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Abstract: A study was conducted using maize samples collected from different agroecological zones
of Kenya (n = 471) and Tanzania (n = 100) during the 2013 maize harvest season to estimate a
relationship between aflatoxin B1 concentration and occurrence with weather conditions during the
growing season. The toxins were analysed by the ultra-high-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) method. Aflatoxin B1 incidence ranged between 0–100%
of samples in different regions with an average value of 29.4% and aflatoxin concentrations of up to
6075 µg/kg recorded in one sample. Several regression techniques were explored. Random forests
achieved the highest overall accuracy of 80%, while the accuracy of a logistic regression model was
65%. Low rainfall occurring during the early stage of the maize plant maturing combined with high
temperatures leading up to full maturity provide warning signs of aflatoxin contamination. Risk
maps for the two countries for the 2013 season were generated using both random forests and logistic
regression models.

Keywords: aflatoxin; maize; risk; modelling; climate; Kenya; Tanzania

1. Introduction

Contamination of foods and feeds by aflatoxin B1 and other mycotoxins continues
to be of serious concern for human and animal health. Exposure of humans and animals
to mycotoxins is mostly through the consumption of contaminated foods and feeds [1].
While acute cases of aflatoxicosis have been reported sporadically [2–4], the most common
reported cases are of chronic exposure, where victims ingest sub-acute concentrations over
a prolonged period [1]. Chronic exposure to mycotoxins is associated with a range of health
conditions including cancer, immune suppression, reproductive disorders and nutritional
and growth impairment, teratogenic and renal disease [5,6]. Kenya and Tanzania, like
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many other tropical developing countries, are highly affected by mycotoxin contamination,
especially aflatoxins and fumonisins [7]. The toxins are a serious food safety concern with
fatalities attributed to intoxication with the fungal toxins [8,9]. Mycotoxicosis in Kenya
and Tanzania is associated with dietary intake, where maize and peanuts, both known to
be highly susceptible to mycotoxin producing fungi, are significant components of local
diets [10]. Approximately 132 million people across East Africa depend on maize as a
staple food, and the extent of mycotoxin exposure has been correlated with daily maize
consumption [11]. The magnitude of mycotoxin contamination in East Africa is thought
to be exacerbated by low input agronomic practices, improper grain storage, extreme
weather conditions and inadequate knowledge and action in control and management of
the problem [12].

Kenya and Tanzania are characterised by varied topography, producing a complex
variety of localized climatic conditions [13]. Both countries border the Indian Ocean
and experience rising altitude as one moves away from the sea. In general, the areas
near sea level experience warm, wet to dry weather, while the highlands experience sub-
temperate cold climates. Between the two are varied weather zones of wet to dry and
warm to cold climates. Environmental factors known to influence the occurrence of moulds
and mycotoxins include the weather, especially precipitation and temperature [14] and
other factors like soil types [15]. Weather plays an important role, together with other
agronomic factors, in influencing fungal infection and mycotoxins formation in crops [14].
Temperature and rainfall are also important in ensuring crops are harvested in suitable dry
or maturity status.

Maize consumption in East Africa is mostly through products prepared from maize
flour, hence harvesting is ideally done when kernels are dry to below 14% moisture
content [16]. Understanding the influence of weather variation is useful for designing
appropriate control programs. This study was conducted to investigate how occurrences
and amounts of aflatoxin B1 in maize at (or shortly after) harvesting from selected areas
of Kenya and Tanzania relate to average temperatures and rainfall during the growing
season.

Pitt and Miscamble [17] studied the germination and growth rates of isolates of
Aspergillus flavus (the primary fungus responsible for aflatoxin production) in laboratory
conditions controlling the temperature and water availability, (aw), with a minimum aw
requirement of 0.82 at 25 and 30 ◦C and 0.80 at 37 ◦C. Growth rates of fungal colonies
were higher for the higher temperature regardless of the amount of water availability.
Battilani et al. [18] developed a mechanistic model for the infection of maize by A. flavus
to estimate the risk of aflatoxin contamination in the field. They related weather data—
including temperature, relative humidity and rainfall—to field data collected on aflatoxin
contamination in maize in Italy. Our study uses similarly available weather data to estimate
aflatoxin production. We focused on a) the 100 days leading up to harvest, and specifically
in the period 100 to 34 days before harvest, which aligns with kernel development to
maturity, and b) the final 34 days before harvest, during which the cob matures in the field.

