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Abstract: Food preservation technologies are currently facing important challenges at extending the
shelf-life of perishable food products (e.g., meat, fish, milk, eggs, and many raw fruits and vegetables)
that help to meet the daily nutrient requirement demand. In addition, food preservation has gone
beyond only preservation; the current techniques are focused on the fulfillment of two additional
objectives, the suitability of the used processes and generation of environmentally friendly products
with non-presence of any side effect on health. Moreover, they are also looking for additional
nutritional properties. One of these preservation protocols deals with the use of edible films and
coatings. Therefore, this review shows an overview of synthetic materials (e.g., glass, aluminum,
plastic, and paperboard), as well as the regulations that limit their application in food packaging.
Further, this review releases the current-state-of-the-art of the use of films and edible coatings as
an alternative to conventional packaging, providing the main features that these biodegradable
packaging should meet towards specific uses for the conservation and improvement of various food
products. Herein, particular attention has been paid to the main used components (e.g., biopolymers,
additives, bioactive, and probiotic components), manufacturing methods (for edible films or coatings)
and their application to specific products. In addition, an outlook of the application of edible films
and coatings as quality indicators of perishable products is shown.

Keywords: polysaccharides; lipids; proteins; edible films; edible coatings; conservation; qual-
ity; foods

1. Introduction

The packaging is likely the most important method for food preservation due to
protects, preserves and provides the needed information about the product, while allows
the product commercialization and distribution [1,2]. The packaging’s characteristics
depend on the food product that is desired to be protected. To date, different materials
have been employed as packaging materials, such as paper, cardboard, metal, glass, plastic,
among others [3]. However, it is likely that this traditional preservation method is the one
that produces large quantities of urban solid wastes (USW). For instance, according to the
most recent data (in 2018) provided by the Ministry of Environment and Natural Resources
(SEMARNAT) of Mexico, production of about 102,895 USW ton per day is generated, which
corresponds to paper, cardboard, glass, and some metals (aluminum). Figure 1 illustrates
the percentages that correspond to each material [4]. Despite the campaigns promoted by
the Secretary of the Environment (SEDEMA) regarding integral waste management, only
10% of the total USW is recycled [4,5]. Therefore, most of the packaging materials have
unique use before being discarded.
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and evolved as an option to replace traditional materials that cannot be recycled. Such biodegradable 
materials can protect the product while their production, recycling, and degradation are relatively 
easy [1]. Generally, most of the biodegradable packaging implies the use of environmentally friendly 
polymeric materials aiming for the preservation of quality and extending the self-time of the 
minimally processed products, such as fruits and vegetables [7,8]. Herein, the goal of this review 
paper is to provide an overview of the current-state-of-the-art of the use of edible films and coatings 
in different foods, paying special attention to the main used components (e.g., biopolymers, 
additives, bioactive, and probiotic components), manufacturing methods (for edible films or 
coatings) and their application to specific products. Moreover, this review provides the main features 
that biodegradable packaging should meet to be considered as edible films and coatings towards 
specific uses for the conservation and improvement of various food products. 
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characteristics of the food [2,9]. In addition to this, the packaging must not interact with the product 
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Figure 1. Distribution of packaging materials as part of the generation of urban solid waste (USW) [4].

On the other hand, companies, which prefer to recycle the materials, are also facing
the issue of classification since most of the packages are constituted by a mixture of
materials with different characteristics. At this point, the recovery, selection, cleaning and
reprocessing of materials make the recycling a complicated and expensive task [2]. For this
reason, renewable raw materials have been deeply explored in recent years at aiming to
minimize pollution problems through alternative biodegradable packaging [6]. In this
way, packaging based on biodegradable materials have emerged and evolved as an option
to replace traditional materials that cannot be recycled. Such biodegradable materials
can protect the product while their production, recycling, and degradation are relatively
easy [1]. Generally, most of the biodegradable packaging implies the use of environmentally
friendly polymeric materials aiming for the preservation of quality and extending the self-
time of the minimally processed products, such as fruits and vegetables [7,8]. Herein,
the goal of this review paper is to provide an overview of the current-state-of-the-art of
the use of edible films and coatings in different foods, paying special attention to the
main used components (e.g., biopolymers, additives, bioactive, and probiotic components),
manufacturing methods (for edible films or coatings) and their application to specific
products. Moreover, this review provides the main features that biodegradable packaging
should meet to be considered as edible films and coatings towards specific uses for the
conservation and improvement of various food products.

2. Food Packaging and its Role in Food Preservation

Once foods are minimally or fully processed, the packaging is becoming the most
important step due to allows their transportation from the factories to the point of sale or
distribution. Thereby, such material contributes to maintain most of the physicochemical,
functional, and organoleptic characteristics of the food [2,9]. In addition to this, the
packaging must not interact with the product and protect it from external damage of
chemical, physical, and biological type [2]. Chemical damage includes exposure to gases,
moisture and light; physical damage refers to any damage caused by any shock or vibration;
and biological damage is caused by the action of pathogens, insects, animals, or the
senescence of the food itself [9]. The next section addresses the overview of the different
food packaging materials, including plastic, metal, glass, paper, among others, towards the
preservation of the foods.

2.1. Conventional Food Packaging Materials

Plastic is the most known packaging material, and many petrochemical-based ma-
terials are currently used due to their availability at a relatively low cost. However,
environmental conservation regulations have strongly restricted their use as packaging
materials since they are not fully recyclable or biodegradable [10]. In the case of paper, it is



Foods 2021, 10, 249 3 of 26

used as packaging due to the fact that it comes from a biodegradable matter; nevertheless,
being in contact with food loses its physical appearance and prevents its protection. This is
one of the main reasons to combine it with other materials, such as plastic and aluminum.
Unfortunately, paper loses its biodegradable effect and the feature to be recycled [11].

