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Abstract: This work aimed to improve the functional properties of soybean protein isolate (SPI) by
high hydrostatic pressure (HHP) and develop SPI incorporated yogurt. Response surface methodol-
ogy (RSM) was used to optimize the HHP treatment parameters, including pressure, holding time,
and the ratio of SPI/water. Water holding capacity, emulsifying activity index, solubility, and hard-
ness of SPI gels were evaluated as response variables. The optimized HPP treatment conditions were
281 MPa of pressure, 18.92 min of holding time, and 1:8.33 of SPI/water ratio. Water and oil holding
capacity, emulsifying activity, and stability of SPI at different pH were improved. Additionally,
relative lipoxygenase (LOX) activity of HHP treated SPI (HHP-SPI) was decreased 67.55 ± 5.73%,
but sulphydryl group content of HHP-SPI was increased 12.77%, respectively. When incorporating
8% of SPI and HHP-SPI into yogurt, the water holding capacity and rheological properties of yogurt
were improved in comparison with yogurt made of milk powders. Moreover, HHP-SPI incorporated
yogurt appeared better color and flavor.

Keywords: high hydrostatic pressure; soybean protein isolate; functional properties; soy yogurt

1. Introduction

Soy is a source of the predominant vegetable proteins. Soy protein isolates (SPI) are
generally produced from soybean by being collected as precipitated curd in the acidic
condition [1], and SPI are essential for a wide range of protein-based food formulations [2,3],
owing to their outstanding processing ability, high nutritional value, and low cost. The
functional properties of SPI, such as solubility and emulsifying properties, are determined
by the protein composition, structure, degree of denaturation, and aggregation. According
to the needs in the specific food system, those properties can be modified by chemical,
physical, or enzymatic methods [4].

High hydrostatic pressure (HHP) technology is a non-thermal food-processing method
showing potential for the development of new food products with additional functional
and health benefit [5]. Under HHP, proteins are regulated by the Le Chatelier’s principle
and shifted to a lower volume conformer, which in turn changes their structure and
conformation and influences their functional properties [6,7]. A number of researchers
have studied the impact of HHP treatment on SPI in recent years and found that solubility,
water holding capacity, and foaming property could be improved under medium-high
pressure (up to 400 MPa) for short processing time (5–20 min), while these properties
tend to decline under ultra-high pressure (above 400 MPa) [8–10]. Li et al. confirmed
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that the HHP modified SPI could have potential utilization in infant formula, lying in
the better swallowing properties, in vitro digestibility, and lower allergenicity [11]. Other
researchers found that protein solubility and in colloidal solubility of SPI are improved, and
colloidal-stable calcium added SPI dispersions can be obtained by HHP treatment, since
pressure promotes the formation of calcium-protein species that could establish bridges
between the droplets [12].

Plant protein replaced food products have received great attention lately due to the
increasing consumer awareness about the impacts of animal-based food production on the
environment and health benefits of plant protein over animal protein, e.g., lowering blood
cholesterol level [12,13]. Soybean has been especially a popular source for plant-based
yogurt recently, because of its accessibility and quality. Previous studies suggested that
soy-based media might possess sufficient substrates to promote the growth of probiotic
microorganisms [14,15]. However, the main problems with this type of product are appear-
ance and texture caused by phase separation and the off-flavor of the plant material [16].
Besides combinations of gelling agents, improving the functional properties of proteins,
especially increasing the stabilization of soy proteins on acidified food systems, may be
a solution [17]. For the flavor of soybean products, controlling its Lipoxygenase (LOX)
activity is very important, since it is responsible for the generation of a series of off-flavor
components in soybean and soy-derived products. As mentioned earlier, modified by
HHP can improve the functional properties of SPI, thus improving the quality of soybean
products. To the best of our knowledge, this research revealed an application of modified
soy proteins in yogurt for the first time.

The main purpose of this work is to use HHP treatment to improve the functional
properties of SPI and apply it in producing soy-based yogurt. Response surface method-
ology was used to optimize the HHP process to modify the functional properties of SPI,
including solubility, water holding capacity (WHC), and emulsifying activity index (EAI).
A SPI-milk mixed yogurt was then produced, and its physicochemical and rheological
properties, as well as the volatile flavor compounds characteristics, were evaluated.

