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Abstract: Nowadays, food adulteration and authentication are topics of utmost importance for 

consumers, food producers, business operators and regulatory agencies. Therefore, there is an 

increasing search for rapid, robust and accurate analytical techniques to determine the authenticity 

and to detect adulteration and misrepresentation. Mid-infrared spectroscopy (MIR), often 

associated with chemometric techniques, offers a fast and accurate method to detect and predict 

food adulteration based on the fingerprint characteristics of the food matrix. In the first part of this 

review the basic concepts of infrared spectroscopy, sampling techniques, as well as an overview of 

chemometric tools are summarized. In the second part, recent applications of MIR spectroscopy to 

the analysis of foods such as coffee, dairy products, honey, olive oil and wine are discussed, covering 

a timespan from 2010 to mid-2020. The literature gathered in this article clearly reveals that the MIR 

spectroscopy associated with attenuated total reflection acquisition mode and different 

chemometric tools have been broadly applied to address quality, authenticity and adulteration 

issues. This technique has the advantages of being simple, fast and easy to use, non-destructive, 

environmentally friendly and, in the future, it can be applied in routine analyses and official food 

control. 

Keywords: mid-infrared spectroscopy (MIR); FTIR; ATR; food adulteration; food authenticity; 

chemometrics 

 

1. Introduction 

Food fraud and determination of food authenticity have been subjects of utmost 

importance for food industry, causing major concerns among food manufacturers, 

regulatory agencies and consumers, particularly after the melamine scandal in China in 

2007 and the horse meat scandal in Europe in 2013 [1]. One of the most common type of 

food fraud is the intentional and economically motivated adulteration of foods, which can 

include the replacement of a high-value nutrient with a low-value one, the dilution of a 

high value liquid ingredient with a cheaper liquid, the addition of foreign materials in 

order to enhance food quality or organoleptic attributes, or hiding the low quality of food 

ingredients or products [1]. The adulteration of food products not only compromises its 

authenticity and reduces product quality, but also may seriously jeopardize consumer’s 

health. Although all foods can be susceptible of potential adulteration, there are certain 

products that are considered more prone to fraudulent acts, particularly if they are 

produced and supplied in complex market chains, if they are considered as luxurious food 

commodities, or on the other hand, if they have low margins of profit. These products 

include spices, honey, olive oil, wine, milk and dairy products, coffee and tea, among 

others [2,3]. 
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Over the years, several analytical methods have been employed to detect food 

adulteration and determine its authenticity. These techniques include target analyses that 

identify specific compounds and assess if they are within the limit stated on the label or 

established by law, and non-target analyses that afford a fingerprint of the whole sample, 

which can then be used to evaluate its authenticity or detect a possible adulteration [1,4,5]. 

The most commonly used techniques are physicochemical analytical methodologies, gas 

and liquid chromatography frequently hyphenated with mass spectrometry, 

immunochemical and DNA based techniques, isotope ratio, elemental analysis and 

spectroscopic techniques that include UV-Visible, infrared, Raman and nuclear magnetic 

spectroscopy (NMR) [4,5]. All of these techniques have their own pros and cons. For 

example, classical physicochemical methods are time consuming, some of them involve 

many analytical steps and require large volumes of organic solvents that generate toxic 

wastes. Although very selective and specific, the modern chromatographic 

methodologies, NMR and mass spectrometry require the acquisition and maintenance of 

very expensive instrumentation and highly qualified laboratory technicians, and 

frequently also involve the need of very complex sample pre-treatment [5]. 

Spectroscopic techniques, in particular near-infrared (NIR) and mid-infrared (MIR) 

spectroscopy, have been increasingly and broadly used in food analysis [1]. Moreover, in 

the last two decades, hyperspectral imaging has also emerge as a promising technology 

[6,7]. Some advantages of these non-destructive techniques include the high speed of 

analysis, minimal or no sample preparation and no waste generation. Hyperspectral 

imaging has also the advantage of simultaneously integrating both spectral and imaging 

data to obtain chemical, spatial and multi-constituent information about a sample. With 

this technique, single or multiple images can be obtain at selected wavelengths in the UV-

VIS, NIR or MIR range, giving the ability to reveal particular features directly correlated 

with quality [8]. However, both spectroscopic and imaging techniques produce a large 

amount of spectral data that always implies the association of chemometric tools to extract 

the most interesting information [2,9]. 

This review aims at giving an overview of the recent applications of MIR 

spectroscopy for the determination of adulteration and authenticity of five foodstuffs that 

are considered more prone to fraudulent acts, namely, coffee, dairy products, honey, olive 

oil and wine. A brief introduction to the basic concepts of IR spectroscopy, IR sampling 

techniques and chemometric tools is provided. Finally, several approaches concerning the 

future implementation of MIR spectroscopy in food industry is also discussed. 

The literature search on planned topics was carried out from February to March 2020 

using the Web of Science, ScienceDirect and PubMed databases. The suitable combination 

of keywords and truncation were selected and adapted for each database. Only reviews 

and research articles published in English in a ten-year timespan were considered. Some 

official websites were also accessed. All references were managed using the Mendeley 

desktop software and duplicates were excluded. The authors individually screened the 

articles for their relevance on the studied topics. 

2. Basic Concepts of Infrared Spectroscopy 

Infrared (IR) spectroscopy is based on the absorption or reflection of the 

electromagnetic radiation that ranges on wavelengths (λ) between 0.78 and 1000 µm. 

Typical units of frequency used in IR spectra are wavenumbers (cm−1) that are related with 

wavelength (cm) in a reciprocal way. The infrared region of the electromagnetic spectrum 

is generally split in three smaller zones, namely, near-IR (12800–4000 cm−1; 0.78–2.5 µm), 

mid-IR (4000–200 cm−1; 2.5–50 µm) and far-IR (200–10 cm−1; 50–1000 µm) [10]. In a 

polyatomic molecule, the absorption of mid IR radiation causes two fundamental 

vibrational modes, the stretching and bending vibrations (Figure 1) [11]. 
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Figure 1. Major stretching and bending vibrational modes. 

MIR spectra present several absorbance bands due to fundamental transitions. 

Spectra can be analyzed looking at two major regions, the functional group (4000–1300 

cm−1) and the fingerprint (1300–600 cm−1) regions, therefore providing a molecular 

fingerprint. The functional group region can be further subdivided in specific zones 

representative of functional groups and includes the X–H stretching (4000–2500 cm−1; X=C, 

N, O or S), the triple-bond (2700–1850 cm−1), and the double-bond (2000–1500 cm−1; C=C, 

C=N, C=O) stretching regions [12]. The fingerprint region is characterized by a complex 

group of bending vibrations and shows many bands, frequently overlapped, that are 

specific to the molecular structure of the sample [11]. In spite of its complexity, the 

fingerprint region has been used for detection of adulteration and authentication of 

various food products [9]. 

The absorptions observed in the NIR region arise from overtones or combination of 

the fundamental bands in the MIR region, particularly those resulting from the molecular 

vibrations of hydrogen bonds such as –C–H, –S–H, –N–H, and –O–H functional groups. 

These bands are less intense, and frequently overlapped resulting in poorly resolved and 

very complex spectra [13,14]. A major disadvantage of NIR spectroscopy has been the 

difficulty of extracting the information, and the interpretation of the large amounts of 

spectral data. These limitations have been overcome by the increasing development of 

chemometric tools and nowadays, NIR spectroscopy is considered as an important 

analytical technique in food, phytoanalysis, biomedical applications and polymers 

studies, among others [9,14]. 

The original MIR spectrophotometers were dispersive equipment that used 

diffraction gratings as monochromators. These instruments were replaced by Fourier 

Transform infrared (FTIR) spectrophotometers that use the Michelson-type 

interferometer instead of the diffraction grating, coupled to microprocessors that applies 

the FT mathematical operation for obtaining the spectrum. When comparing with the old 

dispersive spectrophotometers, FTIR has several advantages including better sensitivity, 

resolution and speed of analyses [9]. 

FT-MIR and sampling instrumentation have been evolving over the years. There are 

three commonly used sample presentation techniques for vibrational spectroscopy: 

transmission, attenuated total reflection (ATR), and diffuse reflectance (DRIFT) (Figure 2) 

[15,16]. Transmission spectroscopy is the oldest and most basic technique and, in the case 

of liquid samples, these are placed in fixed-length transmission cells. For solids, Nujol 

Mull (Nujol—a liquid paraffin oil) or alkali halide (KBr) pellets, were the standard options 

[2]. 
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Figure 2. Sample presentation techniques for vibrational spectroscopy. 

Reflection techniques are based on the reflection of the IR beam after contacting with 

the sample and receive distinct designation depending on reflection process such as 

attenuated total reflectance (ATR) also called multiple internal reflectance (MIR) and 

diffuse reflectance by infrared Fourier transform spectroscopy (DRIFT). These reflectance 

techniques operate with different optical properties and, as advantage, they do not require 

the traditional sample preparation used for transmission FTIR spectroscopy. J. Fahrenfort 

was the first to demonstrate the usefulness of the ATR method [17]. In this reflection 

technique an IR beam is directed onto an optically dense crystal (ZeSe, ZnS, Ge or 

diamond) with a high refractive index at a certain angle [2]. The internal reflectance 

creates an evanescent wave that extends beyond the surface of the crystal into the sample 

held in contact with the crystal. In regions of the IR spectrum where the sample absorbs 

energy, the evanescent wave will be attenuated and the detector records the attenuated 

IR beam as an interferogram signal, which can then be used to generate an IR spectrum 

[18]. The use of total reflectance attenuated by multi-reflectance, in which the beam is 

reflected internally many times, was developed by Harrick, who design ATR cells for 

commercial use [2,17]. The main advantage of ATR sampling comes from the very thin 

sampling path length and depth of penetration of the IR beam into the sample, in general 

of 0.1–5 micrometers, which makes sampling in aqueous solutions possible and more 

importantly, practically requires no sample preparation [17,19]. ATR is today the most 

widely used FTIR sampling tool, namely in food analysis because it allows fast and simple 

sampling. 

Diffuse Reflectance Infrared Fourier Transform spectroscopy (DRIFT) can provide a 

convenient means of examining finely powdered or highly scattering solid samples but it 

is most commonly used for near infrared (NIR) spectroscopy applications [20]. It is used 

for measurement of fine particles and powders, as well as rough surfaces and requires 

simpler sample preparation compared with transmission FTIR. In DRIFT spectroscopy, 

the IR beam penetrates the analytical sample to a certain depth, and is then re-emitted 

from the sample and focused by a mirror onto the detector. The resulting DRIFT spectrum 

is similar to that obtained by transmission FTIR technique, although the former is more 

dependent on physical characteristics of samples like absorptivity and reflectance. The 

DRIFT preparation technique still requires samples to be mixed with KBr, but avoids the 

need for pelleting with a hydraulic press. This technique can result in increased resolution 

of the spectra and reduced interference from water bands compared to transmission 

techniques. The DRIFT applications in food analysis are limited, but can be found in some 

reports on quality of coffee [15,21–23], of rice [24], and more recently, sugars in mangoes 

[16]. 
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3. Chemometric Tools Used in Data Analysis 

Food is a very complex matrix that contains a high number of components giving rise 

to a multitude of spectral information and large data sets. Consequently, fast statistic and 

mathematical analyses are needed to fully understand all the complexity of data, as well 

as the usefulness and the rigorous control of the integrity of the information obtained [25]. 