Glass is likely the oldest material used as packaging. It is chemically inert and odorless
making its use very wide. Nowadays, the packages based on the glass are thin and resistant
to sterilization treatments at high temperatures and pressures [9]. Metals are the most
versatile material in all forms of packaging since it is highly resistant and fully recyclable.
Aluminum and steel are found as the most common metals. Aluminum has the advantage
of being moldable to the product, while steel is only used as a container. In general, metal
gaskets protect against moisture, air, odors, and microorganisms [9].

Table 1 summarizes the type of packaging based on such materials and their advan-
tages and disadvantages as barrier types. Their selection depends specifically on the type of
food or product to be protected. For example, jellies and sauces without any preservatives
are mostly packed in glass containers because the protection against biological agents is
almost ensured, allowing their preservation for a long time [9]. The canned products are
mostly packaged in aluminum containers to avoid odor exchange and microbial contami-
nation [2,9]. While products of fast consumption due to their short life, such as milk, bread
and cookies, are usually packed in plasticized cardboard, being sufficient for protection in
short times [2].

Table 1. Some advantages, disadvantages of the conventional packing materials [2,9].

Packing Material Advantage Disadvantage Barrier Type Food Type

Glass Recyclable materials Susceptible to breakage
Protection for chemical and
biological agents, physical

damage, and odors

Sodas pop
Jellies
Sauces

Metal Recyclable materials Expensive compared to
other packing materials

Protection for chemical and
biological agents, physical

damage, and odors

Preserves
Juices
Fish

Plastic Cheap materials Association with other
packaging materials Permeability of gases and vapors

Sodas pop
Water
Bread

Paperboard Biodegradable materials Association with other
packaging materials

Protection from physical
damage, abrasions and crushing

Milk
Cookies

Eggs

2.2. Food Packaging Laws and Regulations

There are laws that regulate the quality control of packaging in terms of their inter-
action with the food products (packaging–product relationship). These regulations are
complex due to the diversity of specific packaging, variety of materials (such as paper,
glass, and plastic), presentations (e.g., boats, boxes, and bags), aggregates of presentations
(e.g., inks, adhesives, and seals) and the characteristics of the food products (e.g., moisture,
fat or alcohol content, pH, and freshness) [12]. The Food and Drug Administration (FDA)
has mentioned that any possible contamination packaging-product may be associated with
the recycling of the packaging material, exposed to any harmful substance from packaging
solutions, or generated during treatments (e.g., thermal or chemical). Likewise, such sub-
stances can be contained for a long time in reused packaging material [13]. Although, there
are standards that specify the maximum acceptable levels of chemical contaminants being
in contact with the foods [13]. Herein, the packaging should meet five basic requirements
to be commercially available: (i) the packaging should not display any human health risk,
(ii) the packaging should not change the physicochemical composition of the food, (iii) the
packaging should not change the organoleptic features of the food, (iv) the packaging
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must be manufactured and treated according to good manufacturing practices, and (v) the
packaging must not present misleading information about the contained product [12].

On the other hand, the legislation established by the International Organization for
Standardization (ISO) also deals with regulations that involve the production, distribution,
and use of packaging materials, such as ISO 18604:2013(E). Such regulations establish
the requirements that the different food packaging materials should meet in order to be
collected, processed, and recycled as a new feedstock [14]. Although these norms help to
control the quality of food products through adapting the packing materials; there are also
regulations that rule the environmental aspect of the waste production from packaging [15],
which have restricted the use of packages that contribute directly or indirectly to the
pollution of the flora and fauna. However, the total elimination of packaging is perhaps
impossible; this is due to the food needs always feasible protection during its distribution
that allows them to be maintained until consumption [9]. Whereas the European Union
legislation covers all materials that may be in direct or indirect contact with food, for
example, production machinery, kitchen utensils involved in filling and containers and
packaging used for distribution (regulation EC 10/2011). This regulation includes specific
specifications on the use of active and intelligent packaging (regulation EC 1935/2004) since
they can only release substances accredited as food additives and must be accompanied by
a declaration of conformity [16]. For this reason, by considering specific products, edible
films and coatings have become a latent and promising alternative to preserve and even
enhance the quality of the foods during their processing and storage [17]. Thereby, the
following sections of this review provide a critical overview in applying edible films and
coatings for food preservation, addressing the following aspects: main components and
their properties, feasible protocols and techniques for coating fabrication, and applications
and the most recent advances in the field.

3. Edible Films and Coatings as Packing Materials
3.1. Characteristics of Edible Films and Coatings

An edible film or coating is any material with a thickness of less than 0.3 mm [18],
which is formed from a combination of biopolymers and different additives (Section 3.2)
dispersed in aqueous media [19–21]. Some authors use the terms of edible film and coating
interchangeably; however, others consider that there is a distinction due to the techniques
of incorporation into the food product [22]. The edible coating is formed directly on the
food, while the edible film is previously made and then adhered to the product [22,23].
Despite this, in both cases, rigid matrices with similar characteristics are formed [6,24].

Figure 2 illustrates the main characteristics that edible films and coatings can present:
(i) protection against UV light [17]; (ii) transport of solutes (e.g., salts, additives, and pig-
ments), water vapor, organic vapors (e.g., aromas and solvents), and gases (e.g., oxygen,
carbon dioxide, nitrogen, and ethylene) between food and the atmosphere [17,25]; (iii) bar-
rier against mechanical damage (e.g., dents or cuts) [22]; (iv) increase the shelf-life of the
product [25]; (v) bioactive components (e.g., antioxidants) [26,27]; (vi) antimicrobial effect
against bacterial reproduction and fungal contamination (e.g., silver nanoparticles) [26,28];
(vii) healthy microorganisms (e.g., probiotics) that confer benefits to the consumer; and
(viii) biodegradable natural materials [22].
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3.2. Materials of Edible Films and Coatings

In addition to similar characteristics (Section 3.1), edible films and coatings are often
evaluated for their mechanical properties, such as elasticity modulus (EM), elongation
at break (E), and tensile strength (TS) [29–31], which refer to their elasticity and rigidity,
and the force necessary to break them [32]. Further, they display similar mass transfer
phenomena (i.e., permeation, adsorption, and diffusion), which is related to the transport
of solutes between food and the atmosphere [29]. However, both mechanical properties
and mass transfer phenomena are influenced by the type of material and manufacture
protocol that allows the generation of different structures of biopolymeric matrices [33–36].
Table 2 enlists the most used biopolymers and additives in the production of edible films
and coatings, together with their properties and functionality in packing.