2. Materials and Methods
2.1. Materials

Soy protein isolate (SPI) was provided by Yihai Kerry Group (Shanghai, China) and
protein content (dry basis) was 85.1%, respectively. Whole milk powder (protein 24.0%,
fat 28.4%, and carbohydrate 39.0%) was purchased from Fonterra Co-operative Group
(Auckland, New Zealand). 1-Anilino-8-naphthalenesulfonate (ANS) and 5, 5-dithiobis
(2-bitrobenzoic acid) (DTNB) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. High Hydrostatic Pressure (HHP) Treatments

HHP treatments were performed using a High Pressure Iso-Lab System (FPG7100,
Stansted Fluid Power, Stansted, Essex, UK) and a hydraulic type cell with an inner capacity
of 1 L and a water jacket for temperature control. A mixture of propylene glycol and water
(30:70) was used as pressure-transmitting medium. SPI solution (SPI/water ratio was 1:4,
1:8 or 1:12) was prepared by dissolving the powder in distilled water and stirring for 2 h.
Then, 360 g SPI solution is vacuum-packed and subjected to HHP treatments at pressure
of 200 °C 400 MPa, holding time of 10–30 min. The processing temperature was set at
25 °C [18]. After HHP treatment, the SPI solutions were freeze-dried (Triad, Labconco,
Kansas city, Missouri, USA) and stored at −20 °C for further analysis.

2.3. The Response Surface Methodology (RSM) Design

RSM is useful for optimizing, designing, developing, and improving processes where
the responses are affected by several variables. Moreover, interactions between variables
can be identified and quantified by RSM and its widely used in food industry processes
for optimizations. The effects of three independent variables (pressure (MPa, X1), holding
time (min, X2) and material-liquid ratio (X3)) on three response variables (water holding
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capacity (g/g, Y1), emulsifying activity index (m2/g, Y2), and solubility (%, Y3) were
evaluated using Box–Behnken design (BBD), Table 1. The software Design Expert 8.0
(Stat-Ease Inc., Minneapolis, MN, USA) was used to analyze the collected data. The effects
of the independent variables X1, X2, and X3 on the response value R2 were evaluated using
the empiric second-order polynomial regression model as Equation (1):

R = β0 +
3

∑
i=1

βiXi +
3

∑
i=1

βiiX2
i + ∑

3

∑
i<j=1

βiiXiXj (1)

Table 1. High hydrostatic pressure treatment conditions for Box–Behnken experimental design and obtained functional
properties of soy protein isolate powder.

Order Pressure
(MPa) Time (min) SPI/Water

Ratio
Water Holding
Capacity (g/g)

Emulsifying Activity
Index (m2/g)

Solubility
(%)

1 200 20 1:4 4.63 ± 0.19 24.10 ± 0.52 12.6 ± 1.2
2 400 30 1:8 3.91 ± 0.05 18.40 ± 0.59 20.1 ± 1.7
3 400 20 1:4 3.77 ± 0.15 13.86 ± 1.24 11.8 ± 0.4
4 300 30 1:12 4.43 ± 0.29 20.33 ± 1.49 24.5 ± 0.8
5 300 20 1:8 5.04 ± 0.05 27.34 ± 0.93 33.8 ± 4.1
6 300 20 1:8 5.26 ± 0.31 27.13 ± 1.21 30.6 ± 2.3
7 200 30 1:8 4.88 ± 0.65 22.02 ± 1.24 18.7 ± 1.9
8 200 10 1:8 4.98 ± 0.15 23.49 ± 1.01 16.7 ± 3.3
9 300 10 1:12 4.37 ± 0.32 18.26 ± 0.31 26.7 ± 2.7
10 300 10 1:4 4.80 ± 0.47 22.64 ± 0.39 13.1 ± 1.6
11 300 20 1:8 5.02 ± 0.48 25.40 ± 0.12 29.6 ± 4.5
12 300 30 1:4 3.67 ± 0.11 20.75 ± 0.11 24.2 ± 2.6
13 300 20 1:8 5.11 ± 0.26 25.70 ± 0.87 31.9 ± 2.8
14 400 10 1:8 4.03 ± 0.03 18.37 ± 1.24 19.0 ± 1.2
15 300 20 1:8 5.09 ± 0.28 27.85 ± 1.39 32.3 ± 2.6
16 200 20 1:12 4.73 ± 0.75 22.65 ± 1.12 24.6 ± 3.4
17 400 20 1:12 4.76 ± 0.49 15.94 ± 0.78 19.3 ± 3.7