The classic univariate statistic methods, such as analysis of variance (ANOVA), are 

focused on the reductionist approach (e.g., one variable at times), and food compounds 

or properties are analyzed independently of the entire food matrix. Conversely, modern 

chemometric methods are multivariate analysis approaches that allow the treatment of 

multidimensional and complex data sets, sometimes with only subtle differences among 

all the data sets, revealing properties that are important through their various 

interferences and interactions in the whole food matrix [25,26]. Multivariate methods can 

be applied either to qualitative and quantitative analysis, letting relevant information to 

be extracted from complex data, allowing the creation of empirical models that could be 

used to perform exploratory studies and describing important characteristic of samples or 

predictive analyses on new samples [27]. 

Chemometric tools can be divided in two types of pattern recognition methods: 

unsupervised and supervised [26]. In the unsupervised methods, the classification of the 

dataset is made regarding the differences and similarities among the samples, providing 

information about the relationship between samples, between variables and between 

samples and variables, without using any previous information [28]. The most common 

tools for unsupervised pattern recognition are Cluster Analysis (CA), Hierarchical Cluster 

Analysis (HCA) and Principal Component Analysis (PCA). These tools reveal clusters 

without taking in consideration the number and specific type of classes. The results are 

usually presented in the form of a graphical representation showing the grouping of 

samples (clusters). PCA is a commonly used tool that could reduce a complex spectra data 

set to a small number of no correlated variables, while retaining trends and patterns. For 

each variable a score for each sample is calculated. Graphical display of these scores 

reveals patterns, gathering similar samples close to each other [19,29]. Moreover, it is also 

possible to disclose the existence of potential outliers, samples that are apart from the main 

group and should be rejected [28]. The supervised models, also known as classification 

models, identify an unknown pattern as a member of a predefined class. These models 

are intended to find mathematical patterns that are able to recognize samples as members 

of specific and already known classes, assigning samples to them. New unknown samples 

could be individually assigned into these known classes depending on the experimental 

results [26,27]. Examples of these methods include, Linear Discriminant Analysis (LDA), 

Fisher Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), 

Regularized Discriminant Analysis (RDA), k-Nearest Neighbor (KNN), Support Vector 

Machine (SVM) and Partial Least Squares Discriminant Analysis (PLS-DA). Several 

prognostic multivariate models have also been used, such as, Partial Least Squares 

Regression (PLSR) and Artificial Neural Networks (ANN) [26]. Data fusion (DF) is a 

strategy that is being increasingly developed. It consists of combining and analyzing 

complex data obtained from several instrumental methods, in order to synergistically 

gather complementary information and more reliable results. Initially, data fusion 

comprised the use of two complementary analytical methods, such as MIR and UV-Visible 

spectroscopy, or the application of gas or liquid sensor devices with NIR or MIR 

spectroscopy. More recently, the combination of data from three, four and even five 

techniques has been reported [28,30]. There are three levels of data fusion: low-, mid- and 

high-level data fusion [28,31]. In the low-level approach, raw data from two or more 

techniques are simply concatenated into a matrix, with or without the pre-processing of 

data. The matrix is then used to assess a single model that gives the final classification 

[30]. In mid-level data fusion some relevant raw variables are firstly selected from each 

data source, and fused thereafter. The resulting cluster is then used for multivariate 

classification and regression. In the high-level data fusion, regression or classification 
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models are previously calculated for each data set and the obtaining results are then fused 

[28,30]. Ultimately, DF allows the complementary information to be evaluated, 

strengthening the conclusions obtained or hidden information to be unveil [30]. An 

exhaustive description of chemometric tools is beyond the scope of this review and the 

interested reader should consult other publications [26,28,29,32,33]. 

4. Application of FT-MIR to Food Analysis 

4.1. Coffee 

Coffee is a commodity of major economic importance, being the second most 

consumed and one of the most appreciated beverages in the world. Although more than 

eighty Coffea species are known, only two, Coffea arabica and Coffea canephora (var. Robusta) 

have economic importance [34]. Accounting for the livelihood of around 125 million 

people around the world, it is currently produced in about 80 countries of four continents, 

mainly in equatorial areas of Southeast Asia, Africa, India, and America [32]. According 

to International Coffee Organization, the leading coffee-producing countries are Brazil, 

Vietnam, Colombia, Indonesia, Ethiopia, India, Uganda and Mexico [32]. Brazil is the 

largest coffee producer in the world accounting for 70% of total Arabica variety. Vietnam 

has been recognized as the world’s largest exporter of Robusta coffee (40% of the total 

production) followed by Indonesia [33,35]. 

Arabica and Robusta varieties have different features including their geographical 

distribution, physical aspects, chemical composition and post-harvest processing, which 

will influence the quality and organoleptic characteristics of coffee beverage. Coffea arabica 

plants grow well at higher elevations and mild temperatures than Coffea robusta and 

accounts for approximately 70% of the global coffee production [36]. 

Green coffee beans are mainly composed of carbohydrates (59–61%), lipids (11–17%), 

proteins (10–16%), phenolic compounds (6–10%), minerals (4%), fatty acids (2%), and the 

alkaloids caffeine (1–2%) and trigonelline (1%). During the roasting process, the change 

of lipids, minerals, fatty acids, caffeine and trigonelline is small, while carbohydrates (38–

42%), proteins (8–14%) and phenols (3–4%) are reduced [37]. Moreover, polymeric 

compounds called melanoidins and more than 900 volatile compounds are also formed 

during the roasting process, being responsible for the typical flavor and aroma of the 

beverage. Arabica coffee has superior organoleptic characteristics and quality and 

therefore, it is more expensive. On the other hand, Robusta coffee has a more wooden and 

earthy flavor, sometimes with strong and pronounced bitterness [38]. This variety 

contains more soluble solids and higher amounts chlorogenic acids, trigonelline and 

caffeine [39]. Commercial coffee is made from Arabica or Robusta varieties or their blends 

in different percentages. 

The quality of coffee beans depends on good agronomic practices and post-harvest 

operations, such as fruit selection, processing, drying and storage. Additionally 

considered of utmost importance is the roasting process because the high temperatures 

promote physical and chemical changes that have major effects in color, taste and aroma. 

The most frequently accepted quality factors are bean size, moisture content, number of 

defects, aspect and chemical composition of green and roasted beans, the roasting process 

and cup preparation [38,40]. 

Due to high market value and commercial importance, the adulteration of coffee is 

very common, particularly for ground coffee. It can include the substitution of C. arabica 

more expensive beans by C. canephora or defective beans, as well as the dilution with 

several cheaper products such as coffee husks, spent coffee grounds, barley, wheat, corn, 

chicory and cocoa or soya beans [41–43]. Increasingly important for the global coffee trade 

market is the geographical origin and geographical indication, as consumers usually 

search for coffee of high quality from beans of known origins. Moreover, there are 

significant differences in coffee price depending on country and region of origin [44]. The 

authenticity of coffee regarding its country origin is rather important for producers, 
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traders and consumers, and a valid certificate of origin, under the International Coffee 

Agreement 2007, shall cover every export of coffee by an exporting country [45,46]. This 

certification protects producers against counterfeiting and increases the strength of 

production chains and the economic development through international market 

competitiveness. 

Currently, there is no validated method to establish the geographical origin or the 

presence of adulterants in coffee samples. Several analytical techniques have been 

attempted, such as chromatographic methods (GC-MS, HPLC-MS or HPLC-DAD) or 

spectroscopic techniques (NIR, Raman, MIR or NMR), most of them coupled to 

chemometric methods [41,42]. Application of MIR-FT spectroscopy to the analysis of 

coffee is presented in Table 1. 

FTIR spectroscopy associated with radial-basis function network (RBF), an artificial 

neural network (ANN) that is widely used for pattern classification, was successfully 

employed by Link et al. for the geographic and genotypic classification of Arabica coffees 

[47]. This chemometric procedure was able to classify the samples, both geographically 

(100% correct classification) and genotypically (94.44%), exhibiting a superior 

performance when compared with other methods such as Soft Independent Modeling of 

Class Analogies (SIMCA) that have also been applied to the same test set [48]. 

A study by Obeidat et al. [46] discriminated among samples of green coffee beans of 

five different origins (Brazil, Colombia, Ethiopia, Kenya, and Yemen) using FTIR spectra, 

without any preliminary treatment of the samples. FTIR spectra were collected in the 600–

4000 cm–1 range and two regions, 1775–1500 cm–1 and 3030–2750 cm–1 were found to be 

important for analysis. However, the visual analysis of IR spectra is rather difficult since 

all of them are very similar. Therefore, PCA was used to successfully categorize each 

coffee type, concluding that bands at 2850, 2920, and 1745 cm–1 are the most important in 

distinguishing the origin of the coffee samples. 

Medina et al. [49] compared the ability of 1H-NMR, ATR-MIR, and NIR spectroscopic 

techniques to discriminate C. arabica from C. robusta as well as Colombian coffees from 

other samples collected on fourteen neighbor and worldwide countries. PCA was used to 

test data quality and identify possible outliers, whereas PLS methods were used as 

classifiers. 1H-NMR and ATR-MIR showed similar ability to distinguish Colombian coffee 

samples, but weak results were obtained for NIR. This assumption is not in accordance 

with the study reported by Bona et al. [50], which also assessed the potential of MIR and 

NIR for geographical classification of twenty Arabica coffee genotypes. Using Support 

Vector Machines chemometric algorithm, NIR showed a superior performance when 

compared to MIR, achieving a sensitivity and specificity of 100%. It was proposed that the 

worst results obtained with MIR may be due to the use of KBr pellets instead of ATR 

sampling procedure, which is generally reported to have better outcomes. Nevertheless, 

it can be concluded that IR spectroscopy could be effective for geographic authentication 

of coffee. 

The presence of defective coffee beans (sour, black and immature beans) decreases 

the quality of roasted and ground coffee, and ultimately also decreases the quality of the 

final beverage, as they are associated with sour, oniony and astringent tastes. The main 

method to separate defective from non-defective beans is by electronic color sorting or by 

sieving, which precedes the roasting process. Craig et al. evaluated the potential of FTIR 

in association with multivariate statistical analysis (PCA, LDA) to distinguish defective 

and non-defective green Arabica coffee beans [22,51]. The sample lots were divided in 

black, sour (light and dark colored), immature and non-defective beans. Three FTIR 

sampling techniques were compared, including the traditional transmittance method 

(KBr discs) and reflectance methods (DRIFT and ATR). All the transmittance and 

reflectance spectra were qualitatively similar, although some absorbance intensity 

differences could be observed in the 1800–800 cm−1 range. PCA analysis of the KBr 

transmission spectra was able to define three sample sets, non-defective, immature and 

black/dark sour. Using DRIFT, it was possible to successfully recognize four major 
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clusters: non-defective, immature/light sour, dark sour, and black. It was also possible to 

establish the spectral ranges that most contribute to the sample clustering, including the 

bands at 2980–2850 cm−1 and 1560–800 cm−1 (immature/light sour samples), 1700–1570 cm−1 

(non-defective beans), 3100–3000 cm−1 and 1980–1760 cm−1 (dark sour beans), and 2000–

1985 cm−1 (black beans). Contrary to transmission and reflectance techniques, ATR only 

provided the separation of samples in defective and non-defective coffees not allowing 

the grouping of defective beans according to the type of defect [22,51]. The same research 

group also compared the performance of DRIFT, ATR and NIR to discriminate between 

defective and non-defective roasted Arabica coffee beans [52,53]. Samples were divided 

in five lots, non-defective, immature, black, sour (light and dark colored), and roasted at 

220, 235 and 250 °C. PCA, LDA and a statistical approach named Elastic Net were used as 

chemometric methods. Principal Components Analysis of DRIFT spectra grouped the 

samples into four clusters: non-defective, black, dark sour and light sour, with immature 

beans scattered among the sour samples. On the other hand, LDA classification models 

based on absorbance bands at eight wavenumbers (2924, 2852, 1743, 1541, 1377, 1076, 910 

and 816 cm−1) allowed, besides the above-mentioned groups, the differentiation of the 

immature beans. Therefore, a clear separation between defective and non-defective beans 

was achieved [52]. The classification models based on elastic net statistic model exhibited 

high percentage of correct coffee classification (100% for calibration and above 94% for 

validation) [53]. 

