<Supplementary Materials>

A Multi-Elements Isotope Approach to Assess the Geographic Provenance of Manila Clams (*Ruditapes philippinarum*) via Recombining Appropriate Elements

Eun-Ji Won, Seung Hee Kim, Young–Shin Go, K. Suresh Kumar, Min-Seob Kim, Suk-Hee Yoon, Germain Bayon, Jung-Hyun Kim, Kyung-Hoon Shin

Supplementary Figures

Figure S1. Scatter plots for δ ¹³ C and δ ¹⁵ N values for clam samples collected from China, DPR Korea and Korea1
Figure S2. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ^{18} O, and δ D. Bold italics indicate the specimens were not well identified by geographic origin
Figure S3. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ D, and δ^{34} S. Bold italics indicate the specimens were not well identified by geographic origin
Figure S4. Grouping of Manila clams from three countries based on LDA analysis of δ ¹³ C, δ ¹⁵ N, δ ¹⁸ O, δD, and δ ³⁴ S. Bold italics indicate the specimens were not well identified by geographic origin
Figure S5. Grouping of Manila clams from three countries based on LDA analysis of δ ¹³ C, δ ¹⁵ N, δD, δ ³⁴ S, and ⁸⁷ Sr/ ⁸⁶ Sr. Bold italics indicate the specimens were not well identified by geographic origin 5
Figure S6. Grouping of Manila clams from three countries based on LDA analysis of δ ¹³ C, δ ¹⁵ N, δD, δ ¹⁸ O, δ ³⁴ S, and ⁸⁷ Sr/ ⁸⁶ Sr. Bold italics indicate the specimens were not well identified by geographic origin6
Figure S7. Grouping of Manila clams from three countries based on LDA analysis of δ ¹³ C, δ ¹⁵ N, δD, δ ¹⁸ O, δ ³⁴ S, and δNd. Bold italics indicate the specimens were not well identified by geographic origin
Figure S8. Grouping of Manila clams from three countries based on LDA analysis of δ ¹³ C, δ ¹⁵ N, δD, δ ¹⁸ O, δ ³⁴ S, δNd, and ⁸⁷ Sr/ ⁸⁶ Sr. Bold italics indicate the specimens were not well identified by geographic origin

*Corresponding author. E-mail: shinkh@hanyang.ac.kr; Tel.: +82-31-400-5536 (K.-H. Shin).

Supplementary Figures

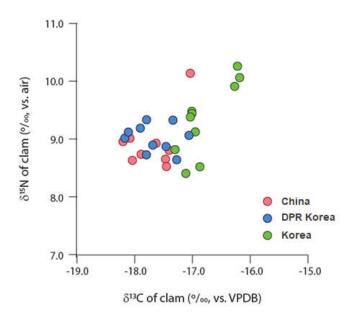


Figure S1. Scatter plots for δ^{13} C and δ^{15} N values for clam samples collected from China, DRP Korea and Korea

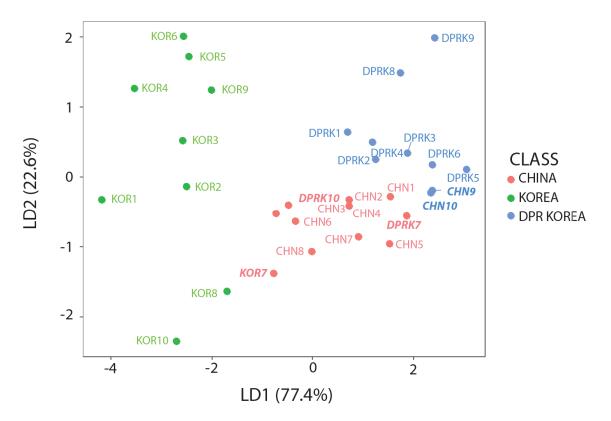


Figure S2. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ^{18} O, and δ D. Bold italics indicate the specimens were not well identified by geographic origin

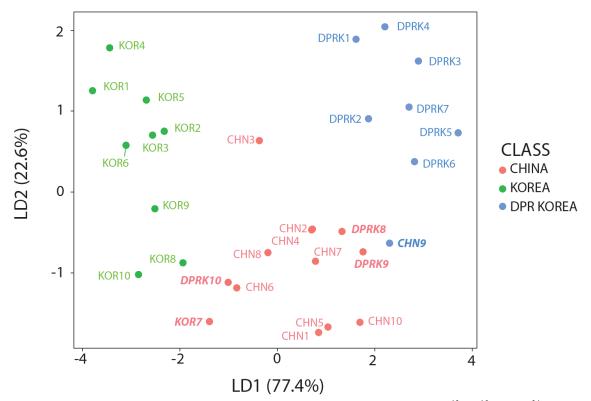


Figure S3. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ D, δ^{34} S. Bold italics indicate the specimens were not well identified by geographic origin