2. Material and Methods
2.1. Study Area and Participants

In this study, dry maize grain samples were collected from pre-identified small-
scale farmers’ stands and households in different parts of Kenya and Tanzania in the
2013 harvest seasons. Samples were collected during harvest or a few weeks thereafter.
Farms were chosen that were closest to randomly selected locations in each county/region,
with a frequency weighted by the maize production for each county or region. The
survey intended to collect 600 samples from each country, but logistics and other factors
reduced the final usable sample size to 571 in total, all with requisite farm information
and measured aflatoxin values. District agricultural officers were trained as enumerators.
Participants were briefly educated on the objectives and the importance of the research
prior to planting seasons then asked to voluntarily consent to take part in the study. Ethics
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approval for the survey was granted by the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) Social and Interdisciplinary Science Human Research
Ethics Committee (ID: 009/12).

2.2. Collection of Maize Samples

In total, 100 samples were collected from farmers in 12 regions in Tanzania and
471 samples were collected from farmers in 38 counties in Kenya. On average, about 0.5 kg
of maize kernels were collected from at least five cobs of maize taken from different points
within the maize stand. Dry maize kernel samples were put in paper bags that were sealed
by stapling and then wrapped with rubber bands and transported to regional research
institutes for pre-processing prior to shipment to a central laboratory for standardized
aflatoxin analysis. The decision to collect kernel samples from the field contributed to
a higher cost of sample collection but avoided the possible bias associated with storage
contamination when samples are collected from more convenient locations such as stores
or posho mills [19].

2.3. Preparation of Maize Samples

Preparation of the samples included milling and sub-portioning. Before milling each
kernel, the sample was spread on a clean tray and large contaminant particles such as
stones and pebbles were removed by hand. Dusty samples where further cleaned by
sieving. Samples were then milled into flour using Romer Series II® mill. The mill was set
to perform automatic sub-portioning of the output flour into three sub-samples collected
in clean, new zip lock plastic bags. After milling each sample, thorough cleaning of the
milling chamber was done by vacuuming for approximately 30 s, with an additional ca.
50 g (one handful) of the next sample milled and discarded to avoid cross-contamination.
The sub-portions of each milled maize samples in zip lock plastic bags were placed together
in one paper bag and stored at 4 ◦C ready for aflatoxin B1 analysis.

2.4. Chemicals and Reagents

High-performance liquid chromatography (HPLC) grade methanol, acetonitrile, formic
acid and ammonium formate (supplied by Sigma-Aldrich®, St. Louis, MO, USA). HPLC
grade Milli Q® water was supplied by Biosciences East Central Africa (BecA), International
Livestock Research Institute (ILRI), (P.O. Box 30709 Nairobi 00100, Kenya). Aflatoxin B1
was analysed by a multiple mycotoxin analysis method with mixed mycotoxins standards
(Aflatoxin B1, B2, G1 and G2, Fumonisin B1 and B2, T-2 toxin, HT-2 toxin, and diace-
toxyscirpenole) obtained from Sigma-Aldrich (Sigma-Aldrich Chemie B.V., Zwijndrecht,
The Netherlands).

2.5. Mycotoxin Extraction

Aflatoxin B1 was determined by simple solvent extraction and ultra performance
liquid chromatography, mass spectrophotometry (UPLC-MS/MS) analysis in an adaptation
of a previously described method [20]. Milled maize (5 g) was extracted with an extraction
solvent (20 mL) comprising acetonitrile/Milli Q® water/formic acid (790/200/10). The
mixture was shaken mechanically using a mechanical orbital shaker (New Brunswick
Scientific, Edison, NJ, USA) for approximately 90 min. The tubes were then centrifuged
at 3000 rcf for 2 min. A 0.5 mL aliquot of the supernatant was transferred into a 1.5 mL
Eppendorf® tube and mixed with 0.5 mL mobile phase A (water/formic acid; 99/1 in
10 mM ammonium formate). The mixture was gently shaken and filtered through a 0.2
micron polyvinylidene fluoride (PVDF) syringe filter into 2 mL glass vials for analysis
by UPLC-MS/MS. Where analysis was not done immediately, the extracts (in vials) were
stored at 4 ◦C and analysed within 24 h.
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2.6. Aflatoxin Detection and Quantification by LC-MS/MS Method