Table 1. Application of FT-MIR spectroscopy to the analysis of coffee. 

Product/Reference Sampling 
Wavenumber 

Range (cm−1) 

Multivariate 

Analysis 
Aim/Comments 

Green coffee beans 

[46] 
ATR 

1775–1500 

3030–2750 
PCA 

Assessment of 48 green coffee samples based 

on their origin (Brazil, Colombia, Ethiopia, 

Kenya, and Yemen). 

Colombian coffee 

[49] 
ATR 4000–650 PCA; PLS-DA 

Comparative study of 1H-NMR, ATR-MIR, 

and NIR to discriminate 97 samples of roasted 

coffee beans from Colombia and other 

countries. 

Green Arabica coffee 

[50] 

Transmission 

(KBr) 
1800–800 SVM Geographic classification of 20 genotypes 

Arabica coffee [47] 
Transmission 

(KBr) 

4000–400 

1900–800 
ANN (RBF) Geographic and genotype authentication  

Roast ground coffee 

[54] 
ATR 

4000–700 

1735–700 
PLS 

Simultaneous quantification of four 

adulterants (coffee husks, spent coffee 

grounds, barley, and corn) 

Roast ground coffee 

[55] 

ATR 

DRIFT 
4000–700 

PLS-DA; Data 

Fusion 

Comparing the performance of two 

acquisition modes (DRIFT and ATR) and 

employing data fusion (DF) in order to 

combine both data from DRIFT and ATR. 

Roast ground coffee 

[15,21] 
DRIFT 

4000–400 

3200–700 
PCA; LDA 

DRIFT as a methodology for simultaneous 

discrimination between roasted coffee and 

multiple adulterants was confirmed. LDA 

classification models presented recognition 

and prediction abilities of 100%, being able to 

detect adulteration levels as low as 1 g/100 g. 

Roast ground coffee 

[56] 
DRIFT 4000–700 PLS 

PLS was employed for quantification of 

adulterants (pure or mixed) in roasted coffee 

samples using the DRIFT spectra as chemical 
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descriptors, with adulteration levels ranging 

from 1% to 66% in mass 

Roast ground coffee 

[57] 
ATR 4000–600 PCA; PLS 

Identify adulteration in roasted and ground 

coffee by addition of coffee husks 

Roast ground 

Arabica coffee [58] 
ATR 4000–525 PCA; PLS 

DSC and FTIR coupled with PCA are able to 

discriminate adulterated from unadulterated 

samples of coffee by corn 

Arabica and Robusta 

coffee [59] 
ATR 

4000–600 

1500–2000 

3000–2750 

PLS 

Construction of a PLS calibration model to 

determine the Robusta content in Arabica 

coffee blends with 9.2 wt% accuracy 

Green Arabica coffee 

[22] 

ATR 

DRIFT 
4000–700 PCA; LDA 

Discrimination between defective and non-

defective Arabica green coffee beans 

Green Arabica coffee 

[51] 

Transmission 

(KBR) 

ATR; DRIFT 

4000–700 PCA; HCA 

Comparison of three IR sampling techniques 

to discriminate between defective and non-

defective green coffee beans 

Green Arabica coffee 

[52] 
DRIFT 3100–600 PCA; LDA 

Discrimination of defective and non-defective 

roasted coffee beans 

Green Arabica coffee 

[53] 

ATR 

DRIFT 
 

PCA; Elastic 

Net algorithm 

Comparing the performance of MIR and NIR 

to discriminate between defective and non-

defective roasted coffees 

Arabica coffee [38] ATR 4000–600 PCA, PLS-DA 
Prediction of cup quality of coffees subjected 

to different roasting degrees 

ANN: Artificial Neural network; DA: Discriminant Analysis; HCA: Hierarchical Cluster Analysis; LDA: Linear 

Discriminant Analysis; MLR: Multiple Linear Regression; PCA: Principal Component Analysis; PLS: Partial Least Squares; 

PLS-DA: Partial Least Squares-Discriminant Analysis; SVM: Support Vector Machine. 

Brondi et al. [58] studied the adulterations of roasted and ground Coffea arabica L. by 

corn using two methodologies, ATR-FTIR and differential scanning calorimetry, 

associated to PCA in order to establish the clusters, and PLS approach aiming at quantify 

the level of adulteration [58]. Green coffee beans were roasted at three different 

temperatures from light to dark roasts, grounded and mixed with ground roast corn in a 

range of 0.5 to 40% (m/m). Although there were no differences between the spectra of 

three levels of roasting, significant differences were found between the spectra of roasted 

coffee and corn. PCA approach allowed the recognition of pure and adulterated samples 

even in concentrations lower than 1%, although it was not able to distinguish the different 

roasting levels. PLS models exhibited a good correlation between the values of estimated 

and reference concentrations with root mean square error of cross-validation of 2.1%. 

Differential scanning calorimetry analysis presented similar results when compared to 

FTIR, but it has been mostly used to qualitative analysis. However, authors considered 

that the two techniques could be used as complements for adulteration detection and 

quantification purposes [58]. 

A method to quantify Robusta coffee in Arabica coffee blends using ATR-FTIR and a 

PLS model was developed by Correia et al. [59]. To build this model, the most important 

wavelengths bands were those around 2900 cm−1, 1750 cm−1 and above 1000 cm−1. A good 

correlation was found between the predicted and the reference values with coefficients of 

determination for cross-validation and prediction of 0.9635. In addition, ESI-FT-ICR mass 

spectrometry was also used to investigate the chemical profiles of Robusta and Arabica 

coffees [59]. 

Reis et al. reported a series of studies to assess the potential of DRIFT for analysis of 

the adulteration of pure roast Arabica coffee with coffee husks, spent ground coffee, corn 

and barley, despite the roasting conditions [16,22,59]. PCA and LDA were applied to find 

out if each one of the studied adulterants, as well as adulterated coffee samples (at 
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adulteration levels ranging from 1 to 66 g/100 g) could be discriminated from pure roasted 

coffee [15]. A comparative evaluation of all spectra allowed the identification of 

absorption bands in two major wavelength ranges, 3000–2800 cm−1 and 1800–700 cm−1, and 

their correlation with the presence of some important constituents in the different matrices 

that consequently, contributed most to the discrimination of samples. Sharp bands at 2925 

and 2852 cm−1 were partly assigned to unsaturated and saturated lipids present in coffee, 

corn and barley oils that do not change during roasting. Absorption bands at 2250–1850 

cm−1 were observed in all matrices but they were significantly more intense on roasted 

corn and barley and probably contributed to the discrimination between pure coffee and 

cereal samples. These bands were correlated to the presence of phenolic compounds 

(ferulic and coumaric acids and their derivatives) bound to non-degraded starch in the 

cereals. In the spectra of coffee, corn and spent ground coffee, a band at 1745 cm−1 was 

endorsed to the carbonyl stretching vibration of triglycerides. This band was weaker in 

spectra from roasted coffee husks and barley, which instead exhibited a band at 1715 cm−1, 

assignable to free fatty acids that were originated by the possible degradation of their lipid 

contents. Bands at 1700–1660 cm−1 could be assigned to caffeine, as they are more intense 

in coffee and coffee husks spectra than in spectra of samples that do not contain (barley 

and corn) or contain low levels of this compound (spent coffee). On the other hand, the 

presence of absorption bands at 1650–1400 and 1585–1575 cm−1 were related to 

trigonelline. These bands were observed in coffee and coffee husk spectra but not in spent 

ground coffee nor in barley or corn spectra. Intense absorption bands in the range 950–

700 cm−1 were correlated to the presence of starch and useful to discriminate corn and 

barley from those that do not contain starch (pure and spent coffee and coffee husks). 

Authors suggested that these wavelength differences could be due to the different types 

of polysaccharides existent in coffee (arabinogalactans, galactomannans, and cellulose) 

and its adulterants (starch) [16,22,59]. PCA analysis of the results allowed the definition 

of pure and adulterated cluster samples, despite some overlapping between roasted corn 

and barley. The clusters were strongly associated with caffeine, lipids and starch contents 

present in the different samples. LDA classification models presented recognition and 

prediction abilities of 100% [15]. PLS regression was also developed aiming at quantifying 

the adulteration level. The proposed model provided reliable predictions of adulterations 

at levels as low as 1% w/w with determination coefficients of 0.99 and 0.98 for the 

calibration and validation sets, respectively [56]. In later studies, the same research group 

obtained similar results when assessed the performance of ATR for the same purpose, 

with the advantage that sample preparation was not necessary [54]. The two acquisition 

modes were compared using hierarchical models with two levels of PLS discriminant 

analysis [55]. The first level discriminated between unadulterated and adulterated coffee 

samples and the second level was able to identify the presence of each adulterant. In 

addition, data fusion approach was applied in order to combine the data obtain from 

DRIFT and ATR. With this methodology, the percentage of misclassified samples in the 

second level models went as low as 0%, and it was possible to identify adulterated coffee 

samples and to discriminate these adulterants in complex mixtures [55]. 

4.2. Dairy Products 

Several researchers have recommended FTIR spectroscopy for applications in dairy 

products and the AOAC international (Association of Official Analytical Chemists) has 

approved in 2005, a FTIR method for determination of fat, protein, lactose, and total solid 

contents in some dairy products [60]. In the last decade, applications of infrared 

spectroscopy in cheese authentication have diversified and increased. Application of MIR-

FT spectroscopy to the analysis of dairy products is presented in Table 2. Some recent 

applications include determination of geographic origin of cheeses [61], monitoring 

changes during ripening [62], shelf life and storage conditions, among others [63,64]. Leite 

et al. [65] explored the potential application of FTIR-ATR coupled with multivariate 

approaches in order to characterize and detect adulterations in butter cheeses with 
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soybean oil. Butter cheese is a semi-soft cheese, very popular in Germany and Austria for 

its creamy texture and its butter like flavor. Its production consists of coagulating whole 

or skimmed milk, followed by desorption of the curd obtained by acidification, washing 

the dough with water and/or milk, salting, melting the dough with butter oil and finally 

molding the cheese. Milk is the only source of the fat content in butter cheese and the 

addition of different fats is considered fraud. In this study, all the butter cheese samples, 

prepared in duplicate, had the same fat content addition but different percentages of 

adulterations (ranging from 0 to 100% of substitution) and were performed by replacing 

the butter oil by soybean oil. The sample with 0% of fat addition was composed only of 

cheese mass. The authors concluded that a clear differentiation in the cheese spectrum can 

be observed, especially in the wavelength range of 3600 to 3050 cm−1 and 1000 to 400 cm−1 

when compared to the fat-free sample with the samples to which butter oil and soybean 

oil were added. Moreover, it was noted a band at 3007 cm−1 characteristic of unsaturated 

fatty acids, indicating the presence of soybean oil in the samples. This band shifted to 3009 

cm−1 when 20% to 100% of adulteration was present. Another indication of fraud could be 

the lack of the water band at approximately 3265 cm−1 in adulterated cheeses. 