2.4. Determination of the Functional Properties of SPI
2.4.1. Solubility

The solubility of SPI was determined according to the method of Condés et al. with
minor modifications [19]. In brief, 200 mg of SPI was added into 20 mL of distilled water
(pH 7). The mixture was agitated at room temperature for one hour at 25 °C, and then
centrifuged at 10,000 g for 20 min. The mass of resolved proteins in the supernatant was
determined by micro-Kjeldahl method (N = 6.25). The protein solubility was calculated as
Equation (2):

Solubility (%) = P× 100/Ptotal (2)

where P was the mass of resolved protein in the supernatants and Ptotal was the total
protein content.

2.4.2. Water Holding Capacity (WHC)

The water holding capacity of SPI was determined using the method described by
Ogunwolu et al. with minor modifications [20]: 1.5 g of protein sample was mixed
with 15 mL of distilled water (pH 7) and centrifuged at 8000 g for 10 min at 25 °C. The
supernatant was then removed and the residue was weighted. WHC was calculated as
Equation (3):

WHC (g/g) = (W2 −W1)/W0 (3)

where W2 was the weight of centrifuge tube and precipitated protein after absorbing water;
W1 was the weight of centrifuge tube and protein sample; W0 was the weight of protein.
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2.4.3. Emulsifying Properties

The EAI and emulsifying stability index (ESI) of SPI were determined according to
the method of Pearce and Kinsella with some modifications, respectively [21]: 2 g/L SPI
solutions were prepared using acetate buffer (0.05 M, pH 3), distilled water, or PBS (0.05 M,
pH 8). Then, 3 mL of soybean oil and 9 mL of the SPI solutions (pH 3, 7, or 8) were mixed
and homogenized in a high-speed homogenizer (Model 420, Thermo Fisher Scientific
(China) Co., Ltd.) for 1 min at 4000 rpm to form the emulsion. A 50 µL of emulsion was
taken from the bottom of the emulsion immediately (0 min) or at 10 min after homogeniza-
tion and diluted in 5 mL of sodium dodecyl sulfate solution (0.1%, w/v). The absorbance
of the produced emulsions was measured at 500 nm using a spectrophotometer (UV-1800,
Shimadzu International Trading (Shanghai) Co., Ltd.). EAI and ESI were calculated by the
following Equations (4) and (5), respectively:

EAI
(

m2/g
)
=

2× 2.303
c× (1−ϕ)× 10000

× A0 × DF (4)

ESI (min) = A0/A10 × 10 (5)

where c was the initial concentration of protein, ϕwas the fraction of oil used to form the
emulsion, DF was the dilution factor, and A0 and A10 were the absorbance of the diluted
emulsions at 0 and 10 min, respectively.

2.5. Determination of the Physicochemical Properties
2.5.1. Surface Hydrophobicity (H0)

The surface hydrophobicity was analyzed according to the method of Yang et al.
using 1-anilino-8-naphthalene-sulfonate (ANS) as a fluorescence probe [22]. SPI dispersion
(1 mg/mL) were centrifuged at 10,000 rpm and 4 °C for 20 min. The protein concentration
in the supernatants was measured according to the Lowry method [23]. The supernatant
was serially diluted with deionized water to obtain protein concentrations ranging from
0.005 to 0.5 mg/mL. A 50 µL of ANS (8.0 mM) was then added to 4 mL of protein solutions,
respectively. The relative fluorescence intensities of the ANS-proteins conjugates were
measured at room temperature using a fluorescence spectrophotometer (Hitachi F4500,
Tokyo, Japan) at wavelengths of 365 nm (excitation) and 484 nm (emission), with a constant
excitation and emission slit of 5 nm. The protein hydrophobicity was expressed as the initial
slope of relative fluorescence intensity versus protein concentration (mg/mL) (calculated
by linear regression analysis).