Table 2. Main materials used and functionality in the manufacture of edible films and coatings [6,37–47].

Materials Examples Properties Function in Edible Films and Coatings

Biopolymers

Polysaccharides

Starch
Cellulose

Pectin
Gums

Chitosan
Agar

Alginate
Dextran

Thickeners
Gellants

Emulsifiers
Stabilizers

Coating

They form the base structure of a solid polymer matrix.

Proteins
Gelatin
Casein

Whey protein

Gellants
Thickeners
Stabilizers
Foaming

They help in the transport of antimicrobials and antioxidants.
They control the transport of gases (mainly oxygen).

Lipids
Waxes

Paraffin
Glycerides

Protectors
Coatings

They help to avoid drying or dehydration of the edible film
providing flexibility.

Additives

Plasticizers
Glycerol

Aloe
Resins

Viscosity
Resistance
Flexibility

They decrease the intermolecular force and the melting
temperature in the mixture.

They also modify the viscosity and the rheological properties.
Chaotropic agents Urea Destructuring agent They increase the solubility of polymers in water.

Others Polyphenols

Antioxidants
Stabilizers
Fungicides
Herbicides
Fertilizers

They work as stabilizers as well as protection for the products.
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Starch is considered the universal biopolymer for bio-packaging, which has been
widely used for decades [48], due to its characteristics and gelatinization properties [29].
Alginate is another important biopolymer that displays the ability to form hydrogels
and encapsulation barriers [49,50]. However, chitosan has recently attracted attention
for the elaboration of edible films and coatings [51] due to their properties as a gelling
agent and their chemical (it could form hydrogen bonds and hydrophobic interactions)
and biological (its biocompatibility, biodegradability, and bioactivity) properties [52,53].
While other authors have selected the use of other natural components for the formulation
of packaging, including proteins (e.g., collagen and protein isolates) [54,55], lipids (e.g.,
canola oil and cinnamon bark oil) [56,57], among other unconventional materials (e.g.,
smooth-hound protein and papaya puree) [58,59] to produce bio-packaging with targeted
characteristics.

On the other hand, the role of additives (e.g., plasticizers or stabilizers) in the for-
mulation of edible films and coatings is to modify the mechanical properties (to ideally
increase E and decrease TS and EM) and mass transfer phenomena [6,29]. Furthermore, the
incorporation of antioxidant, fungicidal, or microbial additives allows obtaining bioactive
bio-packaging [45,60]; which will be discussed in detail (Section 4).

3.3. Disperse Systems Forming Edible Films and Coatings

The biopolymeric materials used for the formulation of bio-packaging are incorporated
in different ways due to their glucidic (i.e., polysaccharides), proteinic or lipidic nature;
creating dispersed emulsion-type (i.e., based on lipids) or colloidal systems (i.e., based on
polysaccharides or proteins) [61]. Figure 3 outlines the two types of systems that can be
formed for the generation of edible films and coatings.
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Emulsions are systems composed of liquid or semi-liquid substances that are im-
miscible to each other, e.g., an oil and aqueous phase that can be merged by means of
an emulsifying agent. The emulsifying agent generally possesses a hydrophilic and a
hydrophobic zone, displaying an affinity to polar and non-polar sites [26,62]. Thus, emul-
sions can be classified in two types depending on the proportions of their phases, e.g.,
oil/water (o/w) or water/oil (w/o) because the dispersed phase corresponds to the second
component, being in lower concentration in the emulsion [61,63]. In the formulation of
edible films and coatings, the o/w systems are preferred (Figure 3A) since they are thermo-
dynamically more stable and they can dissolve lipophilic antimicrobial components (e.g.,
plant essential oils) and bioactive components (e.g., fatty acids, carotenoids, antioxidants,
phytosterols, or quinones) [26].

Colloid systems are polymeric systems that are made up of polysaccharides or proteins
dissolved in an aqueous phase [61]; they form a dense matrix that can protect active com-
ponents (e.g., antioxidant and antimicrobial agents) [64] and allow their controlled release
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in the matrix [65]. Due to the hydrophilic nature of polysaccharides and proteins, colloidal
systems are mostly used for the development of edible films and coatings since they can
transport and protect a large number of molecules that act as additives (e.g., essential
oils) [66,67] and probiotics (e.g., lactic acid bacteria) [68,69]. Colloidal systems do not form
a matrix with an ordered grouping in their polymeric components (Figure 3B) due to the
fact that different types of interactions (e.g., ionic, hydrogen bridges, or electrostatic interac-
tion) can be produced according to the type of biomaterial (i.e., protein or polysaccharide);
therefore, they tend to which generate matrices with varied characteristics [70,71].