Additionally, the authors showed that PCA revealed the samples confirming the 

similarities found in the spectral analysis. For the percentage of soybean oil present in the 

adulterated samples of butter cheese, PLS regression resulted in good predictions 

regarding the substitution levels (squared coefficient values (R2) of 0.997 and 0.998 for 

calibration and validation, respectively), with low residual errors. 

Alkhalf and Mirghani, reported a study to confirm that MIR spectroscopy allied with 

multivariate analysis has great potential for detection of formaldehyde in cheese [66]. 

Although human exposure to formaldehyde occurs most commonly by the respiratory 

and dermal routes, it may also occur by ingestion. Most of the time, formaldehyde in food 

is a completely natural occurrence. The European Food Safety Authority noted that 

natural levels of formaldehyde in food widely vary, depending on the type of product. 

The US Environmental Protection Agency has established a maximum daily dose 

reference (RfD) of 0.2 mg kg−1 body weight per day for formaldehyde. At exposures 

increasingly greater than the RfD, the potential for adverse health effects increases 

(including headaches, nausea, drowsiness and allergic skin reactions, among others). In 

this study, two sets, each of twenty-one samples were prepared using the same type of 

soft white cheese and formaldehyde was spiked in the range from 0 to 100 mg/100 g in 

freshly prepared cheese [66]. The spectral response to changes in formaldehyde content 

was investigated by examination of the correlation and variance spectra. The spectral 

region used for correlation and cross-validation was defined and included the spectral 

intervals from 1650–800 cm−1. R2 value of correlation was 0.986 with average standard 

error of calibration of 2.24 mg/100 g. The R2 of validation found was 0.9662, the standard 

errors of prediction and standard deviation of the differences for repeatability and 

accuracy were 4.07 mg/100 g and 4.61, respectively. The authors concluded that the use of 

MIR spectroscopy data with PLS regression proved to be a highly accurate approach for 

the determination of minor components such as formaldehyde in cheese samples. Studies 

of milk and milk products by FTIR-ATR spectroscopic method have been made by many 

researchers. Another example of research in dairy products by FTIR-ATR spectroscopic 

method is the work conducted by Sara et al. [61]. The aim of this study was to combine 

MIR spectroscopy data with chemometric analysis to confirm cheese quality and products 

according to their manufacturing process. The study utilized ten samples of traditional 

cheese-making mozzarella located in a Protected Designation of Origin region and ten 

samples of industrial cheese-making mozzarella in non-Protected Designation of Origin 

in Italy. Several spectral regions were used, namely, the intervals 2900–2827 cm−1 and 1782 

to 1705 cm−1 (corresponding to fat content in cheese), 1701–1507 cm−1 (protein content) and 

1200 to 967 cm−1 (corresponding to carbohydrates). The traditional buffalo cheese samples 

showed greater intensity in the spectral bands, which reflected variation in its 

physicochemical composition, in relation to mozzarella cheeses obtained by industrial 
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processes. In order to discriminate between the two types of buffalo mozzarella, a logistic 

regression was exploited. The chosen category was the traditional Protected Designation 

of Origin type of mozzarella, whereas the explanatory variables were absorbance and 

wavelength. The results suggested the use of MIR spectroscopy with chemometric 

analysis allowed to discriminate between the two types of mozzarella. 

After olive oil, milk is the second food item that is at risk of adulteration [67–69]. 

Adulteration of milk can have economic purposes as in the case of the addition of 

vegetable proteins, milk of different species, addition of whey and water, not representing 

any serious risk to health. However, other adulterants are harmful because they cause 

serious adverse health effects such as the addition of urea, formaldehyde, detergents, 

ammonium sulfate, boric acid, benzoic acid, salicylic acid, hydrogen peroxide, sugars and 

melamine [68,70]. A recent study [71] suggested the use of FTIR associated with 

chemometrics to quantify the cheese whey added in milk, which can be used as a marker 

of adulteration. Although the use of cheese whey in some products is allowed, particularly 

in Brazil, it is often used as adulterant for pasteurized, Ultra High-Temperature 

Pasteurized and dry milk. The detection of this fraud is done through the quantification 

of caseinomacropeptide, which is a constituent of cheese whey. In this research, three milk 

types were used, skimmed, semi-skimmed and raw milk. For adulteration of milk samples 

(n = 18), standard caseinomacropeptide was added in 25 mL of milk and subsequently 

diluted to a final concentration. The infrared spectrum of the adulterated milk samples 

was performed in the range of 4000–800 cm−1. For exploratory analysis of the pre-

processed infrared spectra, Principal Component Analysis and Hierarchical Component 

Analysis were applied before the quantification step. For the multivariate regression the 

concentrations determined by LC-MS/MS were used as reference values. Algorithms of 

Partial Least Square Regression, Partial Square Regression and Regression by Minimum 

Square Support Vector Machine were used and with good regression parameters, which 

led the authors to conclude that the developed methodology was adequate to detect and 

quantify the adulteration by adding caseinomacropeptide. 

The addition of melamine (2,4,6-triamino-1,3,5-triazine) to milk (liquid or powder) is 

an adulteration made in order to increase the apparent protein content, causing false 

readings in the nitrogen determination methods since melamine has a nitrogen mass 

identical to that of proteins. Melamine is not a natural product and is not approved for 

direct addition to foods. When melamine is in combination with cyanuric acid, another 

triazine, it can result in the formation of insoluble melamine cyanurate crystals in the 

kidneys, causing renal failure [72]. However, melamine is used in the manufacture of 

certain materials that come into contact with food and therefore the World Health 

Organization in 2008 considered that the tolerable daily intake is 0.2 mg kg−1 of body 

weight [72]. MIR spectroscopy combined with chemometrics was proposed by García-

Miguel et al. [73] for fast determination of melamine and cyanuric acid in infant formula 

powders (baby milk). In this research, 40 samples of infant formula powder with 

melamine or cyanuric acid in concentrations ranging from 0.5 µg/L to 20 µg/L were 

prepared. Five samples were used for the validation model. The spectral area studied was 

3600–2800 cm−1 and 1750–650 cm−1 because this range had the highest association between 

the spectral data and the sample concentrations. In order to correlate the IR signal with 

the levels of melamine or cyanuric acid in the infant formula samples Partial Least Squares 

(PLS1, PLS2) and Principal Component Regression were used. The detection limit (>0.5 

µg/L) was below the maximum residue levels established by the Food and Drug 

Administration (1 mg/kg) [74]. To distinguish between adulterated formulas and non-

adulterated samples the Soft Independent Modeling of Class Analogy model was applied 

with optimum discrimination and good interclass distances between samples. The 

authors concluded that this model can identify and classify the samples unadulterated 

and adulterated with melamine and cyanuric acid with a 99% confidence limit. 

In a similar approach, Jawaid et al. [75] assessed FTIR-ATR for the determination of 

different ratios of melamine at various concentrations in milk samples. Initially the 
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interval (4000–650 cm−1) was used to study the spectral characteristics of different ratios 

of melamine at various concentrations. Then, three different selective regions of the MIR 

spectrum were used to construct Partial Least-Squares calibration model. These models 

were established for correlating spectral data to melamine concentration with R2 > 0.99. 

The region from 840 to 726 cm−1 was selected since offered improved regression result 

when compared to other regions. The limits of detection and quantification of the method 

were 2.5 ppm and 15 ppm, respectively, which allowed the authors to state that this 

method is more sensitive compared to the HPLC method used to determine the melamine 

content in rice and corn flours. Since the IR spectra showed variations in the positions and 

shapes of peaks between the control and the adulterated milk, Santos et al. [70] have 

investigated the feasibility of MIR-microspectroscopy to detect and quantify milk 

adulteration. Samples of milk were taken from local grocery stores and spiked at different 

concentrations of whey, hydrogen peroxide, synthetic urine, urea and synthetic milk 

resulting in 310 adulterated samples. The authors found that the spectral changes of MIR-

microspectroscopy were almost imperceptible at the lowest levels of adulteration and, in 

order to extract relevant information for qualitative and quantitative analyses, spectral 

mathematical transformations (second derivative) were performed. Pattern recognition 

analysis by Soft Independent Modeling of Class Analogy models showed tight and well-

separated clusters allowing discrimination of control samples from adulterated milk with 

whey (>7.5 g/L), synthetic milk (>0.1 g/L), synthetic urea/urea (>0.78 g/L) and hydrogen 

peroxide (>0.019 g/L). PLSR models gave prediction errors of 1.91, 0.25, 0.34, 0.05 and 0.014 

g/L for whey, urea, synthetic urine, synthetic milk and hydrogen peroxide, respectively. 

Another example of milk adulteration is the addition of milk of different species. Recently, 

a quantification of the adulteration of goat milk by cow milk with MIR and Raman 

spectroscopy combined with multivariate analysis was described by Yaman [64]. Goat’s 

milk products are adulterated for economic purposes since goat’s milk has a higher price 

and higher nutritional quality than cow’s milk. Goat’s milk generally has a more 

nutritious fatty acid profile than cow’s milk fat. Besides, goat’s milk is characterized by 

having an easier digestion in relation to cow’s milk because it has a higher percentage of 

short and medium chain fatty acids (C6–C14) and smaller fat globular sizes. In addition, 

β-carotene, present only in cow’s milk, is the target component for the differentiation of 

these two milk species from one another [76]. Forty-two milk samples (with 5% 

increments from 0 to 100%) were prepared from organic full-fat cow and goat milk. FT-

MIR and Raman spectroscopy with chemometric techniques were applied in order to 

detect the presence and quantity of cow milk in mixtures. To extract information, the 

spectral bands at around 1373, 1454, and 956 cm−1 for IR and 1005, 1154, and 1551 cm−1 for 

Raman spectroscopy, respectively, were evaluated. The Raman and IR spectra were 

correlated with the percentage of adulteration and β-carotene content to develop 

quantitative models with partial least squares regression. Using Soft Independent 

Modeling of Class Analogy, results showed that 20% intervals of the mixture could be 

differentiated barely from other mixtures by MIR spectroscopy; however, they could not 

find significant discrimination by Raman spectroscopy. The outcome of this research 

indicated that this study can be enlarged for the mixtures containing different fat content 

and raw milk samples. In a similar approach, Souhassou et al. [77] reported a study for 

the detection of camel milk adulteration with cow milk. 
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Table 2. Application of FT-MIR spectroscopy to the analysis of dairy products. 