The UPLC-MS/MS system consisted of Shimadzu ultra-high-performance liquid
chromatography (Shimadzu® UHPLC Nexera, Shimadzu, Nishinokyo Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan), coupled to ultra-high sensitivity, ultra-fast triple
quadrupole, tandem-mass spectrophotometer (Shimadzu® 805, Shimadzu), equipped
with an electrospray interphase (ESI). Chromatography was performed on a Synergi®

Hydro RP (100 × 3 mm, 2.5 µm) column (Phenomenex®, 411 Madrid Avenue, Torrance,
CA, USA) at 40 ◦C column temperature with an elution gradient composed of mobile
phase A (Water/formic acid; 99/1 in 10 mM ammonium formate) and mobile phase
B (Methanol/water/formic acid; 97/2/1 in 10 mM ammonium formate) at a flow rate
of 0.5 mL min−1 and a gradient as follows: 0–2 min, 98% A–60% A; 2–4 min, 60% A;
4–6 min, 60% A–40% A; 6–10 min, 40% A; 10–12 min, 40% A to 0% A; 12–16 0% A.
The mass spectrophotometer was operated in ESI positive mode using the following
conditions: heating block temperature 400 ◦C, interface temperature 300 ◦C, desolvation
line temperature 250 ◦C, interface voltage 4.0 kV, conversion dynode 10.0 kV, nebulizer
gas (nitrogen) flow 180 Lh−1, collision gas (argon) flow 600 Lh-1, heating gas (air) flow
600 Lh−1 and collision-induced dissociation (CID) gas (argon) pressure 270 kPa. Aflatoxin
B1 was quantitated by using multiple reaction monitoring (MRM) transitions of 312.80
→ 285.15 and 312.80→ 241.15. The LC-MS/MS quantitative analysis was conducted by
LabSolutions LCMS Ver 5.6 computer program which was used to generate raw data for
aflatoxin concentrations.

2.7. Weather Data

The weather data were downloaded from the Global Surface Summary of the Day
(GSOD) data provided by the US National Centers for Environmental Information (NCEI)
using the R package GSODR [21]. The database provides daily summary information for
precipitation, temperature and relative humidity among others collected from 31 weather
stations located in Kenya and Tanzania and one in neighbouring Uganda. The maize
samples tested for aflatoxin were grown during the 2013 growing season, planted sometime
during the months of March, April or May. Weather information was extracted from
stations for the 100 days before harvest, i.e., from the 24 April 2013 until the 31 July, both
inclusive. This aligns approximately with maize cob development and maturity. Estimates
of daily precipitation, mean temperature and relative humidity for each site were calculated
by spatio-temporal kriging using the krigST function in the R package gstat [22,23]. The
average daily temperatures, average daily rainfall and average daily relative humidity
for each farm used in the statistical models were calculated for two periods of the maize
maturing stage, the first representing early and the second, the late maturing stage.

2.8. Data Analysis

The distribution of aflatoxin levels in the maize samples was highly right skewed,
with a prevalence rate of only 29%. We chose to consider this as a classification problem,
i.e., the prediction of aflatoxin occurrence in samples, based on weather variables. We
tested a suite of modelling approaches to explore the performance of these methods
targeting their predictive capabilities based on the estimated weather features. These
methods included support vector machines (SVM), random forests (RF), classification
trees (CART) and linear discriminant analyses (LDA). We also fitted the more commonly
used logistic regression model as a parametric approach. This allowed us to gain insights
into the possible relationships between weather drivers and the occurrence of aflatoxin in
maize. The predictive measures compare the predicted ability of the different modelling
approaches.