2.5.2. Sulphydryl Group Content

Sulfhydryl group content of soybean proteins was measured according to the method
of Beveridge et al. using Ellman’s reagent [24]. Ellman’s reagent was prepared by dis-
solving 40 mg of DTNB in 10 mL of PBS (0.1 M pH 8.0). One milliliter of SPI dispersions
(1 mg/mL) was added into 5 mL of Tris-Gly buffer (0.086 mol Tris and 0.09 mol Gly, pH 8.0).
Subsequently, 40 µL of Ellman’s reagent was added for color reaction. The mixture was
shaken and incubated at room temperature for 10 min, and the absorbance was then mea-
sured at 412 nm with a UV spectrophotometer. Sulphydryl group content was calculated
as Equation (6):

SH content (µmol/g) =
106 ×DF
c× 13600

× A412 (6)

where c was the initial concentration of protein, DF was the dilution factor, and A412 was
the absorbance of the diluted emulsions, respectively.

2.5.3. Lipoxygenase (LOX) Activity

LOX activity of SPI was measured according to the method of Li et al., with minor
modifications [25]. Briefly, an 8.0 mg/mL of SPI dispersions was prepared and centrifuged
at 10,000× g and 4 °C for 20 min. The supernatant was then reacted with an enzyme
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substrate prepared previously. Right after mixing, the absorbance was measured at 234 nm
and 25 °C by a UV spectrophotometer. The residual activity (RA) of LOX was calculated as
Equation (7):

RA =
A
A0
× 100 (7)

where A was the LOX activity of SPI after HHP treatment, and A0 was the initial LOX
activity before treatment.

2.5.4. Circular Dichroism (CD) Spectra Analysis

A protein concentration of 0.1 mg/mL was selected for CD spectra analysis [22].
The sample was scanned at the far UV range (240–190 nm) at room temperature with a
JASCO J-815 spectropolarimeter at the scan speed of 50 nm/min, band width of 1.0 nm,
and response time of 0.25 s. The CD spectra were expressed as mean residue ellipticity
(deg·cm2/d mol).

2.6. Preparation of SPI Incorporated Yogurt

The yogurt was prepared by reconstituting milk powder (15% [w/v]) and untreated
or optimized HHP treated SPI (8% [w/v]) in distilled water under continuous stirring for
30 min and then homogenized in high-speed homogenizer at 10,000 rpm. The mixtures
were heated at 95 °C for 10 min, then cooled down to 42 °C, and finally inoculated with
0.2% (w/v) deep frozen commercial cultures (Baishengyou, Thankcome, Suzhou, China) of
Lactobacillus bulgaricus and Streptococcus thermophilus in water bath (42 °C) for 7 h. The
yogurt was then stored at 4 °C for 24 h for quality evaluation. The yogurt made from milk
powder (15% [w/v]) using the same procedure was used as a control.

2.7. Determination of Physicochemical Properties of the SPI Incorporated Yogurt

After storage, the pH of yogurt samples was determined using a pH meter (Seven-
Multi; METTLER TOLEDO Instruments, Shanghai, China). The titration acidity (TA) was
measured according to the titration method of Silva et al. [26]. WHC was determined using
same method as described in Section 2.4.2 with a different centrifuge speed of 480 g for
10 min at 20 °C.

The color of samples was determined using a colorimeter (Labscan XE; Hunter labora-
tory, Reston, VA, USA), in which CIEL * a * b * system. L *, a *, and b * were recorded, and
∆E (total color difference) was calibrated by taking the control sample as the reference [27].

The rheological properties of SPI-milk yogurts were evaluated at 25± 0.1 °C according
to the method described by Mei et al., using a Haake RheoStress 6000 rheometer (Thermo
Scientific, USA) [28]. A cylinder and plate geometry (12.50 mm diameter, 50.00 mm length,
and 2.00 mm gap) was employed in all measurements. Flow curves were performed
upward and downward with the shear rates ranging from 0.1 to 100 s−1. The Ostwald
deWaele model was used to fit the experiment data, and was represented by the Equation (8):

ηα =
τ

γ
= kγn−1 (8)

where ηa was the apparent viscosity (Pa·s), τ was the shear stress (Pa), γ was the shear rate
(s−1), k was the consistency index (Pa·sn), and n was the flow behavior index.