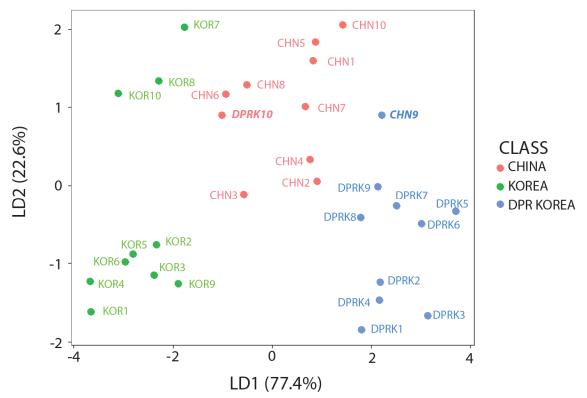


Figure S4. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ^{18} O, δ D, and δ^{34} S. Bold italics indicate the specimens were not well identified by geographic origin

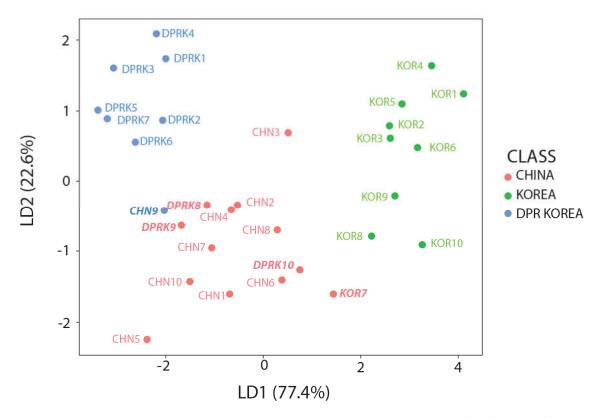


Figure S5. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ D, δ^{34} S, and 87 Sr/ 86 Sr. Bold italics indicate the specimens were not well identified by geographic origin

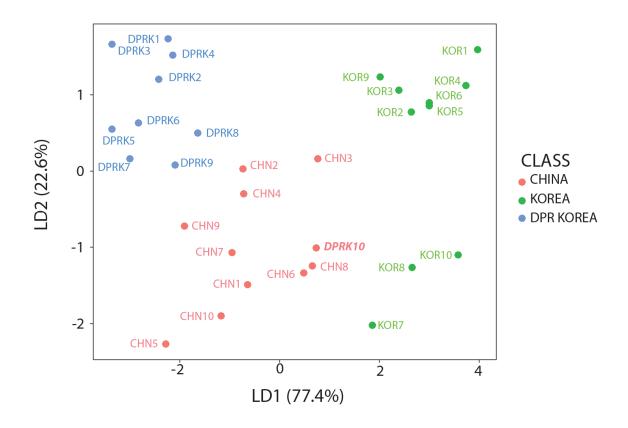


Figure S6. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ D, δ^{18} O, δ^{34} S, and 87 Sr/ 86 Sr. Bold italics indicate the specimens were not well identified by geographic origin

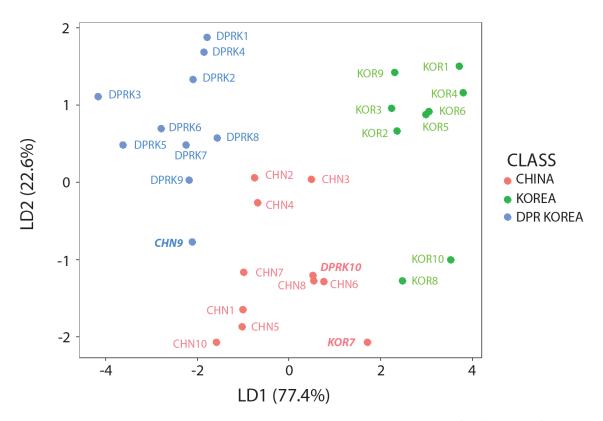


Figure S7. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ D, δ^{18} O, δ^{34} S, and ϵ Nd. Bold italics indicate the specimens were not well identified by geographic origin

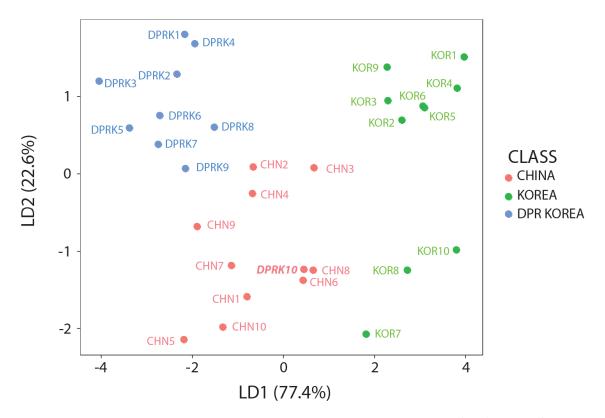


Figure S8. Grouping of Manila clams from three countries based on LDA analysis of δ^{13} C, δ^{15} N, δ D, δ^{18} O, δ^{34} S, ϵ Nd, and 87 Sr/ 86 Sr. Bold italics indicate the specimens were not well identified by geographic origin