The dispersed systems must be incorporated/coated into the product to dry (or vice
versa) and subsequently generate a rigid matrix that will act as an edible film or coating.
This will strictly depend on the type of application protocol [72]. The most used application
techniques are (A) dipped, (B) spread, (C) sprayed, and (D) wrapped, as illustrated in
Figure 4. The edible coating formulations are added and dried directly on the surface of
the food (Figure 4A–C), while the edible film formulations are poured into a mold and
dried to later be incorporated into the product (Figure 4D).
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4. Recent Advances in Edible Films and Coatings
4.1. Edible Films as Functional Bio-Packages

According to the definition given by Kris-Etherton et al. [73], a bioactive component
is any constituent contained in small amounts in food which can display effects on the
health after their consumption. Epidemiological studies have analyzed different bioactive
molecules (e.g., flavonoids and phytoestrogens), which in fact have been recognized by their
antioxidant, antimutagenic, anti-inflammatory, anti-cancer, apoptotic, and anti-cholesterol
effects [74–79]. Thus, various researches have been specifically focused on incorporating a
wide variety of these bioactive compounds into edible films, as enlisted in Table 3.
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Table 3. Edible films containing different types of bioactive compounds and natural extracts.

Bioactive Compounds Bio-Based Matrix Additives Functionality Reference

Propolis extract Cassava starch Beeswax Antimicrobial [80]
Grape cane extract Thermoplastic starch Glycerol Antifungal, antimicrobial [81]

Lactobacillus plantarum, Lactobacillus casei subsp. casei and Saccharomyces
boulardii Gelatin and low methoxyl pectin Glycerol Probiotic [82]

Tricholoma terreum extract Chitosan Glycerol and acetic acid Antioxidant, antimicrobial [83]
Eriobotrya japonica extract Starch and banana peel flour Glycerol Antioxidant [84]

Blackberry powder Arrowroot starch Glycerol Antioxidant [85]
Coconut water Coconut protein precipitate Glycerol Antioxidant [86]

Microencapsulated maltodextrin Carboxymethyl cellulose Glycerol and olive oil Antioxidant [87]
Prickly pear peel powder Carboxymethyl cellulose Glycerol Antioxidant [88]

Carrot β-carotenes Cassava starch Glycerol and sunflower oil Antioxidant [89]
Shrimp waste lipid extract Gelatin Glycerol Antioxidant, anti-inflammatory [90]

Lysozyme Zein Polyethylene glycol and ascorbic acid Antioxidant, antimicrobial [91]
Clove essential oil Soy protein isolate and microfibrillated cellulose Glycerol Antioxidant, antimicrobial [66]

Extracted spent coffee ground Cassava starch Polyvinyl alcohol and citric acid Antioxidant, antimicrobial [92]
Cinnamon oil Soybean polysaccharide Glycerol Antioxidant, antimicrobial [60]
Levofloxacin Bacterial cellulose and pectin − Antimicrobial [93]

Castor oil Alginate Glycerol Antimicrobial [67]

Nisaplin Hydroxypropyl methylcellulose and nanofibrillated
cellulose Glycerol Antimicrobial [94]

Lysozyme nanofibers Pullulan Glycerol Antimicrobial [95]
Carvacrol Halloysite nanotubes Polypropylene Antimicrobial [96]

Bitter vetch protein Mesoporous silica nanoparticles Glycerol Antimicrobial [97]
Poly [2-(acryloyloxy) ethyltrimethylammonium chloride] Chitosan − Antimicrobial [98]

Clove, cumin, caraway, marjoram, cinnamon, and coriander essential oils Alginate and montmorillonite Glycerol and tween 80 Antimicrobial [99]
Oregano essential oil Citrus peel pectin Glycerol Antimicrobial [100]

Clove, fennel, cypress, lavender, thyme, herb-of-the-cross, pine and
rosemary essential oils Chitosan and gelatin Glycerol Antimicrobial [101]

Cinnamaldehyde, linalool, isoeugenol and citral Ethylene-vinyl alcohol copolymer − Antifungal [102]
Cinnamaldehyde and graphite Chitosan − Antifungal [103]
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For example, several authors have evaluated the antioxidant capacity of edible films
with phenolic compounds extracted from various sources [85,86,89]. Nogueira et al. [85]
determined that the antioxidant activity of blackberry powder is related to its anthocyanin
content, and it was maintained when added to arrowroot starch edible films; furthermore,
the water solubility, water vapor permeability, TS and E properties were improved with
the addition of the powder, while the color and flavor characteristics of the blackberries
remained. Rodsamram and Sothomvit [86] elaborated edible films based on coconut protein
and coconut water, which presented antioxidant activity given by phenolic compounds of
coconut; also, the brown coloration of the edible films exerted a barrier towards UV light.
While Assis et al. [89] extracted and encapsulated β-carrot carotenes in a cassava starch
matrix, resulting in edible films with antioxidant activity and improved solute transport.
In these studies, the antioxidant effect was given by the action of bioactive substances
that cause a significant delay in the oxidation of the substrate, and also the inhibitions of
reactions involving free radicals [104].

Other authors have extracted oils from various sources, which have displayed antimi-
crobial activity; for example, Abdel Aziz et al. [67] incorporated castor oil to an alginate
matrix to generate edible films with an inhibitory effect against Staphylococcus aureus, Bacil-
lus subtilis, Salmonella typhi, and Escherichia coli. The greatest effect was noticed when
increasing the concentration of castor oil due to an increase in the hydrophilic character of
the edible films by the hydroxyl groups of edible oil, which easily dissolve the membrane
cell and provoke the uncontrolled transport of substances into the bacteria [105,106]. Al-
varez et al. [100] generated edible films of citrus peel pectin with oregano essential oil that
exerted an effect against Chromobacterium violaceum by inhibiting cell communication due
to the action of oregano essential oil [107]. Similarly, Alboofetileh et al. [99] used different
essential oils (i.e., clove, cumin, caraway, marjoram, cinnamon, and coriander essential oils)
in edible films based on alginate and montmorillonite. Thanks to the presence of the oils,
the films showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and
Listeria monocytogenes [99]; however, marjoram essential oil presented the highest inhibition
due to the control of cell growth; in addition, the biopolymeric matrix formed between
alginate and montmorillonite controlled the release of the oils, maintaining continuous
inhibitory effect [108].