2.8. Flavor Analysis of the SPI Incorporated Yogurt

Flavor is one of the most important properties of yogurt products, and volatile com-
ponents leading to off-flavors can cause the product to be unsatisfactory for the tastes of
consumers [29]. The yogurt sample was added into a glass vial (10 mL). Volatile compounds
were extracted using Head Space Solid Phase Micro Extraction (HS-SPME) technique, and
separated using a DB-Wax column (30 m × 250 µm × 0.25 µm; J and W Scientific, Folsom,
CA, USA). Desorption of the extracted volatiles was carried out using a GC-MS system
(Agilent 7890B-5977B, Agilent Technologies, Santa Clara, CA, USA) by the splitless mode.
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Helium was used as carrier gas at a flow rate of 1.0 mL/min, and the MS was operated
in scan mode. The oven temperature was held at 40 °C for 4 min (desorption period),
increased to 250 °C with a rate of 5 °C·min−1, and then held at 250 °C for 5 min. The total
run time was 50 min. The NIST 2011 mass spectral library (Gaithersburg, MD, USA) was
used to identify the volatile compounds.

2.9. Statistical Analysis

Data were analyzed using SPSS (version 23.0 for Mac, SPSS Inc., Chicago, IL, USA)
following an analysis of variance (ANOVA) one-way linear model and reported as mean
values and standard deviations. Mean comparisons were performed using the Duncan test,
and the significance level was established for p < 0.05.

3. Results and Discussion
3.1. Optimization of HHP Parameters by RSM

Table 1 reports the results obtained from 17 experimental runs following the BBD
design. R2 values of all models were higher than 0.9, indicating that more than 90% of the
changes could be expressed by these models. The coefficients of the models are shown in
Supplementary Material Table S1 calculated using ANOVA analysis. The experimental
data were processed using quadratic regression polynomial analysis and fitting, and the
fitted quadratic models for WHC (Y1), EAI (Y2), and solubility (Y3) in coded variables are
given in (Equations (9)–(11)), respectively. The p-values of all models were less than 0.01
(Supplementary Material Table S1). Furthermore, the p-values of lack of fit were higher
than 0.05 in all models, confirming the validity of models. These results suggested that
three models had good fitting accuracy and could be used for the optimization design.
Moreover, three-dimensional response surface plots and curves (Figure 1) were established
to further illustrate the predicted optimal inclusion conditions for HHP treatments.

Y1 = 5.10− 0.34X1 − 0.16X2 + 0.17X3 + 0.22X1X3 + 0.30X2X3 − 0.25X2
1 − 0.40X2

2 − 0.38X2
3 (9)

Y2 = 26.68− 3.21X1 − 0.16X2 − 0.52X3 − 3.74X2
1 − 2.38X2

2 − 3.81X2
3 (10)

Y3 = 31.64− 0.30X1 + 1.50X2 + 4.18X3 − 3.32X2X3 − 9.03X2
1 − 3.98X2

2 − 5.53X2
3 (11)

Figure 1A demonstrated that water holding capacity increased with the pressure
elevated from 200 to 300 MPa, and then decreased. The initial pressure increasing could
cause the partial unfolding of the protein, which allowed interactions between the subunits
to form a flexible network where water was entrapped, thus increasing WHC [8]. When
the pressure or the holding time continued increasing, proteins aggregation occurred and
declined the WHC (Figure 1A). These results were coincident with the study by Li et al. [11].
They treated 1% of SPI under HP and found that the highest WHC was achieved when
pressure was below 300 MPa for 15 min, whereas higher pressure or longer holding time
lead to decreasing it. The same trends of changing WHC were observed in other studies.
For example, Molina et al. found that WHC of 20% (w/v) of SPI reached the highest point
when treated at 500 MPa, but decreased when pressure further increased [30].
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The effects of pressure (X1), time (X2), and SPI/water ratio (X3) on emulsifying activity
index (EAI) were illustrated through response surfaces and contour plots in Figure 1B.
EAI initially increased with higher level of pressure (X1) and time (X2) due to the partial
or total denaturation of SPI enhancing the surface activity. Low ratio of SPI/water (X3)
during the HHP treatment also reduced EAI, probably owing to the interaction between
the subunits of protein. Molina et al. suggested that 10% (w/v) 11S globulins of SPI showed
the optimum value of EAI after treatment at 200 MPa for 15 min, while 7S globulins and
SPI at the same concentration showed the highest EAI after treating at 400 MPa for 15
min [31].