The covariate design space was complex, so the weather measurements were cate-
gorised as factors of 0.5 mm width for rain, 2 ◦C for temperature and 2.5% for relative
humidity. The starting model included main effects as second order polynomials for each
of the weather classes. We then used a backward step variable selection method [24]
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employing the Akaike Information Criterion (AIC) statistic, the F and χ2 statistics where
appropriate to find the parsimonious models that accurately estimated the aflatoxin level
and incidence in the samples from the weather features.

The main measures we used to compare the models were accuracy, sensitivity, speci-
ficity, positive predictive value and negative predictive value. Positive predictive value
is the probability that a sample showing a positive test result contains aflatoxin and the
negative predictive value is the probability that an aflatoxin-free sample shows a negative
test result.

Using the chosen statistical models, we also estimated the risk of aflatoxin occurrence
in the 2013 maize crop using gridded weather data across all areas of Kenya and Tanzania.
The estimates of weather across this grid were produced using the same kriging models
used to estimate daily weather estimates for the sample points. Since the model is based
on easily measurable and possibly forecast values, our aim was to find a model that can
estimate aflatoxin occurrence in maize experiencing similar weather. In Kenyan maize
growing areas, the dry mid-altitude country east of Katumani represents a higher risk area,
while in Tanzania, the coastal regions and north western regions, the tropical savannah
climate areas of Tanzania represent high risk areas [25]. Statistical analyses were performed
using the R [26] program.

3. Results
3.1. Incidence and Concentration of Aflatoxin B1

Aflatoxin B1 was analysed in the 571 collected maize samples by the previously
validated LC-MS/MS method [20], with aflatoxin standards across six concentration levels
0.2–21.1 µg/L demonstrating good linearity R2 > 0.996 throughout the analysis and a
limit of quantitation (LOQ) of 0.6 µg/kg. Recovery efficiency and reproducibility of this
analytical method were demonstrated by replicate analyses (n = 6) of the matrix spiked at
six concentration levels (5–200 µg/kg), with recoveries of 77–105% and relative standard
deviations below 29%.

Table 1 gives the level of aflatoxin B1 (µg/kg or ppb) and observed occurrence or
incidence (%) of affected samples in the survey (limit of detection 0.2 µg/kg). In about half
of the 38 sampled counties in Kenya, the average aflatoxin B1 concentration was below
1 µg/kg. Incidence represents the percentage of samples collected in a region in which
aflatoxin concentration were in excess of 0.2 µg/kg. Thirty percent of the samples collected
were contaminated with aflatoxin B1.

Table 1. Summary statistics for aflatoxin measurements for the entire survey. “Incidence” is the per-
centage of samples that had detectable levels of aflatoxins, whereas “level” refers to the concentration
of aflatoxin among all samples with detectable levels of aflatoxin (level of detection, LOD 0.2 µg/kg).

Number of Samples 571

Incidence 29.4%

Median level of aflatoxin of samples with detectable level of
aflatoxin i.e., greater than LOD (0.2) 4.775 µg/kg

Maximum level of aflatoxin 6074 µg/kg

Number of counties surveyed in Kenya 38

Number of regions surveyed in Tanzania 12

Observed proportion of samples with detectable levels of aflatoxin from different
counties of Kenya and regions of Tanzania are shown in Figure 1. Incidences for regions
from which more than 4 samples were collected are shown.
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Figure 1. Proportion of samples positive for aflatoxin for the 41 of the regions/counties surveyed
that had at least five samples.

The statistical distribution of aflatoxin concentration was extremely right skewed
(see Figure 2). Seventy percent of samples were aflatoxin free (less than the limit of
detection, 0.2 µg/kg) with a small number of high values, while 88% of all the samples
spanning both countries had less than 10 µg/kg, with the maximum being higher than
6000 µg/kg. Statistical inference based on linear regression models rely on the distribution
of samples being reasonably symmetric, and with 79% of all values less than 1 µg/kg,
the log transformation was not sufficient to normalise the distribution of the highly skewed
response. Reducing the aflatoxin measurement to a binary response (presence/absence
or occurrence) and fitting a logistic regression model is an option that avoids some of the
distributional properties needed to fit linear regression models.