Some other biologically active compounds, such as organic acids (e.g., acetic acid,
benzoic acid, sodium benzoate, and sorbic acid), peptides (e.g., nisin), and enzymes (e.g.,
lysozyme), have been incorporated into edible films and coatings for their antimicrobial
action [109]. The antifungal effect and low toxicity (for the consumer) of natural com-
ponents, such as citrus plants (e.g., lemon) or essential oils (e.g., cinnamon, clove and
oregano essential oils), have also been demonstrated [110]. For example, the increasing
of cinnamaldehyde concentration in chitosan-graph-based edible films has proven the
antifungal properties against Penicillium italicum and Rhizopus stolonifera [103]. In addition,
additives (i.e., cinnamaldehyde) improved the mechanical properties in terms of EM, E
and TS testing. Tarazona et al. [102] also evaluated cinnamaldehyde and other additives
(i.e., linalool, isoeugenol and citral) in edible films of ethylene-vinyl alcohol copolymer.
The results showed different antifungal activities against Aspergillus steynii and Aspergillus
tubingensis, but the effect was greater with the presence of cinnamaldehyde since there was
a total inhibition of fungi [102].

Bioactive components are able to concurrently display several properties, which may
produce a synergistic effect; for example, Ounkaew et al. [92] and Wei et al. [91] analyzed
the antioxidant and antimicrobial capacity of two different edible films with incorporated
organic acids. Ounkaew et al. [92] manufactured edible films based on cassava starch,
extracted spent coffee ground and citric acid; which exhibited antioxidant capacity and
inhibitory effect against Escherichia coli and Staphylococcus aureus given by the synergistic
effect between the biopolymer and additives, together with the increasing content of citric
acid. While Wei et al. [91] embedded lysozyme enzyme and ascorbic acid in zein-based
edible film. The authors reported that higher enzyme concentrations resulted in better
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antimicrobial properties against Listeria innocua and Micrococcus lysodeikticus), while the
increase of organic acids improved the antioxidant capacity of the edible films [91]; in
addition, a synergistic effect in flexibility and mechanical properties was seen between
zein, lysozyme and ascorbic acid.

4.2. Coatings as Pathogen Inhibitors in Food Models

Most of the characteristics of edible films and coatings are relevant; however, the
biological protection of food is one of the most important since it directly affects the shelf-
life of the product [111]. Therefore, it is necessary to inhibit or eliminate bacterial or fungal
microorganisms (as well as their derivatives) that can cause or accelerate putrefaction in
food due to the action of their enzymes and by-products produced from their metabolism
(e.g., gases) [112].

The lactic acid bacteria are generally recognized as safe (GRAS) and there are many
kinds of research that show the beneficial effects when acting in the consumer’s gastroin-
testinal tract (Figure 5) [113]. Thus, some authors have also focused on evaluating the
inhibitory effect of edible films with Lactic acid bacteria (LAB) and fungi activities against
pathogenic microorganisms applied in food models, as summarized in Table 4.Foods 2020, 9, x FOR PEER REVIEW 12 of 28 
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Figure 5. Schematic representation of the health benefits after probiotic consumption [113].

For example, Aloui et al. [117] inoculated the Wickerhamomyces anomalus in two differ-
ent edible films based on alginate and locust bean gum, and subsequently covered oranges
finding that the bacteria had greater stability in the alginate matrix; in addition, alginate
edible film managed to inhibit Penicillium digitatum and kept the fruit viable over 13 days.
Parafati et al. [116] also inoculated Wickerhamomyces anomalus, Metschnikowia pulcherrima
and Aureobasidium pullulans in mandarins coated with edible carob gum edible films; the
findings show a greater inhibitory effect with Metschnikowia pulcherrima against Penicillium
digitatum and Penicillium italicum.
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Table 4. Coatings with microorganism against pathogens applied in food models.

Biopolymeric Matrix Additives Food Type Microorganisms Inhibited Pathogens Reference

Alginate Glycerol Ham slices Lactobacillus plantarum and Lactobacillus
pentosus

Brochothrix thermosphacta, Pseudomonas
spp., Enterobacteriaceae, yeasts/molds

and Listeria monocytogenes
[114]

Hydroxypropylmethyl cellulose, sodium caseinate, pea
protein and corn starch Glycerol Grapes Candida sake Botrytis cinerea [115]

Locust bean gum − Mandarins Wickerhamomyces anomalus, Metschnikowia
pulcherrima and Aureobasidium pullulans

Penicillium digitatum and Penicillium
italicum [116]

Alginate and locust bean gum Glycerol Oranges Wickerhamomyces anomalus Penicillium digitatum [117]

Agar Glycerol and green tea extract Hake fillets Lactobacillus paracasei and Bifidobacterium
lactis

Shewanella putrefaciens and Photobacterium
phosphoreum [118]

Alginate and corn starch Glycerol Coated biscuits Lactobacillus plantarum Salmonella, Escherichia coli and
Streptococcus thermophilus [119]

Starch and alginate Glycerol Cold-smoked salmon covered Carnobacterium maltaromaticum Listeria monocytogenes [120]

Alginate Glycerol, palmitic acid and
β-cyclodextrin Strawberries Cryptococcus laurentii Mold [121]
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Other studies of microorganisms incubate in coatings for the control of pathogenic
fungi, as reported by Marín et al. and Fan et al. [115,121]. The first study evaluated several
edible films (i.e., hydroxypropylmethyl cellulose, sodium caseinate, pea protein and corn
starch) to serve as a support for Candida sake and later coat grapes to protect against Botrytis
cinerea [115]; although all biopolymers were adequate to inhibit the pathogen and maintain
the survival of Candida sake, the authors recommended the use of sodium caseinate and corn
starch since they represent the lowest cost. In the second study, Fan et al. [121] used alginate
edible film containing Cryptococcus laurentii to coat strawberries, the authors reported that
the microorganism remained viable, and the edible films significantly reduced mold and
improved the quality and physical appearance of the fruits.