Figure 1C exhibited the effects of pressure (X1), time (X2), and SPI/water ratio (X3)
on SPI solubility. At the beginning, when the pressure and holding time increased, the
solubility increased to around 30% due to the change of SPI tertiary structure enhancing
the protein–solvent interactions. As the pressure and holding time continued to rise, the
solubility went down in all the trials. Figure 1C suggests that low ratio of SPI/water
significantly decreased the SPI solubility, since the unfolding of the globulins and the
exposing of hydrophobic groups and SH groups might lead to aggregation of SPI to form
the insoluble residues [32]. Wang et al. reported that HPP processing of SPI at 200 MPa
and pH 6.8 for 15 min enhanced its solubility, whereas the solubility declined at 400 MPa
and then rose again after 600 MPa treatment [9].

The optimization of the HHP treatment was chosen based on the prerequisite of ful-
filling the weight of four response values as 1:1:1:1 by applying the optimum formulation
point of numerical method generated by Design Expert software. The optimum condi-
tions for the HHP treatments were calculated to be at pressure (X1) = 281.09 MPa, time
(X2) = 18.92 min, and SPI/water ratio (X3) = 1:8.33. Under these conditions, the maximum
WHC, EAI, and solubility were 5.19 g/g, 27.06 m2/g, and 31.6%, respectively. In order
to validate the reasonability of the model equations, a treatment of SPI was carried out
in triplicate under the optimal conditions. The WHC, EAI, solubility, and hardness of gel
were 5.35 ± 0.04 g/g, 28.11 ± 1.67 m2/g, and 33.7 ± 0.22%, respectively, which was in
good agreement with the predicted data.

3.2. Effect of HHP on Properties of SPI
3.2.1. Effect of HHP on Physicochemical Properties of SPI

Several physicochemical properties, including surface hydrophobicity, sulphydryl
group content, lipoxygenase (LOX) residual activity, and circular dichroism (CD) spectra
of the untreated and HPP treated (281 MPa) SPI were shown in Figure 2 The surface
hydrophobicity rose from 683.47 to 812.64 after HHP treatment (Figure 2A). Li et al. found
similar trends of surface hydrophobicity of SPI treated by low pressure (e.g., 200 MPa) [33],
and suggested that the increase was caused by the unfolding of the protein with the
exposure of some hydrophobic groups into the medium under pressure. Xi and He pointed
out that an upturn of free SH groups usually indicates protein unfolding and back-bone
fragmentation, whereas a reduction indicated a cross-linking effect on protein. Pressure
caused a slight increase of the content of sulphydryl groups (Figure 2D), suggesting that
high pressure might trigger the interchange reaction between sulphydryl groups and
disulfide bonds, thus forming small particles and fragments of protein. LOX is an enzyme
responsible for the generation of a series of off-flavor components in soybean and soy-
derived products [34], and its residual activity was reduced to 67.55 ± 5.73% after 281 MPa
treatment (Figure 2C).
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Figure 2. Physicochemical properties of soy protein isolate (SPI) (0.1 MPa) and high pressure treated SPI (HHP-SPI) (281
MPa) soybean proteins: surface hydrophobicity (A), sulphydryl group content (B), LOX residual activity (C), and CD
spectra (D). Lowercase letters: statistical significance between groups.

Circular dichroism (CD) spectra of untreated and HHP treated SPI were shown in
Figure 2D. As described by Puppo et al. [8], SPI presented a typical spectrum of α+β
proteins, which showed a positive band below 195 nm with a zero crossing around 195 nm,
and a negative band near 210 nm. After HHP treatment, a significant rise at around 225 nm
can be observed, which could be due to the change of secondary structure of SPI from
α-helix to β-sheet and random coil. We have calculated that after 200 MPa treatment,
the α-helix content decreased to 23%, whereas the content of β-sheets and random coils
increased to 16% and 7%, respectively. These results were consistent with the reports by
Li et al., using β-lactoglobulin, which found an increment of random coil content and a
reduction of α-helix content after 400 or 600 MPa for 30 min treatment [35].