Product/Reference Sampling 
Wavenumber 

Range (cm−1) 

Multivariate 

Analysis 
Aim/Comments 

Cheddar cheese [60] ATR 1800–900 PLSR; SIMCA 

Characterization of cheese 

ripening and flavour, and 

classification of cheese samples 

based on their age 

Butter cheeses [65] ATR 
3600–3050; 1000–

400 and 3007 
PCA; PLS 

Quantification of the adulteration 

in butter cheeses with soybean oil 

Butter cheeses [65] ATR 
3600–2750; 1800–

625 
PCA; PLSR 

Identification and quantification 

adulterants in butter cheeses 

White cheese [66] ATR 1650–800 PLSR 

Determination of minor 

components (formaldehyde) in 

cheese samples 

Buffalo cheese [61] ATR 
3000–2800; 1700–

1500; 1500–900 
LR 

Authentication of cheese quality 

and classification of products 

according to their manufacturing 

process 

Bovine milk [71] ATR 4000–800 
PCA; HCA; PLS; 

LS-SVM 

Quantification of the adulteration 

in different types of milk by 

Cheese serum  

Infant formula 

powders [73] 
ATR 

3600–2800; 1750–

650 
PLSR; SIMCA 

Quantification of melamine and 

cyanuric acid 

Milk (liquid and 

powder) [75] 
ATR 

3000–3633; 100–

1630; 806 
PLSR 

Determination of melamine in 

dairy milk 

Milk [70] ATR 
3500–3300; 1640–

1500 
SIMCA; PLSR 

Determination of several potential 

adulterants 

Goat milk [64] ATR 1373; 1454; 956 SIMCA; PLSR 
Detection and quantification of 

cow milk in goat milk 

Goat milk [76] ATR 3000–950 PLS-DA 
Characterization of milk samples 

according to different goat breeds 

Camel milk [77] ATR 3000–920 PLSR 
Adulteration of camel milk by 

addition of cow milk 

Milk [69] ATR 
1630–1680 

1510–1570 

PCA 

PLS-DA 

Authentication of reconstituted 

raw milk 

Milk [78] ATR 1800–920 PLSR 
Adulteration of raw milk with 

addition of sucrose 

Butter [79] Transmission; ATR 3910–710 PLS-DA 
Adulteration of butter with 

mutton fat 

HCA: Hierarchical Cluster Analysis; LS-SVM: Least Square Support Vector Machine; LDA: Linear Discriminant Analysis; 

LR: Linear Regression; PCA: Principal Component Analysis; PLS: Partial Least Squares; PLSR: Partial Least Squares 

Regression; PLS-DA: Partial Least Squares-Discriminant Analysis; SIMCA: Soft Independent Modeling of Class Analogy; 

SLLE: Supervised Locally Linear Embedding. 

4.3. Honey 

Honey is defined as “the natural sweet substance produced by Apis mellifera bees 

from the nectar of plants, or from secretions of living parts of plants, or excretions of plant-

sucking insects on the living parts of plants, which the bees collect, transform by 

combining with specific substances of their own, deposit, dehydrate, store and leave in 

the honeycomb to ripen and mature” by the European Union Council Directive from 20 

December 2001 devoted to honey (2002) [80]. Sugars are the main constituents of honey, 
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comprising about 95% of honey dry weight. Main sugars are the monosaccharides 

hexoses, fructose and glucose, which are products of the hydrolysis of the disaccharide 

sucrose. Besides, about 25 different oligosaccharides have been detected in the 

composition of honey [81]. FT-MIR has been utilized as a rapid tool for the determination 

of both geographical and botanical origins of honey and for the unifloral honeys 

authentication, in particular when used in combination with multivariate data analysis 

and chemometrics. Moreover, the FTIR spectroscopy has been used to detect adulteration 

of honey, since it is a serious problem as it causes change in its nutritional and 

organoleptic qualities having a significant economic impact. Application of MIR-FT 

spectroscopy to the analysis of honey is presented in Table 3. 

In a recent work, Kasprzyk et al. [80] reported a study for rape (Brassica) honey by 

chemometrics and spectroscopy. Honey is classified as unifloral rape honey, if rape pollen 

constituted more than 45% of the total amount of pollen grains of nectariferous plants. In 

this study, a FTIR-ATR spectrum (4000–400 cm−1) of each honey sample and rape pollen 

collected from flowers (reference) was acquired. To analyze the results, these authors 

developed a large array of chemometric procedures including Detrended Corresponce 

Analysis, Multidimensional Scaling, Hierarchical Clustering Analysis, and Mahalanobis 

distance. Discriminate analysis was used to identify rape-honey in a taxonomical 

discriminant analysis. In addition, the method Classification Tree Analysis, was used in 

order to allow a clear identification of the spectra characteristics, permitting the 

authentication rape honey. The authors concluded that these methods may be potentially 

used for identification of other unifloral honeys [80]. 

In order to rapidly and accurately differentiate the authenticity and classification of 

honey, Sahlan et al. [82] developed a method based on ATR-FTIR spectroscopy and 

chemometric discriminant analysis. For this study, they used a total of 85 samples. Honey 

samples were grouped in fake honey (adulterated) and real honey. The fake honey 

samples (n = 27) were made by mixing real honey with water, sucrose, and NaHCO3. The 

samples of real honey (n = 58), were produced by sting bee Apis spp. and by stingless bee 

Tetragonula spp. The content of honey between them has chemical differences, stingless 

honey has an exceptionally higher content of flavonoids and polyphenols compared to 

honey produced by Apis spp. The potential health benefits of stingless bee honey (SBH) 

are only recently gaining a lot of attention [83]. Besides, the cost of honey derived from 

stingless bees is much higher than that of honey derived from other bee species. The 

wavelengths that best differentiated between real honey and adulterated honey 

correspond to four regions: 1600–1700 cm−1; 1175–1540 cm−1; 940–1175 cm−1; and 700–940 

cm−1. For classification of the honey samples, the authors reported significant spectral 

differences between honey produced by Apis spp. and honey produced by stingless bee 

Tetragonula spp. The wavelength range that can best differentiate between them was 1600–

1700 cm−1. The bands in this region were due to stretching band of carbonyl groups C=O 

and C=C related to phenolic molecules. 

To analyze and authenticate honey samples, important to protect industry and 

consumers from adulterated honey, Rios-Corripio et al. [84] described the use of ATR-

FTIR spectroscopy and multivariate methods to study honey intentionally adulterated 

with three types of standard sugars (glucose, fructose and sucrose) and also with three 

types of cheap syrups (corn syrup, inverted sugar syrup, cane sugar syrup). The 

determination of the type of adulterant was realized by using the Principal Component 

Analysis method on pure and adulterated (0–100%) honey samples. The calibration and 

validation models were developed to predict quantitatively the adulteration on the basis 

of the spectral information mainly in the regions 650–1980 cm−1 and 2400–3700 cm−1. Partial 

Least Squares regression was used and showed good predictive capacity of the model 

employed in this study. Another work [85], involving honey from stingless bees 

(Heterotrigona itama), described the use of FTIR-ATR spectroscopy with chemometric 

analysis for discrimination of pure and adulterated H. itama honey. Standard sugars 

(fructose, glucose and sucrose) and commercial sugars (corn syrup and cane sugar) were 
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used as adulterants. In this study, after classifying the pure and adulterated samples using 

PCA and SIMCA method, concentrations of adulterants were predicted using PLSR 

analysis based on FTIR-ATR spectral data. The authors demonstrated that FT-IR 

spectroscopy is a method highly reliable for the rapid identification and precise 

quantification of adulterants in H. itama honey [85]. 

Table 3. Application of FT-MIR spectroscopy to the analysis of honey. 

Products/Reference Sampling 
Wavenumber Range 

(cm−1) 

Multivariate 

Analysis 
Aim/Comments 

Unifloral honey (Polish rape 

honeys) [80] 
ATR 4000–500 

DCA; MDS; 

MD-DA; CTA; 

HCA 

Authentication of rape 

(Brassica) honey; potential 

identification of other 

unifloral honeys. 

Real Honey (samples produced 

by Apis spp. and Tetragonula 

spp.) and fake honey [82] 

ATR 

Authentication (1600–

1700; 1175–1540; 940–

1175; 700–940) 

Classification (1600–1700) 

DA 

Discrimination between real 

honey and fake honey and 

classification between honey 

from Apis spp. and stingless 

bee Tetragonula spp. 

Honey samples from Mexico [84] ATR 850–1200  PCA; PLS 

Discrimination of the type of 

adulterant contained in 

honey 

Honey harvested in Malaysia 

produced by stingless bees 

(Heterotrigona itama) [85] 

ATR 1180–750  
PCA; SIMCA; 

PLSR 

Detection and quantification 

of adulterants in honey from 

H. itama 

Honey samples coming from 

Turkey [86] 
ATR 4000–600 GILS; PLS 

Determination of honey 

adulteration in different 

botanical and geographical 

origins 

Unifloral honey samples [87] ATR 

complete spectral region 

(4000–600) with emphasis 

on the fingerprint region 

from 1800 to 700  

PCA, PLSR 

PLS-DA 

coupled with 

ROC analysis 

Rapid and reliable 

determination of nine 

unifloral honey types  

Anatolian honey samples and 

adulterated honey [88] 
ATR 1800–750  PCA and HCA 

Discrimination of honey 

samples from different 

botanical origins and 

differentiate inauthentic 

honey samples from the 

natural ones 

CTA: Classification Tree Analysis; DA: Discriminant Analysis; DCA: Detrendal Correspondence Analysis; GILS: Genetic-

Algorithm-based inverse Least Squares; HCA: Hierarchical Cluster Analysis; MD-MA: Mahalanobis Distance- 

Discriminant Analisys; MDS: Multidimensional Scaling; PCA: Principal Component Analysis; PLS: Partial Least Squares; 

PLS-DA: Partial Least Squares-Discriminant Analysis; PLSR: Partial Least Squares Regression; ROC: Receiver Operating 

Characteristic; SIMCA: Soft Independent Modeling of Class Analogy. 

4.4. Olive Oil 

Olive oil is obtained from the fruits of Olea europeae tree and is an extremely important 

economical product in Mediterranean countries [89]. On average, 3 million tonnes of olive 

oil are produced around the world every year. European Union is the first producer, 

consumer and exporter, accounting for almost 2200 million tonnes of world production. 

The main European Union member states include Spain (63% of production), Italy (17%), 

Greece (14%) and Portugal (5%), but also France, Slovenia, Croatia, Cyprus and Malta 

[90,91]. Outside European Union, Morocco, Turkey and Tunisia are also important world 
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production countries with an estimated production of 200, 183 and 120 tonnes for 

2018/2019 [92]. European Union has also a leading role on the international market, both 

as an importer and an exporter of olive oil. The large majority of exports are intra-

European Union or to third-countries such as United States, Canada, Brazil, Australia and 

Japan [91]. 

There are several categories of olive oils grouped according to its physicochemical 

and organoleptic quality parameters, as defined by European legislation [93]. Virgin olive 

oils are exclusively extracted by mechanical or physical methods such as pressure or 

centrifugation, which do not lead to alterations in the oil, and are subdivided in extra-

virgin olive oil, virgin olive oil, ordinary virgin olive oil and lampante olive oil. Extra-

virgin olive oil is the highest quality and expensive category, and from the organoleptic 

point of view, it is a fruity oil with no defects. It differs from virgin olive oil in the acidity 

level (expressed as oleic acid) that cannot be higher than 0.8% for extra-virgin olive oil, 

2.0% for virgin olive oil and 3.3 for ordinary virgin olive oil. Lampante olive oil has lower 

quality, acidity level higher than 3.3% and it is not fitted for consumption, being used for 

refining or for technical purposes. Other categories of olive oils include refined olive oil 

that is obtained from a defected virgin olive oil through refining methods, which do not 

lead to alterations in the glyceridic structure, blends of refined olive oil and virgin or extra-

virgin olive oil and olive pomace oil. Olive pomace is the solid residue left over from the 

production of virgin olive oil. As it still contains a considerable proportion of oil (5–10%) 

it can be treated with solvents and further refined [94,95]. 