3.2. Weather Observations during Crop Growth

Most of the reported sowing dates for the maize crops from which the samples were
taken ranged from March to May, while the harvest dates mostly occurred in July and
August. Neither the exact dates of harvest or sowing nor the specific identity of the
varieties sown were available for the sites. We initially focused on two periods of weather
observations, a 67-day period representing the vegetative growth stage, and a 33-day
period approximating the grain filling stage.

Average daily rainfall, humidity and temperature were recorded at 31 weather stations
across Kenya and Tanzania for more than 100 days during the growing period of May 2013
through to July 2013. The maximum average daily precipitation (rainfall) was 3.21 mm. The
average daily temperature ranged between 16.2 to 25.7 ◦C. The average relative humidity
ranged between 51.4% and 89.3%. The median distance between survey locations and the
closest weather site was 66 km with the closest weather station being as close as 3 km away
from one of the surveyed locations.

We fitted separable exponential spatio-temporal models to explain the covariance
existing between daily weather measurements from the weather stations. Kriged estimates
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of the 100 daily relative humidity, temperature and rainfall values at the 571 sampling
locations were generated as described above.
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Figure 2. A histogram showing the distribution of aflatoxin values measure on 571 maize samples
taken from farms in Kenya and Tanzania.

3.3. Statistical Models for Incidence of Aflatoxin

The average values of daily rainfall, humidity and temperature for the two time
periods leading up to harvest for each location were calculated and used as predictors
in the various classification models. The R package caret [27] uses the train function to
evaluate, using resampling, the effect of model tuning parameters on performance choice,
chooses the “optimal” model across these parameters, and calculates model performance
using a test sample. We chose overall classification accuracy (for the presence of aflatoxin)
as the measure of performance. The modelling methods trialled included logistic regression
(LR), classification and three machine learning (ML) methods, namely regression trees
(CART), support vector machines (SVM) and random forests (RF).

The performance of the tested models is given in Table 2.

Table 2. Measures of classification performance for a test set using logistic regression and machine
learning models built from an upscaled data set.

Measures LR CART SVM RF

Average Accuracy % 64.9 64.1 70.2 80.0
Sensitivity % 57.5 56.4 60.8 82.9
Specificity % 72.4 71.8 80.0 76.2

Pos Pred Value % 67.5 66.7 74.8 77.2
Neg Pred Value % 63.0 62.2 67.0 81.6
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The logistic regression modelling approach required judicious simplification of the
model for assessing the incidence of aflatoxin in samples. Average daily temperature,
average relative humidity, average daily rainfall and average maximum daily temperature
for the two growing periods were categorised as ordered factors. A model involving linear
trend terms representing average daily rainfall for the early plant growth stage period and
average daily temperature for the period prior to harvest was constructed. The logistic
regression model provides some understanding of the relationships between the climate
drivers and aflatoxin presence, while the ML methods focus on maximising predictive skill.

The random forest model achieved an overall accuracy of 80%, with a 95% confidence
interval (CI) of (75%, 84%), while the accuracy for the logistic regression model is 65%, with
a 95% CI of (60%, 70%). The random forest model achieved higher levels of specificity and
sensitivity compared with the logistic regression model outperforming the other models in
terms of its ability to accurately estimate which samples were true positive and which were
true negative. Approximately 77% of the samples estimated to be positive for aflatoxin
contained aflatoxin for the RF model and 68% for the LR model, while the logistic regression
model declared approximately 37% of the contaminated samples to be free of aflatoxin,
compared with 18% for the random forest model.

As shown in Figure 3 aflatoxin was observed in maize samples more frequently at
sites with lower rainfall in the early stage of maturity, and higher temperatures for the
later stage. The estimated parameters for the logistic regression model agree with these
observations. Table 3 provides the odds ratios and confidence intervals for the final logistic
regression based on the upscaled sample. For each increase of 0.5 mm in daily rainfall in
the early maturing stage, the likelihood of aflatoxin almost halves (odds ratio = 0.56), while
for every increase of 2 ◦C on average daily temperature in the later maturing stage this
likelihood increases by 57% (Odds ratio = 1.57). The variable importance statistics from the
random forest model are listed in Table 4. Average daily rain during the early maturing
phase was considered important in both the logistic regression and random forest models.
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Figure 3. Proportion of samples with detectable aflatoxin (above limit of detection 0.2 µg/kg) for various levels of early
rain (a) and late temperature (b). ‘Early’ refers to the first 67 days of the growing season and ‘late’ refers to the last
33 days of the maize growing season. Lower rainfall (early stage) tended to be associated with a higher proportion of
aflatoxin-contaminated maize samples, while higher average daily temperatures (later stage) were associated with an
increased proportion of contaminated samples.
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Table 3. Odds ratios and their 95% confidence intervals for parameters from the logistic regression
model for the presence of aflatoxin.