3.2.2. Effect of HHP on Functional Properties of SPI

The functional properties of the untreated and HHP treatment (281 MPa) SPI, includ-
ing water holding capacity, solubility, and emulsifying properties in different pH were
shown in Figure 3. After HHP treatment, the WHC and solubility of SPI were significantly
improved. The partial unfolding of the protein under high pressure not only allowed inter-
actions between the subunits to form a flexible network in which water was entrapped, but
enhanced the protein–solvent interactions, thereby enhancing the WHC and solubility [36].
Manassero et al. reported that combined thermal-high hydrostatic pressure treatment
improved the solubility and physical stability of soy protein [18].
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The change of emulsifying activity index (EAI) and emulsifying stability index (ESI)
of SPI produced by HHP treatment showed significant difference with different pH condi-
tions (Figure 3C,D). EAI and ESI described the capability of proteins to contribute to the
formation of and stabilization of dispersion systems. Surface hydrophobicity, solubility,
and the resulting capability to decrease the interfacial tension were proven to be crucial for
the formation of the emulsion, while molecular flexibility and interaction on the interface
were decisive for emulsion stability [32]. EAI was higher at pH 8 because of the increase
of solubility, as the solubilized protein could rapidly adsorb at the oil/water interface,
facilitate the formation of densely packed films around the oil droplet, and help forming
emulsion. Wang et al. concluded that HHP treatment remarkably increased the EAI values
of SPI at 200 MPa, while a further increase in pressure (400 and 600 MPa) did not result
in a significant change in EAI [9]. HHP treatment increased EAI at pH 3 because of the
improvement of solubility, indicating a better emulsifying capacity of HHP–SPI in low
pH system. Puppo et al. reported high-pressure processing (200 or 400 MPa for 10 min)
seemed to improve emulsifying properties of SPI that have declined due to acidification at
pH 3 [37]. Meanwhile, ESI increased at various pHs after HHP treatment, as the increasing
of ζ-potential by HHP treatment may indicate an effective electrostatic repulsion between
the droplets.

3.3. Yogurt Characteristics

Physicochemical properties, including final pH, titration acidity (TTA), WHC, and
color, of three kinds of yogurt samples were reported in Table 2. Accordingly, the addition
of SPI increased pH and TA, which was consistent with the result of Mohammadi et al. [38],
but there was no significant difference between products made with SPI and HHP–SPI. The
water in the yogurt after long-term storage might lose due to the intrinsic instability of gels
or passive diffusion, which is described as syneresis. WHC is a critical parameter in evalua-
tion yogurt, since it indicates the ability to keep serum in the gel structure [39]. The addition
of SPI significantly increased the WHC of yogurt from 56.37 ± 1.71 to 83.42 ± 0.96 (SPI)
and 90.22 ± 2.83 (HHP-SPI). Higher WHC of the HHP-SPI yogurt indicated the improved
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stability of SPI under acidic conditions and a more branched yogurt microstructure [28].
This result was consistent with the rise of WHC of SPI after HHP treatment as mentioned
in Figure 3A.

Table 2. The physicochemical properties of yogurt without soy protein isolate (SPI) (control), or with
SPI and high pressure treated SPI (HHP-SPI) (8%).

Control SPI Yogurt HHP-SPI Yogurt

Final pH 4.15 ± 0.02 a 4.56 ± 0.05 b 4.53 ± 0.03 b

titration acidity (◦T) 67.2 ± 0.4 b 63.6 ± 0.6 a 64.1 ± 0.3 a

WHC (%) 56.37 ± 1.71 a 83.42 ± 0.96 b 90.22 ± 2.83 c

color

L* 1 80.70 ± 0.02 c 74.02 ± 0.01 a 74.64 ± 0 b

A* 2 −1.89 ± 0.01 a 0.33 ± 0 c −0.18 ± 0.01 b

B* 3 10.30 ± 0.02 a 15.21 ± 0.01 c 13.66 ± 0.01 b

∆E - 8.58 ± 0.01 b 7.13 ± 0.01 a

a–c Different superscript letters within the same column indicated significant difference (p < 0.05). 1 lightness
value; 2 Red-green axis value; 3 Yellow-blue axis value.

A darker and yellower color of the yogurt was clearly observed by the naked eye in
SPI and HHP-SPI yogurt samples. Correspondingly, the L * (lightness) values were lower
in those two samples compared with control. However, HHP-SPI yogurt had higher L *
value than SPI yogurt, which might be explained by the particle dispersion after HHP that
result in light reflection on the yogurt gel surface [40]. The b * (yellow–blue axis) values
were positive in all samples and samples with SPI had highest b* values. The ∆E* values of
the SPI addition samples were >3, indicating that the color variation could be identified by
the naked eye.