Olive oil, particularly extra-virgin olive oil, is the primary source of added fat of the 

Mediterranean Diet, which takes part since 2013 of the representative list of the UNESCO 

Intangible Cultural Heritage of Humanity [96]. Apart from the consumption of extra-

virgin olive oil, the Mediterranean Diet is also characterized by the high consumption of 

fruits, vegetables, whole cereals and nuts, medium-high intake of fish, moderate 

consumption of dairy produces (mainly yogurt and cheese), low intake of meat and 

saturated fat, and a moderate intake of wine during meals. Many studies recognized the 

linkage between this diet and the low incidence of cardiovascular diseases in Southern 

Europe in comparison with Northern Europe and the United States, and the prevalence 

of chronic diseases such as metabolic syndrome, cancer or neurodegenerative conditions 

[97–99]. The positive effects of Mediterranean Diet on the risk of chronic diseases is 

considered by several authors as an example of food synergy [99,100]. Nevertheless, 

several studies also emphasize the benefits of the higher consumption of extra-virgin olive 

oil [101–104]. Its high nutritional value are endorsed to its unique fatty acid profile and to 

the presence of other minor components that are responsible not only to the very 

distinctive flavor but also have an important role on the stability of the oil and antioxidant 

capacity. Olive oil is mainly composed by triacylglycerols (98–99%), in which prevail 

monounsaturated fatty acids such as oleic acid (70–80%), and a very low quantity of 

polyunsaturated fatty acids. It also contains a variable proportion of free fatty acids, 

phytosterols, diterpenes and triterpene alcohols, squalene and several antioxidant 

compounds such as α- and γ-tocopherols, tocotrienols, β-carotene, phenolic compounds, 

such as, oleuropein, hydroxytyrosol, tyrosol, oleocanthal, phenolic acids and flavonoids, 

as well as chlorophyls and volatile and aroma compounds [89,105]. Olive oil composition 

differs among the samples and depends on several factors including the geographic 

location of production, edaphoclimatic conditions, olive cultivar and degree of fruit 

ripening [89]. The triacylglycerol composition of olive oil is very similar to that of hazelnut 

but differs significantly from those of maize, cottonseed, sunflower, soybean and rapeseed 

oils [89]. 

In the last decades, there have been an increasing interest and demand for high-

quality olive oils, as well as their labeled categories such as Protected Designation of 

Origin, Protected Geographical Indication, and organic or mono-varietal olive oils 

[106,107]. Consequently, their marketed price is often very high and these products are 

susceptible to different kinds of adulteration and mislabeling practices. Quality, purity 
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and composition characteristics of olive oils are highly regulated by several international 

organizations, such as International Olive Council [92] and European Commission [93], 

among others. These organizations define the classification criteria, physicochemical and 

sensorial parameters for quality and purity criteria and their corresponding threshold 

values, as well as the description of official analytical methods for assessing those 

parameters [96,97,108,109]. Table 4 summarizes the physicochemical quality and purity 

parameters, the threshold value for extra-virgin olive oil, the objective of their assessment 

and corresponding analytical methods. As can be observed, most of the analytical 

methods are based on the specific determination of a marker compound or family of 

compounds, and involve laborious and complex sample preparation procedures, 

followed by chromatography analysis. Therefore, they have several drawbacks, being 

time-consuming, requiring large volumes of organic solvents that generate toxic wastes 

and need a strictly reproduction of the standardized procedure in order to achieve the 

necessary accuracy levels. Moreover, they are not effective in identifying the type of 

adulterant or low adulteration levels [106,107]. To overcome these limitations it will be 

essential to develop simpler, robust, sensitive, rapid, and environmentally friendly 

methodologies, which should be easily adapted to routine analysis in order to evaluate 

quality, authenticity and possible adulteration of olive oils [106,107,110]. In this way, 

several analytical approaches have been proposed, including improvement of sample 

preparation techniques (using for example microwave assisted derivatization reactions 

and solid phase extractions), chromatographic techniques coupled to mass spectrometry, 

and spectroscopic techniques (UV-Vis, IR, Raman, fluorescence and NMR) [106,107,110]. 

MIR spectroscopy coupled to chemometric approaches have been an effective 

strategy to identify and quantified adulteration of extra-virgin olive oil with refined oils 

and several types of vegetable and nuts edible oils. Specific location and intensity of IR 

absorption bands depend on triacylglycerol fatty acid composition, unsaturation degree 

and corresponding proportion of fatty acids, which differ according to the nature of 

vegetable oils. These spectral features occur at specific regions, mainly around 3000 cm−1, 

1740 cm−1 and the fingerprint region at 1500–600 cm−1 (Table 5). In particular, the 

fingerprint region is very important since it is highly representative of molecular 

composition, being used for identification purposes [108,111]. 

Table 4. Quality and purity criteria established by International Olive Council [92] and European Commission [93]. 

 
Threshold Value for  

Extra-Virgin Olive Oil 

Analytical Method  

(Reported Results) 
Elucidation of Criteria 

Q
u

al
it

y
 C

ri
te

ri
a 

Free fatty 

acids 
≤0.8 

Acid-base titration (% of oleic 

acid) 

Indicative of TAGs enzymatic 

hydrolysis during manufacturing or 

storage; Higher values are correlated 

with worse olive quality or processing 

of unhealthy olives. 

Peroxide 

Value 
≤20.0 

Iodometric titration (meq O2/Kg 

oil) 

Indicative of the initial oxidation state 

of olive oil; 

Ultraviolet 

absorption 

≤2.50 (K232) 

≤0.22 (K270) 

≤0.01 (ΔK) 

UV spectrophotometry at 232 

and 270 nm 

Indicative of the presence of oxidation 

products formed during refining 

process and higher oxidation states. 

Fatty acids 

alkyl esters 
≤35 

Isolation by silica-gel column 

chromatography and subsequent 

GC-FID analysis (mg/Kg oil) 

Indication of health condition of olives 

and storage conditions before 

processing. 

Reported to be a relevant criterion for 

detecting adulteration with low 

quality olive oil;  
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P
u

ri
ty

 C
ri

te
ri

a
 

Fatty acid 

composition  

Myristic ≤ 0.03 

Palmitic 7.50–20.00 

Palmitoleic 0.30–3.50 

Heptadecanoic ≤ 0.40 

Heptadecenoic ≤ 0.60 

Stearic 0.50–5.00 

Oleic 55.00–83.00 

Linoleic 2.50–21.00 

Linolenic ≤ 1.00 

Arachidic ≤ 0.60 

Eicosenoic ≤ 0.50 

Behenic ≤ 0.20 

Lignoceric ≤ 0.20 

GC-FID analysis after a previous 

methylation reaction (% m/m 

methyl esters) 

Indicative of the presence of foreign 

oils  

Trans fatty 

acid content 

Trans-oleic acid ≤ 0.05 

Trans-linoleic + trans-linolenic acids ≤ 

0.05 

GC-FID analysis after a previous 

methylation reaction (% m/m 

trans-methyl esters) 

Indicative of adulteration with 

hydrogenated seed oils or low quality 

olive oil 

ΔAECN42 * |≤ 0.20| HPLC-RI and GC-FID 
Indicative of adulteration with 

unsaturated oils 

Sterols 

Cholesterol ≤ 0.5 

Brassicasterol ≤ 0.1 

Campesterol ≤ 4.0 

Stigmasterol < campesterol 

δ-7-stigmastenol ≤ 0.5 

Apparent β-sitosterol ≥ 93 

Several analytical steps: (i) 

Saponification of olive oil; (ii) 

Isolation by TLC; (iii) 

trimethylsilyl derivatization; (iv) 

GC-FID (% total sterols) 

Indicative of the presence of foreign 

oils  

Total sterols 

content 
≥ 1000 

Same as determination of sterols 

(mg/Kg) 

Indicative of the presence of foreign 

oils  

Triterpene 

alcohols 
Erythrodiol + uvaol ≤ 4.5 

Same as determination of sterols 

(% total sterols) 

Indicative of the presence of pomace 

oil as well as grape seed oil 

Wax content ≤ 150 

Isolation by silica-gel column 

chromatography and subsequent 

GC analysis (mg/Kg oil)  

Indicative of the presence of pomace 

oils  

Total aliphatic 

acids content 

Total aliphatic acid content is used in 

combination with other parameters 

to distinguish the presence of 

lampante or pomace oils ** 

Same as determination of wax 

content (mg/Kg oil) 

Indicative of the presence of lampante 

and pomace oils 

Stigmastadien

es 
≤ 0.05 

Preparative chromatography 

followed by GC-FID (mg/Kg oil) 

Indicative of the presence of refined 

oils 

2-

glycerylmono

palmitate 

If C16:0 ≤ 14.00%; 2P < 0.9%  

If C16:0 > 14.00%, 2P ≤ 1.0% 

Several analytical steps: (i) 

enzymatic hydrolysis of TAGs; 

(ii) silica gel chromatography; 

(iii) trimethylsilyl derivatization; 

(iv) GC-FID (%) 

Indicative of the presence of refined 

oils 

* AECN42: Maximum difference between the actual and theoretical ECN 42 triacylglycerol content (%). ** When the oil 

has a wax content between 300 mg/kg and 350 mg/kg it is considered a lampante virgin olive oil if the total aliphatic 

alcohol content is < 350 mg/kg or the erythrodiol + uvaol content is < 3.5%.; When the oil has a wax content between 300 

mg/kg and 350 mg/kg it is considered a crude olive pomace oil if the total aliphatic alcohol content is > 350 mg/kg and the 

erythrodiol + uvaol content is > 3.5% [92]. 
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Table 5. Main MIR absorption band assignments for extra-virgin olive oil [108,111]. 

Wavenumber (cm−1) Functional Group Type of Vibration 

3005 C–H cis=C–H stretching 

2955 –CH3 Asymmetrical stretching  

2924 –CH2 Asymmetrical stretching 

2855 –CH2 and CH3 Symmetrical stretching 

1746 C=O C=O stretching (ester groups of TGAs) 

1653 C=C cis–CH=CH- stretching 

1462–1377 C–H –CH3 and –CH2 bending 

1162 C–O C–O stretching (ester groups) 

990–960 C–H trans=C–H bending 

Several studies (Table 6) have been reported using MIR spectroscopy combined with 

different multivariate analysis models to assess the adulteration of extra-virgin olive oil 

(EVOO) with various vegetable oils including grape seed, soybean and walnut oils 

[109,112,113], pumpkin seed oil [114], canola oil [112,115], corn and sunflower oils 

[116,117], rice bran oil [118], sesame oil [119], peanut and rapeseed oils [120,121] and 

hazelnut oil [122]. Although all IR spectra of EVOO and each vegetable oil looked very 

similar at first sight, some important differences regarding the exact location and intensity 

of the main absorption bands were noteworthy. Therefore, it was crucial to select and 

optimize the wavenumber regions that yield the smallest misclassification of EVOO and 

corresponding mixtures of foreign oils. The wavenumbers selection depends on the oil 

used to produce the EVOO adulteration due to the changes in fatty acid composition and 

content. For example, for pumpkin seed adulteration studies the selected frequency 

ranges were 3020–2995 cm−1 and 1070–900 cm−1 [114], whereas for sesame oil adulteration 

studies the selected frequency ranges were 3050–2927 cm−1, 1517–1222 cm−1 and 1207–1018 

cm−1 [119]. In some of these studies, classification of EVOO and adulterated mixtures was 

performed using Discriminant Analysis, resulting in 100% accurate classification of pure 

and adulterated EVOOs. Moreover, for quantification purposes the adulterated samples 

were divided into calibration, prediction and validated sets, and the performance of PLS 

and PCR regression algorithms were compared. PLS showed a better performance in all 

studies, exhibiting higher coefficient of determination and lower root mean square error 

of calibration and validation. 