4.3. Coatings as Probiotic Carriers in Food Models

Probiotics are a type of bioactive compounds with specific health benefits [122]. Ac-
cording to the definition in 2002 given by the Food and Agriculture Organization of the
United Nations/World Health Organization (FAO/WHO), probiotics are “live microor-
ganisms which, when administered in adequate amounts, confer a health benefit on the
host” [123]. LAB of the genus Lactobacillus have been widely studied for their probiotic
properties since they play an important role in preventing the deterioration of the mi-
crobiota and in the inhibition of pathogenic microorganisms (Table 4) at the oral cavity
and colon [124]. In addition, there is evidence that relates the metabolic activity of LABs
with the control of bacterial pathogens and fungal agents [113]; specifically, the authors
associate the inactivation of pathogens by the effect of organic acids (e.g., lactic and acetic
acids), carbon dioxide, ethanol, peptide compounds, and enzymes, that are produced
within LABs metabolism [125]. Other authors relate the decrease in pH with the inhibitory
effect because it generates an environment competition between the substrates of LABs
and pathogenic microorganisms [113,126]. For this reason, the most exhaustive studies in
probiotic evaluation have been carried out in the incorporation of microorganisms in edible
films and coatings, rather than on their inhibitory efficacy against external pathogens (due
to contamination of the environment). Figure 5 presents an overview of the main systems
and organs benefited by the consumption of probiotic microorganisms, highlighting (i) the
immune system: inflammatory control is maintained; (ii) the microbiota: the proliferation
of pathogenic microorganisms, such as Clostridium difficile and Helicobacter pylori, is reg-
ulated; (iii) the nervous system: brain functions are modulated; (iv) the urogenital tract:
urogenital infections are fought; (v) the placenta: probiotic microorganisms are transmitted
to the fetus; and (vi) the skin: allergies and atopic dermatitis is helped [113].

The main purpose of stabilizing or keeping probiotics viable is that once ingested, they
can withstand the conditions of gastric juices and intestinal fluids; in this way, they can be
dosed periodically to carry out their probiotic effect [72,113]. Therefore, Gbassi et al. [127]
studied the viability of Lactobacillus plantarum encapsulated in alginate and subsequently
introduced in an edible film of whey protein under gastrointestinal conditions (pH 1.8 at
37 ◦C); as a result, the probiotics remained viable until 180 min. This study is relevant due
to the simplicity of the matrix and its efficiency together with the costs of alginate and
whey protein [127].

Importantly, the main objective of a probiotic embedded in edible films is to study
and evaluate their viability within the matrix, as well as its interaction with the coated food
and its probiotic activity. Table 5 presents different studies in which edible coatings were
applied to food products, monitoring the viability of the probiotics directly on the product.
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Table 5. Edible coatings-probiotics applied in food models.

Biopolymeric Matrix Additives Probiotic Microorganisms Food Product Survival Time Reference

Maltodextrin, alginate and
carboxymethyl cellulose Glycerol Asparagus racemosus Chevon sausages 21 days [128]

Hydroxypropylmethyl
cellulose, sodium caseinate,

pea protein and corn
Glycerol Candida sake Grapes 14 days [129]

Methylcellulose Sorbitol and citric acid Lactobacillus plantarum Apples 90 days [130]
Alginate and whey protein Glycerol Lactobacillus rhamnosus Bread 7 days [131]
Carboxymethyl cellulose

and alginate − Brewer yeast Grapes 13 days [132]

Gelatin and glucose Sorbitol and cysteine Lactobacillus acidophilus and
Bifidobacterium bifidum Hake fish 15 days [133]

Corn starch − Lactobacillus acidophilus Bread 24 h [72]

The viability of microorganisms varies when the edible films are being individually
characterized in a specific product and stored under different conditions (e.g., temperature
and relative humidity). For example, Soukoulis et al. [131] evaluated the survival of
Lactobacillus rhamnosus in an alginate/whey protein matrix that covered bread. They
achieved to maintain the LAB stability for seven days at 25 ◦C. Compared with their
previous study [131], the authors found out that the viability time of Lactobacillus decreased
considerably (up to 93%) when the bread was stored at 4 ◦C; but the bacteria viability
increased up to 99 days when the matrix was not applied on the bread [134].

The difference in viability time of Lactobacillus plantarum can also be compared when
stored and treated under different conditions; as reported by Tavera-Quiroz et al. [130]
who incorporated Lactobacillus plantarum in a methylcellulose matrix to coat apple baked
snacks and maintain their viability up to 90 days in simulated in vitro gastric conditions
(two stages: pH 2.5 and 7.5, and 37 ◦C). Gbassi et al. [127] used a whey protein matrix
and similar gastric conditions to Tavera-Quiroz et al. [130], maintaining the Lactobacillus
plantarum viability for 180 min.

In particular, López De Lacey et al. [133] pointed out the importance of conserving
fresh products, such as fish, since they are highly perishable products and susceptible to
the development microorganisms and contamination [12,118]. The authors were able to
extend the shelf-life of Hake fish up to 15 days at refrigerated conditions (4 ◦C) [133], at
this point, Lactobacillus acidophilus and Bifidobacterium bifidum were deposited in a coating
of gelatin, sorbitol, and cysteine.

4.4. Edible Films and Coatings as Food Preservatives

Currently, the food industries have a duty to offer to the consumers fresh, pleasant,
good quality food with beneficial properties for health [8]. However, the challenge of meet-
ing consumer demands is very demand since there is no food that can remain in optimal
conditions and maintain its properties permanently due to the natural deterioration gener-
ated by chemical, and biochemical reactions and physical changes [135]. Figures 6 and 7
illustrate the different biochemical and physical defects developed in foods, respectively.
Commonly, observed spoilage changes include unpleasant odors, rancidity, darkening,
softening of the texture, and loss of nutrients and vitamins.
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Figure 7. Non-microbial spoilage physical defects in foods [136].