Figure 4 showed flow curves of yogurts with shear stress versus shear rate and Table 3
showed the results of the Ostwald deWaele model fitting. All samples showed hysteresis
loops and shear thinning (thixotropic) behavior, which indicated the required energy for
splitting gel structure in soy yogurt. Similar observations for soy yogurt were reported
previously [41,42]. HHP-SPI yogurt showed the highest shear stress, which might suggest
a stronger gel structure with higher resistance to shear forces, since HHP-SPI showed
higher H0 and SH content that formed stronger gels. The curves were fitted to the Ostwald
deWaele model and the values of the flow behavior index (n) and the consistency index (k)
were obtained. The flow behavior index (n) was a measure of deviation of shear thinning
fluids from Newtonian flow; meanwhile, the consistency index (k) was believed to be
related to product acceptability for yogurt [43]. The experimental data fitted well to the
model with R2 values generally above 0.98. Low n values (n < 1) were recorded in all
samples, and the addition of SPI decreased the n value, indicating an increase of the
pseudoplastic behavior of yogurt. It was regarded that higher pseudoplasticity could lead
to better consumer acceptance of the product [44]. Furthermore, the addition of SPI and
HPP-SPI both increased the k value of yogurt significantly, indicating that the products
were more viscous.
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Table 3. The model fitting results of yogurt without SPI (control) or with SPI and HHP-SPI.

Samples Shear Rate Rise Shear Rate Drop
n k(Pa*sn) R2 n k(Pa*sn) R2

control 0.39 ± 0.01 c 32.35 ± 0.13 a 0.98 2.35 ± 0.01 c 15.83 ± 0.02 c 0.98
SPI 0.23 ± 0.01 a 41.87 ± 3.08 b 0.99 0.80 ± 0.01 b 3.84 ± 1.41a 0.99

HHP-SPI 0.31 ± 0.01 b 58.85 ± 6.11 c 0.98 0.77 ± 0.01 a 9.53 ± 4.88 h 0.98
a–c Different superscript letters within the same column indicated significant difference (p < 0.05).

The volatile compounds of three yogurt samples were shown in Figure 5. Typical
volatile compounds of yogurt aroma and flavor included volatile acids, such as acetic,
propionic, and butyric, and carbonyl compounds, such as acetaldehyde, acetone, acetoin,
and diacetyl [29]. On the other hand, several researchers have identified pentanal, hexanal,
heptenal, ethanol, octen-3-ol, and 2-pentylfuran as the main volatile compounds of soymilk
flavor, and the main off-flavor compound produced by soymilk oxidation was C6 alkyl or
alkyl aldehydes [45–47]. As shown in Figure 5A, the addition of SPI significantly reduced
the formation of acetaldehyde, acid, and ketone compounds compared to control, indicating
the contraction of yogurt aroma and flavor. However, more hexanoic acid (contributing
to soy flavor also) was identified. Five volatile compounds relating to the beany flavor,
namely 2-n-pentylfuran, hexanal, pentanal, 1-hexanol, and 1-octen-3-ol, were detected
only in two SPI yogurt samples, and fewer of those compounds in HHP-SPI yogurt were
detected (Figure 5B). LOX catalyzes the oxidation of PUFAs, leading to the production
of aldehydes, ketones, and other volatile compounds that lead to off-flavor [48]. HHP
treatment weakened the LOX activity of SPI; thus, the HHP-SPI yogurt contained fewer
volatile compounds that provided off-flavor. Zhou et al. found that the yields of volatile
compounds responsible for the beany flavor in LOX-lack soy yogurt were greatly decreased,
and LOX-lack soy yogurt had the best sensory acceptability [34].
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4. Conclusions

This study demonstrated that the functional properties of SPI could be significantly
improved by HHP treatments. The identified optimal HHP conditions were 281 MPa
pressure, 19 min holding time, and 1:8.3 of SPI/water ratio based on the response surface
methodology. The HHP treated SPI exhibited higher surface hydrophobicity and sul-
phydryl groups content, and lower LOX activity. Water holding capacity and emulsifying
activity index at pH 3 of SPI were significantly improved by HHP treatment. The yogurt
with HHP-SPI displayed better water holding capacity and lighter color comparing with
SPI incorporated one. In addition, the content of five volatile components relating to the
beany flavor decreased in HHP-SPI yogurt, demonstrating the superior flavor. HPP is a
promising technology to improve the functionality of SPI, which could be a superior plant
protein for diary product.
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