potential field of future 

research for the hyperspectral NIR image analysis. The representative applications of the 

multi-way analysis coupled with NIRS for analyzing food related data in terms of process 

analysis and control, quality evaluation and fraud, identification and classification, quan-

tification and prediction, and image analysis are summarized in Table 2. 

Table 2. Representative applications of multi-way analysis models coupled with near-infrared spectroscopy (NIRS) for 

analyzing food data. 

Applications Analyte Data Arrangement Preprocessing 
Variable 

Selection 

Multi-Way Analy-

sis Algorithm 

Spectral Range 

(Wavenumber or 

Wavelength) 

Analytical 

Technique 
Reference 

Process anal-

ysis and con-

trol 

Malt Wavelengths × batches × time Centering Manual PARAFAC 400–2500 nm NIR [86] 

Tobacco Samples × variables × batches 

Continuous 

wavelet trans-

form 

Not speci-

fied 
ATLD 4000–12,000 cm−1 NIR [87] 

Wheat 

flour 

Samples × wavelengths/laser 

particle size/chemical × num-

ber of data matrices 

SNV 
Not speci-

fied 
COMDIM 1100–2500 nm NIR [88] 
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Food waste Batches × time × wavelengths Derivatives Manual 

PARAFAC, 

Tucker3 and PAR-

AFAC2 

905–1682 nm NIR [91] 

Water and 

ethanol 

mixture 

Batches × wavelengths × tem-

perature 
Centering Manual PARAFAC 580–1090nm NIR [90] 

Wheat 

flour 

Mixtures × wavelengths × 

leavening times 

Savitsky–Golay 

and SNV 

Not speci-

fied 

PARAFAC and N-

PLS 
1380–2250 nm NIR [92] 

Fraud and 

quality evalu-

ation 

Milk 
Samples × wavelengths × 

wavelengths 

Fourier transfor-

mation 
Manual N-PLS 4000–10,000 cm−1 FT-IR [96] 

Soybean 

oil 

Samples × temperature × 

wavenumbers 

Savitzky–Golay 

derivatives 

Not speci-

fied 
PARAFAC 900–1680 nm NIR [97] 

Rice oil 
Samples × temperature × 

spectra 

Baseline correc-

tion and Sa-

vitzky–Golay de-

rivatives 

Not speci-

fied 
PARAFAC 900–1680 nm NIR [98] 

Bread 
Leavening times × flour for-

mulations × wavelengths 

Savitsky–Golay 

derivatives and 

SNV 

Variable 

importance 

in Projec-

tion 

N-PLS 1380–2250 nm NIR [42] 

Identification 

and classifica-

tion 

Ethanol 
Temperature × wavelengths × 

samples 

Continuous 

wavelet trans-

form with a van-

ishing moment 2 

Not speci-

fied 

PARAFAC and 

ATLD 
5500–12,000 cm−1 NIR  [100] 

Wheat 

flour 

Locality × cultivar × wave-

lengths 

Savitzy–Golay 

derivatives 
Manual PARAFAC 4000–10,000 cm−1 FT-NIR [101] 

Milk 
Samples × wavelengths × 

wavelengths 
Mean-center Manual NPLS-DA 4000–10,000 cm−1 FT-IR [103] 

Barley Wavelengths × batches × time Centering 
Not speci-

fied 
PARAFAC 1100–2500 nm NIR [102] 

Prediction 

and quantifi-

cation 

Microcrys-

talline cel-

lulose mix-

ture 

Concentration levels × wave-

lengths × compaction pres-

sure levels 

Centering, SNV, 

and Savitzky–Go-

lay derivatives 

Not speci-

fied 
PARAFAC 1097–2200 nm NIR [105] 

Limonene 

and water 

Samples × temperatures × 

wavelengths 

Extended in-

verted signal cor-

rection, and di-

rect orthogonali-

zation 

Interval-

PLS 
N-PLS 1100–2498 nm NIR [107] 

Milk 
Samples × temperatures × 

wavelengths 

Discrete wavelet 

packet transform 

and 3D orthogo-

nal signal correc-

tion 

Not speci-

fied 
WPNOSC N-PLS 1100–2300 nm FT-IR [108] 

Corn 
Spectral number × wave-

lengths × samples 
Not specified 

Not speci-

fied 
N-PLS 1100–2498 nm NIR [109] 

NIR image 

analysis 

Citrus 

fruits 

Fruit variety × features 

×wavelengths 
MSC and SNV 

Permuta-

tion testing 
NPLS-DA 650–1080 nm 

VIS/NIR 

hyperspec-

tral imag-

ing 

[110] 

Spiced beef 

Spiced beef sample × wave-

length variables × wavelet de-

tail coefficient 

Wavelet trans-

form 
Manual N-PLS 400–1000 nm 

VIS/NIR 

hyperspec-

tral imag-

ing 

[111] 

Lactose 
Pixels × spectra × time/tem-

perature 

Logarithmiza-

tion, SNV and Sa-

vitzky–Golay de-

rivatives 

Hypertools 

[118] 

PARAFAC and 

PARAFAC2 
1000–1700 nm 

NIR hyper-

spectral im-

aging 

[112] 