Food spoilage is influenced by oxygen availability, temperature, relative humidity,
water content, and pH [137]. For this reason, besides the characteristics of the edible films
and coatings themselves, it is of great interest to maintain the characteristics of the food,
including: (i) preservation of microbiological parameters in accordance with established
laws; (ii) preservation of nutritional content; and (iii) preservation of physical and sensory
characteristics (e.g., smell, taste, and texture); which together extend the shelf-life of the
product [136].

Table 6 reports different development works aiming at extending the shelf-life of
plenty fruits, vegetables, animal, and dairy products; where the edible film/coating influ-
enced positively the chemical, biochemical and physical parameters, minimizing the food
spoilage, and thus increased the shelf-life of the food product.
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Table 6. Edible films and coatings applied in food models.

Food Application Biopolymeric Matrix Additives Coating Technique Positive Results Reference

Fruits

Figs Chitosan
Acetic acid, canola oil,

cinnamon essential oil and
Rosselle extract

Spread
Antioxidant capacity was preserved, color change

was delayed and Alternaria alternata growth
was inhibited

[138]

Bell pepper Chitosan

Acetic acid, canola oil,
glycerol and

chitosan/α-pinene
nanoparticles

Spread Flavonoids and antioxidant capacity were not
modified and Alternaria alternata growth got slow. [139]

Papaya Papaya puree and alginate Glycerol and citric acid Dipped Shelf-life was extended [59]
Carrageenan Glycerol and citric acid Dipped Ripening was delayed and shelf-life was extended [140]

Blueberries
Alginate, chitosan, apple fiber

and orange fiber
Glycerol, inulin

and oligofructose Dipped Sensory quality was improved, and shelf-life
was extended [141]

Chitosan, calcium caseinate,
alginate and semperfreshTM Glycerol and tween 20 Dipped Ripening was delayed and flavor, texture and visual

appearance were maintained [142]

Strawberries

Chitosan
Acetic acid, canola oil,

cinnamon essential oil and
Roselle extract

Wrapped Antioxidant capacity was increased, and shelf-life
was extended [143]

Chitosan and beeswax Glycerol and tween 80 Dipped Quality was preserved and shelf-life was extended [144]
Chitosan and

carotene-proteins
Glycerol and

polyvinyl alcohol Dipped Microbial and fungal growth were controlled, and
antioxidant activity was maintained [145]

Chitosan and chitosan
nanoparticles

Glycerol, acetic acid and
propolis extract Dipped

Total phenols, flavonoids and antioxidant capacity
were increased, ripening process was not modified,

and sensory characteristics were not modified
[146]

Fish gelatin and citrus pectin Glycerol and hydroxytyrosol-
3,4-dihydroxyphenylglycol Dipped Mold growth was delayed, and shelf-life

was extended [147]

Cassava starch Propolis extract Dipped Vitamin C content was promoted [148]

Fresh-cut jackfruit bulbs Xanthan, alginate and
gellan gum

Glycerol and
1-methylcyclopropene Dipped Microbial growth was inhibited, and shelf-life

was extended [149]

Fresh-cut kiwifruit Cactus pear mucilage Glycerol and tween 20 Dipped Visual quality and flavor were improved, and
shelf-life was extended [150]
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Table 6. em Cont.

Food Application Biopolymeric Matrix Additives Coating Technique Positive Results Reference

Fruits

Fresh-cut apples

Whey protein Glycerol, citric acid and
montmorillonite clay Wrapped Shelf-life was extended [151]

Carboxymethyl cellulose Glycerol, calcium and
acid ascorbic Dipped Vitamin C and antioxidant capacity

were maintained [152]

Chitosan − Dipped Quality was enhanced [153]
Alginate, gellan gum, pectin

and apple fiber
Glycerol, ascorbic acid and

inulin Dipped Quality was enhanced and shelf-life was extended [154]

Chocolate and milk butter Polyglycerol polyricinoleate
and ascorbic acid Dipped Anti-aging effect was produced [155]

Olive oil and sunflower oil Lecithin and ascorbic acid Spread Anti-aging effect was produced [155]
Whey protein, soy protein,
alginate and carrageenan Glycerol Dipped Physical changes were controlled, and shelf-life

was extended [156]

Cassava starch and
carnauba wax Glycerol and stearic acid Wrapped Physicochemical properties were improved [157]

Soybean gum, jojoba and
Arabic gum Glycerol and paraffin oil Wrapped Quality was maintained [158]

Red grapes Gelatin, corn starch and waxy
maize starch Glycerol and sorbitol Dipped Quality was enhanced and shelf-life was extended [159]

Fresh-cut pineapple Alginate

Glycerol, sunflower oil,
lemongrass essential oil,

calcium chloride, ascorbic
acid, and citric acid

Dipped Quality was preserved and shelf-life was extended [160]

Fresh-cut mangoes Alginate
Glycerol, sunflower oil,

calcium chloride, ascorbic
acid, and citric acid

Dipped Browning agent was delayed, and shelf-life
was extended [161]

Fresh-cut watermelon Alginate, pectin and
calcium lactate Glycerol Dipped Texture was preserved and shelf-life was extended [162]

Vegetables, Plants and Cereals

Saffron Maltodextrin and
nanocellulose − Spread Physicochemical properties were improved [163]

Potatoes Locust bean gum Glycerol Dipped Physical changes, microbial growth and to
nutritional quality were controlled [164]
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Table 6. em Cont.