Didham et al. [123] compared the ability of UV-VIS and ATR-MIR spectroscopy 

associated to PCA and PLS-DA models to detect and quantify artificial adulteration of 

EVOO with canola and sunflower oils. Two sets of mixtures were prepared adding the 

vegetable oils to EVOO (10% to 50% and 0.2% to 1%). Both spectroscopic methods were 

able to detect levels of adulteration higher than 10%, but fail to detect low levels of 

adulteration. Uncu and Ozen [124] compared the performance of three spectroscopic 

techniques (fluorescence, FTIR, and UV-visible) in the detection and quantification of 

adulteration of fresh olive oils with olive oils from the previous harvest year [124]. Spectra 

of fresh and adulterated samples were visually compared for the three studied techniques 

revealing evident differences between UV-vis and fluorescence spectroscopy. On the 

other hand, no significant differences were observed in the FTIR spectra. Orthogonal 

Partial Least Square-Discriminant Analysis (oPLS-DA) and Partial Least Squares (PLS) 

regression techniques were used to distinguish adulterated from non-adulterated oils. 

oPLS-DA classification models were created using the individual and combined data from 

the three techniques. All models were able to successfully discriminate fresh and old olive 

oils and their mixtures with over 90% correction. Moreover, fluorescence and the 

combination of FT-IR and UV-Vis provided better results in the quantification of 

adulteration than the two other individual spectroscopic techniques and were also 

successfully used to predict adulteration levels with high coefficient of determinations for 
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both calibration (0.94 and 0.98) and prediction (0.91 and 0.97) and low error values for 

calibration (4.22% and 2.68%), and prediction (5.20% and 2.82%) [124]. 

Due the high complexity of data obtained in food analyses, there has been an 

increasing request for more accurate pattern classification algorithms. New multivariate 

classification models have been investigated, including Back Propagation-Artificial 

Neural Network, Least Square-Support Vector Machine and Continuous Locality 

Preserving Projections technique coupled with k-Nearest Neighbors on the adulteration 

of extra-virgin olive oil with peanut and rapeseed oils [120] and hazelnut oil [122]. 

In a recent study, Xu et al. used FTIR spectroscopy associated with three multivariate 

calibration algorithms, namely, Linear Discriminant Analysis, Back Propagation-Artificial 

Neural Network and Least Square-Support Vector Machine to verify the adulteration of 

EVOO with peanut and rapeseed oils [120]. Remarkable differences were observed among 

the performance of the three models. Least Square-Support Vector Machine achieved a 

higher discrimination rate of 92.5% when compared with Linear Discriminant Analysis 

(85%) and Back Propagation-Artificial Neural Network (82.5%) classification algorithms. 

The authors concluded that FTIR spectroscopy could provide a rapid detection of 

adulterated EVOO when combine with a properly selected and accurate multivariate 

calibration model [120]. 

FT-MIR has also been broadly used to evaluate the quality and authenticity of olive 

oils [125,126], as well as to determine its geographic and varietal origin [127–130]. In this 

context, several chemometric models have been developed taking in account the 

fingerprint of different chemical compounds such as triglycerides, fatty acids or steroids 

[106]. Relevant examples are summarized in Table 6. 

In a recent study, Üçüncüoǧlu and Küçük aimed at classifying fresh Turkish virgin 

olive oils based on cultivar and geographic origin as well as detecting possible chemical 

differences on lipid structure at the end of twelve month storage, using FTIR coupled with 

Principal Component Analysis [125]. The method successfully defined the different 

varieties of olive oil. Furthermore, a fingerprint of the slow-paced oxidation process could 

also be deduced from the bands at 3008, 2924, 1745 cm−1, corresponding to the symmetric 

and asymmetric stretching vibration of aldehydes, ketones, alcohols and hydroperoxides, 

which were found to be more intense at the end of the storage time [125]. A research 

comparing the performance of NIR, MIR spectroscopy and electronic nose (e-nose) on 

discrimination of different varieties of Turkish olive oils was reported by Jolayemi et al. 

[127]. Principal Component Analysis and orthogonal partial least square-discriminant 

analysis models were applied. Correct classification of samples were obtained for NIR and 

combined MIR and NIR techniques (higher than 90%), in comparison with e-nose 

technique (82%) that is suggested to be used as a complementary method to human 

sensory analysis [127]. A total of fifty-five EVOOs from seven Tunisian cultivars were 

successfully discriminated using MIR and linear discriminant analysis [128]. Using 20 

spectral regions, mainly corresponding to vibrations associated with C–H, C–O, C=C 

(aromatic), and =C–H groups all the samples were correctly classified. Moreover, multiple 

linear regression was used to detect mixtures of EVOOs from different cultivars with an 

average validation error below 6% [128]. 
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Table 6. Application of FT-MIR spectroscopy to the analysis of olive oils. 

Product/Reference Sampling 
Wavenumber Range 

(cm−1) 

Multivariate 

Analysis 
Aim/Comments 

Australian commercial 

EVOO [123] 
ATR 4000–650 PCA; PLS-DA 

Identification and quantification 

of vegetable oils (canola and 

sunflower) to olive oil (artificial 

adulteration) 

Olive oils from Turkey 

(harvested in 2016 and 

2015) [124] 

ATR 4000–650 PLS-DA; oPLS-DA 

Detection of adulteration of 

fresh olive oils with old olive 

oils 

Brazilian commercial 

EVOO [112] 
ATR 3200–650 PLS 

Identification of EVOO adulter-

ated with different vegetable oils 

(soybean, sunflower, corn, and 

canola oil) at different levels (1 

to 80%, v/v). 

EVOO [120] ATR 4000–700 
LDA; BP-ANN; 

LS-SVM 

Adulteration of EVOO with 

pure peanut oil and pure rape-

seed oil. LS-SVM showed the 

best performance. 

Italian and Greek EVOO 

[122] 
ATR 4000–550 CLPP 

Development of a novel continu-

ous statistic model to rapidly de-

tect adulteration of olive oil with 

hazelnut oil 

Commercial EVOO 

[109,114–

116,118,119,131] 

ATR 

3018–3002 and 1200–

1000 (grape seed and 

soybean oils); 3029–

2954 and 1125–667 

(walnut oil); 3020–2995 

and 1070–900 (pump-

kin seed oil); 3028–2985 

and 1200–987 (canola 

oil); 3027–3000, 1076–

860 and 790–698 (corn 

oil); 3025–3000 and 

1400–985 (sunflower 

oil); 3050–2927, 1517–

1222 and 1207–1018 

(sesame oil); 3020–3000 

and 1200–900 (rice bran 

oil) 

DA; 

PLS; 

PCR; 

Adulteration of EVOO with 

grape seed, soybean, and wal-

nut, pumpkin seed, canola, corn, 

sunflower, sesame and rice bran 

oils 

Commercial EVOO 

[121] 
ATR 1800–650; 3000–2800 

PLS-DA; 

MC-UVE 

Adulteration of olive oil with 

peanut oil. 

PLS-DA model using the varia-

bles selected by the modified 

MC-UVE provided 97.6% accu-

racy, and 100% classification rate 

Commercial EVOO 

[113] 
ATR 4000–400 - 

Adulteration with soybean oil; 

Changes in oil in response to 

high temperatures 
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EVOO from Italy, 

Greece, Spain and China 

[117] 

ATR 4000–650 
PCA; PLS; 

SLLE 

Adulteration with camellia, soy-

bean sunflower and corn oils (1 

to 90%). SLLE gave satisfactory 

results. 

Italian commercial 

EVOO [132] 
ATR 4000–700 PLS 

A multi-stage strategy was de-

veloped as a powerful tool for 

monitoring the purity of EVOO 

and performing qualitative and 

quantitative determinations of 

adulterants. 

Turkish olive oils (in-

cluding “Ayvalık” and 

“Memecik” cultivars) 

[125] 

ATR 4000–400 PCA 

Discrimination of VOO by culti-

var, geographic origin and stor-

age time 

Turkish olive oils (Ayva-

lik, Memecik, and 

Erkence cultivars) [127] 

ATR 

4000–700 

(3090–2750 and 1874–

700) 

PCA 

oPLS-DA 

Comparison of the discriminant 

abilities of NIR, MIR, and e-nose 

on authentication of different 

varieties of Turkish olive oil. 

EVOO from seven Tuni-

sian cultivars [128] 
ATR 4000–600 

LDA 

MLR 

Classification of Tunisian EVOO 

according to their cultivar 

Moroccan virgin olive 

oils [126] 
ATR 4000–600 PLS-DA 

Discrimination of four commer-

cial olive oil grades 

Italian monovarietal 

EVOO [133] 

ATR  

Transmission 

(NIR) 

4000–700 
PCA 

LDA, SIMCA 

Classification of Italian EVOO 

according to the cultivar. NIR 

and MIR techniques were com-

pared giving similar results 

Croatian EVOO [129] ATR 4000–600 
PCA 

HCA 

Geographic classification of 48 

EVOO 

EVOO from Italy (Sabina 

PDO) and other coun-

tries [130] 

ATR (MIR) 

Transmission 

(NIR) 

4000–630 
PLS-DA 

SIMCA 

Comparison of NIR and MIR 

spectroscopy. NIR provided bet-

ter predictions than MIR  

EVOO: Extra-virgin olive oil; BP-ANN: Back Propagation Artificial Neural Network; CLPP: Continuous Locality Preserv-

ing Projection; DA: Discriminant Analysis; HCA: Hierarchical Cluster Analysis; kNN: k-Nearest Neighbor; LS-SVM: Least 

Square Support Vector Machine; LDA: Linear Discriminant Analysis; MC-UVE: Monte Carlo Uninformative Variable 

Elimination; MLR: Multiple Linear Regression; oPLS: orthogonal Partial Least Squares; PCA: Principal Component Anal-

ysis; PLS: Partial Least Squares; PLS-DA: Partial Least Squares-Discriminant Analysis; SIMCA: Soft Independent Model-

ing of Class Analogy; SLLE: Supervised Locally Linear Embedding. 

4.5. Wine 

Wine is a traditional alcoholic beverage and due to its high economic importance, it 

is one of the most common beverages subject to fraud and mislabeling. The wine manip-

ulations may be due to changes in intrinsic properties (for example, dilution of wines with 

water, addition of alcohol, coloring or flavoring substances) or changes in extrinsic prop-

erties (for example, fraudulent misrepresentation of the geographical origin) [134]. Wine 

is mainly composed of water and ethanol (95%). Other components such as glycerol, or-

ganic acids, carbohydrates, minerals, volatile compounds, and phenolic compounds, 

among others, represent <5% [135,136]. The majority of the phenolic constituents found in 

wine are grape-derived and in red wine, tannins and anthocyanins are the most important 

phenolic classes. Tannins are responsible for the stabilization of the color and the sensory 

characteristics of the wines due to their astringent and bitter properties [137]. In white 

wine, the most important phenolic compounds are the hydroxycinnamic acids and to a 
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lesser extent, the flavan-3-ol monomers [137]. The methods based on the FTIR-ATR tech-

nique have a huge application in the wine industry because they have the ability to sim-

ultaneously measure several analytes in the same sample at the same time, which makes 

this technique very attractive for use in both industry and research. The potential of MIR- 

ATR for the rapid analysis of multiple wine components has been extensively reported. 