6. Software and Algorithms 

During the past decades, a number of software packages have been developed for 

performing a multi-way analysis. One of the original software is the N-way toolbox [119] 

for Matlab. Most of the multi-way analysis algorithms, such as PARAFAC, PARAFAC2, 
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N-PLS, Tucker3 and DTLD, are available in this source. Users can easily impose a variety 

of constraints on these algorithms and run them with different initialization methods, 

such as SVD, random initialization and ATLD. Another software is CuBatch [35] which 

was originally built for the process analysis. It also contains many multi-way analysis al-

gorithms including PARAFAC, Tucker models, etc. There are also some other open-source 

software implementations used for multi-way analyses from other communities. For in-

stance, the Tensor toolbox developed by Kolda and Bader [120] is powerful for analyzing 

a wide types of tensor, including dense, sparse, and symmetric tensors. Phan et al. [121] 

also developed a tensor decomposition Matlab package called Tensorbox which contains 

various optimized algorithms for decomposing a tensor, such as the fast damped Gauss–

Newton CP algorithm [122]. In addition to these free software, there is also a commercial 

software called PLS_Toolbox [123], widely used in the chemometrics community by vir-

tue of its advantages in its easy-to-use, user-friendly interfaces and powerful visualiza-

tion. All the aforementioned packages run under the Matlab environment. Recently, some 

multi-way analysis software packages running under the R environment have also been 

developed, such as ThreeWay [124] and multiway [125] packages developed by social sci-

ence statisticians. Meanwhile, there are also some Python packages for multi-way anal-

yses available, such as Tensorly [126] and TensorD [127]. The details of all the mentioned 

software are shown in Table 3, and simple introductions of different multi-way analysis 

algorithms can be found on the corresponding download websites. 

Table 3. Free and commercial multi-way analysis software. 

Software Running Environment Multi-Way Analysis Algorithms Website for Installation 

N-way toolbox Matlab 
PARAFAC, PARAFAC2, N-PLS, Tucker 

models, GRAM, DTLD, etc. 

http://www.mod-

els.life.ku.dk/nwaytoolbox  

(7 April 2021) 

CuBatch Matlab 
PARAFAC, PARAFAC2, N-PLS, Tucker 

models, etc. 

http://www.mo-

dels.life.ku.dk/cubatch (7 

April 2021) 

Tensor toolbox Matlab 

PARAFAC, Tucker models, Poisson ten-

sor factorization, Generalized CP tensor 

factorization, Symmetric CP tensor factor-

ization, etc. 

https://www.tensortool-

box.org/ (7 April 2021) 

Tensorbox Matlab 

PARAFAC, Tucker models, Generalized 

Kronecker tensor decomposition, Tensor 

deconvolution, Tensor train decomposi-

tion, etc. 

https://github.com/phanan-

hhuy/TensorBox (7 April 

2021) 

PLS_Toolbox Matlab 
MPCA, PARAFAC, PARAFAC2, N-PLS, 

etc. 

https://eigenvector.com/ (7 

April 2021) 

ThreeWay R PARAFAC, Tucker models, etc. 

https://cran.r-pro-

ject.org/web/packages/Three-

Way/index.html (7 April 

2021) 

multiway R 
PARAFAC, PARAFAC2, Tucker models, 

etc. 

https://cran.r-pro-

ject.org/web/packages/mul-

tiway/index.html (7 April 

2021) 

Tensorly Python 
PARAFAC, Tucker models, Tensor train 

decomposition, etc. 

http://tensorly.org/dev/in-

dex.html (7 April 2021) 

TensorD Python 
PARAFAC, Tucker models, Pairwise in-

teraction tensor decomposition, etc. 

https://github.com/Large-

Scale-Tensor-Decomposi-

tion/tensorD (7 April 2021) 
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7. Conclusions 

The application of a multi-way analysis combined with NIR spectroscopy is still lo-

cated at the initial stage for the food industry. So far, what we have seen about the synergy 

between rapid spectroscopic sensors and data analytic technologies, which has revolu-

tionized the food industry, is only the beginning. Even though NIR spectroscopy can rap-

idly obtain thousands of data points in a short time, the potential of these big data sets has 

not been fully investigated. Deeper statistical and chemometric knowledge is desired by 

the food technologists, owing to the challenges of the high complexity of food processes 

and food products. As an advanced chemometric tool, a multi-way analysis not only 

shows powerful advantages in food process analysis, quality evaluation, determination 

of chemical composition and structure, food image analysis, etc., but also makes the anal-

ysis process greener with the help of green and smart “mathematical separation” [36], 

fulfilling the requirement of a sustainable food industry. Therefore, the combination of a 

multi-way analysis with NIR spectroscopy will be a promising practice for turning food 

data information into operational knowledge, conducting reliable food analyses, and im-

proving our understanding about food systems and food processes. For the future of the 

research, making the multi-way algorithms more efficient and less prone to numerical 

problems, such as local minima and two factor degeneracy, are the main numerical chal-

lenges. How to analyze larger amounts of data coming from the food industry process 

and food products is also a practical issue. Parallel processor computing will be valuable 

for alleviating such issues. Moreover, extending preprocessing techniques used for two-

way chemometric methods for multi-way cases and dealing with systematically missing 

data are also important issues. 
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