Food Application Biopolymeric Matrix Additives Coating Technique Positive Results Reference

Vegetables, Plants and Cereals

Taro corms Chitosan and starch Glycerol Dipped Quality was enhanced, microbial growth was
inhibited, and shelf-life was extended [165]

Tomatoes

Citrus peel pectin Glycerol and oregano oil Spread Antifungal effect was generated, and phenol
content and antioxidant activity were increased [166]

Carnauba wax Mineral oil Spread Antioxidant activity was increased [167]
Chitosan and zeolite Tween 80 and acid lactic Dipped Ripening was delayed [168]

Soy protein, carboxymethyl
cellulose and oleic acid

Glycerol, ascorbic acid and
sodium benzoate Dipped Physical characteristics were enhanced, and

shelf-life was extended [169]

Cherry tomatoes
Hydroxypropyl

methylcellulose and beeswax
Glycerol, tween 80 and

oleic acid Dipped Growth fungal was reduced and physical
appearance was maintained [170]

Hydroxypropyl
methylcellulose and beeswax Glycerol and oleic acid Dipped Growth of Botrytis cinerea was reduced and physical

appearance was improved [171]

Shiitake mushrooms Alginate
Silver nitrate, sodium

borohydride and
polyvinylpyrrolidone

Dipped Shelf-life was extended [172]

Broccoli
Methylcellulose,

polycaprolactone
and alginate

Glycerol, tween 80, organic
acids mixture, rosemary

extract, Asian spice essential
oil and Italian spice

Dipped Growth of Escherichia coli, Salmonella typhimurium
and Listeria monocytogenes was controlled [173]

Spinach Agar, κ-carrageenan,
and konjac Glycerol Wrapped Freshness was maintained and shelf-life

was extended [174]

White asparagus

Sodium
carboxymethyl-cellulose,

whey protein isolate
and pullulan

Sucrose fatty acid ester,
polyethylene glycol, sorbitol

and stearic acid
Dipped Weight loss was reduced, and quality was preserved [175]

Animal and Dairy Products

Sausages
Maltodextrin, alginate and

carboxymethyl cellulose
Glycerol and

Terminalia arjuna Wrapped Shelf-life was extended [176]

Gelatin and carrageenan Glycerol, lard and beeswax Dipped Weight loss was reduced [177]
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Table 6. em Cont.

Food Application Biopolymeric Matrix Additives Coating Technique Positive Results Reference

Animal and Dairy Products

Chicken meat

Mango peel powder,
ciclodextrin and gelatin

Glycerol and
polyvinyl alcohol Wrapped Shelf-life was extended [178]

Gum Arabic
Sorbitol, polyvinyl alcohol,

and Zanthoxylum rhetsa
extract

Wrapped Bioactive compounds were increased, and shelf-life
was extended [179]

Linear low-density
polyethylene

Cinnamon essential oil and
silver-copper Wrapped Antimicrobial capacity was increased, and shelf-life

was extended [180]

Butter Low-density polyethylene Yerba mate and
carotenoid extracts Wrapped Antimicrobial and antioxidant capacities were

increased, and shelf-life was extended [181]

Ham slices Cassava starch, chitosan and
gallic acid Glycerol Wrapped Shelf-life was extended [182]

Fresh chicken breast κ-Carrageenan and chitosan Glycerol and oriental
mustard extract Dipped Campylobacter jejuni was reduced and shelf-life

was extended [183]

Chicken nuggets Alginate Calcium chloride Dipped Microwave heating was improved [184]

Bream fish Alginate Glycerol, vitamin C and tea
polyphenols Dipped Bacterial growth was inhibited, and sensory values

was enhanced [185]

Cheese Galactomannan and chitosan Glycerol, sorbitol and oil corn Spread Shelf-life was extended [186]

Poached turkey
Alginate, pectin,

κ-carrageenan, starch, and
xanthan gum

Nisin, novagard CB1,
guardian NR100, sodium

lactate, sodium diacetate and
potassium sorbate

Dipped Growth of Listeria monocytogenes was inhibited [187]

Bakery

Bread
Pectin, alginate and whey

protein Glycerol and tween 20 Sprayed Moisture was decreased [188]

Starch Glycerol and ε-poly-L-lysine Wrapped Shelf-life was extended [189]
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According to the relevant findings reported by the research community, the maturity
in fruits and vegetables and the mold and microbial growth can be delayed, preserving
specific properties such as texture, freshness, vitamin C content and nutritional quality, as
well as conferring new biological activities (e.g., antioxidant activity) depending on the
types of bioactive solutes incorporated in the edible films and coatings. In animal and dairy
products, the edible films and coatings allowed to maintain the bioactive components of the
product itself and the sensory characteristics; the antimicrobial, antifungal and antioxidant
activities, and shelf-life were also improved; while in bakery products, the moisture content
decreased and the shelf-life increased.

5. Concluding Remarks

This review has compiled and analyzed the most recent studies about the application
of edible films and coatings in a wide type of foods. Different types of materials have been
used in manufacturing packing for the preservation and improvement of food products,
emphasizing the bio-polymeric materials that have been used to form new barriers to
directly protect the product. Furthermore, specific additives need to be incorporated to
improve the physical characteristics and mechanical properties of the resulting packing.
Today, as a current trend in the field, bioactive compounds and microorganisms (like
probiotics) are added into sustainable packings to extend the functionality and nutrition
of perishable and natural foods. The main application techniques that differentiate edible
films from edible coatings were also shown, which influence together with the formation
materials, the product quality, shelf-life, maturation, darkening effect, and the inhibition of
pathogens.

To finalize, bio-packaging has demonstrated to meet the requirements for the protec-
tion of minimally processed foods and their use suggests an economic saving related to
the loss of food due to natural maturation, managing to extend the shelf-life of the prod-
uct. Depending on the biomaterials used and the types of biologically active compounds,
specific properties, such as sensorial, physicochemical and nutritional characteristics, in
coated products can be improved. However, there are still many biopolymers (e.g., zein)
and additives with good characteristics to form edible films and coatings that have not
been explored in detail, which may promise successful insights into the protection and
preservation of food products.
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