Relevant examples are summarized in Table 7. Different applications of this spectroscopic 

technique to wine have been published, such as the measurement of phenolic compounds 

as well the total antioxidant activity of wines [138–140], or as a tool for the control of wine 

maturation time [141,142], the monitoring of sugars, alcohol, and organic acids [138], 

among others. Furthermore, over the last decades, many studies have shown that MIR 

spectroscopy combined with multivariate data analysis is a valuable tool both in assessing 

wine quality and its geographical origin as well its authentication and fraud. In a recent 

work, Geană et al. [143] executed a feasibility study on the use of MIR-ATR and UV-Vis 

spectra combined with multivariate statistical tools to classify samples of authentic red 

wines (n = 39), made from different red grape varieties and produced in a single area, 

Dobrogea region. These wines from Romania were from different years of harvest (from 

2009 to 2017). The spectra of all wines showed similar peaks and only minor differences 

can be observed in specific areas of the spectra. In this work, the authors focused on the 

1600–900 cm−1 spectral region, and consequently it was selected for statistical analysis 

since absorptions in this region are due mainly to the stretching and bending vibrations 

associated with phenolic compounds. In order to classify the wine samples according to 

the variety and year of harvest, several multivariate analysis tools were used, such as 

Principal Component Analysis, Partial Least Squares Discriminant Analysis and Linear 

Discriminant analysis. In this study, the spectral data were directly statistically processed, 

without any prior pre-treatment. The authors concluded that UV-Vis spectroscopy is more 

appropriate for varietal discrimination of red wines, while MIR spectroscopy was more 

efficient for the prediction of wine vintage year since a clear discrimination of aged wines 

(over six years) was observed. Using a similar approach, Banc et al. [139], assessed the 

potential of FTIR-ATR to characterize 15 different Romanian wines (white, rosé and red 

wines), obtained from different authentic, origin-denominated cultivars, and produced in 

the vintage years 2008–2012. In this study, MIR absorption spectra of each wine were split-

ted in four regions corresponding to the most important components, phenolics (600–940 

cm−1), carbohydrates (970–1100 cm−1), amino acids and organic acids (1600–1700 cm−1). In 

the last region (2800–3000 cm−1), all wines absorbed at the same wave numbers, 2887 and 

2931 cm−1. Principal Component Analysis and Hierarchical Cluster Analysis was per-

formed in order to identify the specific discrimination factors useful to authenticate the 

biological (cultivar) and regional origin, as well their sweetness index. The authors 

showed that the combination of MIR-ATR and chemometric techniques presented in this 

study allowed almost complete discrimination between samples and might be used as a 

technique for the discrimination between different red, rosé and white wine varieties. 

Recently, MIR was successfully applied for discriminating among different Italian 

monovarietal red wines (n = 110), vintage 2016, based on the relationship between grape 

variety (n = 11) and wine composition, in particular phenolic compounds [140]. The au-

thors selected multivariate tools, Principal Component Analysis, Linear Discriminant 

Analysis, Soft Intelligent Modelling of Class Analogy, and Support Vector Machine, in 

order to classify the red wines according to their grape variety. The best result was ob-

tained with the Support Vector Machine model, which achieved an overall correct classi-

fication for up to 72.2% of the training set, and 44.4% for the validation set of wines, re-

spectively. Ioannou-Papayianni et al. [144] reported a work using MIR and chemometrics, 

in order to study the authenticity and uniqueness of the Cypriot traditional wine, “Com-

mandaria” wine that is produced from sun-dried grapes. Different sweet wines were an-

alyzed (n = 65) to compare the infrared spectra of 31 Cypriot samples “Commandaria” (19 

non-fortified, 12 fortified, fortified meaning that alcohol of grape origin was added during 

manufacture) and 7 commercial “Commandaria type” (home produced) with that of 27 
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other sweet wines (3 from Cyprus, 12 from Greece, and 10 from other countries). The spec-

tra were statistically analyzed using multivariate chemometric techniques, involving Prin-

cipal Component Analysis, Cluster Analysis, Linear and Regularized Discriminant Anal-

ysis, and Classification and Regression Trees. The best results were obtained using Prin-

cipal Component Analysis, and the total correct recognition ability was very high with 

both Regularized Discriminant Analysis and Classification and Regression models, but 

the prediction for “Commandaria” was higher using Regularized Discriminant Analysis. 

The authors concluded that these investigation allowed a nearly correct classification for 

Commandaria. 

Findings reported by Hu et al. [145] showed that MIR and NIR spectroscopy and 

multivariate chemometric techniques could be used to classify Cabernet Sauvignon wines 

from different countries. All studied samples (n = 540) were from 2010 to 2016 vintages. 

Cabernet Sauvignon is considered as an ancient and traditional red wine grape variety 

derived its fame from the south west of France, and in emerging grape growing regions, 

such as Australia, Chile and China. In this work, the authors observed that through the 

Tri-step infrared spectroscopy, a spectral technique integrating Fourier transform infrared 

spectroscopy, second derivative infrared spectroscopy and two-dimensional correlation 

infrared spectroscopy, it was possible to reveal the main constituents in complicated mix-

ture systems and distinguishing the types and contents of chemical components in highly 

similar matrices, as the wines investigated here. Combining the spectral characteristics 

extracted from Tri-step IR analysis and chemometric techniques, authors concluded that 

Soft Independent Modeling of Class Analogy models correctly classified 97%, 97% and 

92% of Australian, Chilean and Chinese Cabernet Sauvignon wines, while the Discrimi-

nant Analysis models correctly classified 86%, 85% and 77%, respectively. This work is 

yet another recent example of the suitability of FTIR and chemometric methods to estab-

lish models of geographical origin traceability [145]. 

Table 7. Application of FT-MIR spectroscopy to the analysis of wine. 

Product/Reference Sampling 
Wavenumber 

Range (cm−1) 

Multivari-

ate Analy-

sis 

Aims/Comments 

Romanian red wines [143] ATR 

1600–900 

Coupled with 

UV-Vis (250–

600 nm) 

PCA; PLS-

DA; LDA 

Comparison of UV-vis and FTIR spectroscopy for 

discrimination and classification of red wines; UV-Vis 

spectroscopy is more appropriate for varietal discrimination 

while FT-IR spectroscopy was more appropriate for vintage 

year prediction 

White, rosé and red 

Romanian wines [139] 
ATR 1800–600 PCA; HCA 

Method able to discriminate each wine category as a 

consequence of their biological (cultivar) specificity. 

Italian mono varietal red 

wines (11 grape varieties) 

[140] 

ATR 1500–700 

PCA; DA; 

SVM; 

SIMCA 

Evaluation of quality and authentication of red wines; A 

peculiar MIR pattern for some Italian grape cultivars was 

observed. The study of the effect of other variables such as 

vintage will be done in the future 

Sweet wines from Cyprus 

and other countries [144] 

Transmission 

(KBr); ATR 
1900–750 

PCA; CA; 

LDA; 

CART 

Diferentiation of Cypriot traditional sweet wine 

“Commandaria” from other sweet wines from various 

countries and of Cypriot provenance. 

Cabernet Sauvignon wines 

from Australia, Chile and 

China [145] 

Transmission 

(KBr); ATR 

1750–1000 

Coupled with 

NIR (4555–

4353) 

PCA; 

SIMCA; 

DA 

Authenthication and geographical origin traceability  

CART: Classification and Regression Trees; DA: Discriminant Analysis; HCA: Hierarchical Cluster Analysis; LDA: Linear 

Discriminant Analysis; PCA: Principal Component Analysis; PLS: Partial Least Squares; PLS-DA: Partial Least Squares-

Discriminant Analysis; SIMCA: Soft Independent Modeling of Class Analogy; SLLE: Supervised Locally Linear Embed-

ding; SVM: Support Vector Machine. 
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5. Future Perspectives 

This review focused on the recent research on MIR spectroscopy for the analysis of 

five foodstuffs that are considered more susceptible to fraudulent acts, namely, coffee, 

dairy products, honey, olive oil and wine. Altogether, the information gathered is very 

relevant since it embraces the efforts of several academic research groups worldwide, and 

clearly reveals that the MIR spectroscopy associated with attenuated total reflection ac-

quisition mode and different chemometric tools could be broadly applied to address qual-

ity, authenticity and adulteration issues. Nevertheless, the majority of these studies are 

purely academic. In order to be further applied as a potential analytical tool in official 

food control procedures, several challenges must be overcome [4,146]. The implementa-

tion of validated standard methods are of utmost importance aiming at assuring a high 

level of reproducibility across different laboratories, equipment and analyses, allowing 

data to be comparable, which is mandatory in official food control procedures [146]. In 

this context, validation guidelines are urgently needed to standardize all the steps of 

method development in MIR spectroscopy. Choosing an adequate source of samples is 

also essential for method development. The origin of samples should be known, prefera-

bly from reputable producers rather than from commercial outlets or markets. Certified 

reference materials should be used whenever possible [4]. For both method development 

and validation, it is also imperative to collect a sufficient number of representative sam-

ples in order to cover all sample variations and develop a robust model that could be 

further employed for legal and regulatory purposes. Furthermore, the choice of the most 

appropriate chemometric methodology is another issue that must be addressed. A pleth-

ora of multivariate analyses have been employed for processing the vast collection of spec-

tral data. Some of these software tools are expensive and data analysis require time for the 

complex statistical treatments and specific abilities to interpret the results. 

With the constant change of food industry in the recent decades, the use of new tech-

nologies has intensified and plays an increasingly important role in this sector. Big data 

analytics, IoT (internet of things) and cloud computing, technologies that are all under the 

umbrella of Industry 4.0 can make a significant difference in the food and beverage sector 

with regard to compliance and product provenance. Many examples of application of In-

dustry 4.0’s in Food Industry have been reported [147–150]. As mentioned in this review, 

food authenticity has recently been a major concern and priority as well as food safety. 

For example, the IoT technology, a technology-Key Industry 4.0, has proven to be a solu-

tion to this concern, since it identifies the product and provide traceability from cultiva-

tion to the production chain for food processing [151]. In the future, Industry 4.0 will allow 

food production systems to produce better food and beverages, make a big leap in terms 

of productivity improvements, as well as in improving food quality. 

6. Conclusions 

Food adulteration and food authenticity are issues of increasingly high concern to 

consumers and to all stakeholders involved in the food production and food industry. 

Nowadays, several physicochemical and instrumental analytical methodologies exist to 

detect fraud. The vast majority of these methods are based on a target approach focusing 

on the detection of a specific compound or a family of compounds. These assays are often 

complex and time-consuming, requiring several steps for sample preparation and highly 

qualified laboratory technicians, being less suitable for routine or large-scale analyses. 

Furthermore, as most adulterants are unknown, it is very unlikely that they could be de-

tected using target methodologies [4]. In the last years, with the urgent need to develop 

new tools, researcher’s attention has been focused on the application of untargeted meth-

odologies to food analyses. Untargeted methods such as spectroscopic (IR, Raman, NMR), 

hyperspectral imaging and chromatographic techniques (GC-MS and HPLC-MS) provide 

a molecular fingerprint of the whole food matrix. In particular, MIR spectroscopy has 

emerged as a potential analytical tool and has been considered an alternative to other 
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more expensive and complex methods, being suitable for implementation in factories dur-

ing the production process as well as in quality control laboratories. Since it is considered 

a high-throughput approach, some advantages of this methodology include the speed of 

analyses, simple or no-sample preparation, fast acquisition of spectra and the possible 

detection of unexpected adulterants or unexpected deviations to the reference samples 

[152]. Due to the large and complex spectral data sets provided by MIR spectroscopy, it is 

mandatory to employ chemometric analyses that allow the extraction of relevant infor-

mation and the conception of models that could be used to perform exploratory studies 

and define important features of samples or predict analyses on new samples [27]. In con-

clusion, we believe that MIR spectroscopy is a rapid and valuable tool that could be useful 

as a preliminary screening of a commodity, particularly when fast and robust methods 

are necessary in order to accept or reject a product or a batch before its introduction in a 

food chain. Nevertheless, further confirmatory analysis may be required using already 

validated target methods that accomplished the current legislation for official food con-

trol. 
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