Parameters Odds Ratio 2.5% 97.5%

Intercept 1.579 0.819 3.062
Early rain 0.556 0.441 0.695
Late temp 1.574 1.298 1.920

Table 4. The relative importance of variables in the random forest mode (RH, relative humidity).

Variable Relative Importance

Early rain 100.0
Early RH 77.9
Late rain 29.6

Late temp 26.8
Early temp 8.5

Late RH 0.0

3.4. Estimated Probability of Aflatoxin in the 2013 Season

We fit random forest and logistic regression models to estimate the likelihood of
occurrence or risk of aflatoxin in maize for all of Kenya and Tanzania for the 2013 growing
season. We used the same weather observations from the GSOR website and the same
spatio-temporal models to spatially krige a grid of points across the extent of Kenya and
Tanzania (n = 638) for each day of the 100 days leading up to 1st August 2013.

The likelihood of aflatoxin in maize is plotted in Figure 4. The differences in the
observed (Figure 1) and estimated occurrences (Figure 4) are to be expected given the low
percentage of samples with aflatoxin, the sampling variation associated with aflatoxin
levels in maize, and the use of kriged weather information from weather sites located some
distance from the sampling sites.
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4. Discussion

This study recorded marked variation in the incidence and concentration of aflatoxin
B1 in maize samples collected from quite dispersed sites throughout maize growing areas
in Kenya and Tanzania in 2013. Both classification methods show higher risk areas in
Kenya and Tanzania to be the arid steep hot region east of Machakos in Kenya and the
tropical savannah regions of Tanzania [25]. The two methods estimate different risks for
the dry winter, warm summer temperature region, and the Serengeti Plain area west of
Arusha.

Several previous survey studies conducted in the two countries recorded high preva-
lence of the toxin in maize and related products [28–31]. Incidence and concentration
of aflatoxins in maize in the East Africa region have been a central focus of research on
mycotoxin contaminations of foods due to the potential and observed health impacts of
the toxin and the nutritional importance of maize. Although country survey reports for
mycotoxin occurrence in Kenya and Tanzania could not be located, following the aflatox-
icosis outbreak in eastern Kenya in 2004, a cross-sectional survey study was conducted
around the affected areas and reported that 55% of the maize obtained from markets was
contaminated with aflatoxins above 20 µg/kg [32]. In Tanzania, health effects associated
with aflatoxin exposure have been a topic of concern since at least the 1970s [33], and
in 2008 the occurrence of aflatoxin in maize was reported in a study that also reported
the presence of fumonisins in the samples [34]. The majority of recent studies indicate
incidences of aflatoxins contamination to be above 25%, with a significant proportion of the
samples having concentrations above acceptable levels [10,30,31,34]. In this study, about
30% of the maize samples were shown to have detectable levels of aflatoxins, 12% of which
were above 10 µg/kg.

Understanding general contamination load in terms of incidence and concentration of
mycotoxins is a first step in dealing with the problem. However, further epidemiological
studies to characterize the occurrence patterns are important because mycotoxin contami-
nation is influenced by multiple factors [35]. This study reveals substantial variation in the
occurrence load of aflatoxin B1 between regions. This is more obvious with the samples
from Kenya, where aflatoxin incidences and amounts are generally higher in the eastern
parts of the country compared with the central and western parts. In Tanzania, the sur-
veyed regions in the eastern part of the country also have samples with high average level
of aflatoxin B1. The regional pattern of variation we reveal in this study is not as clearly
evident in previous survey studies as most of them involved sampling frames that were
more spatially constrained in different parts of the country. However, one study conducted
during the acute aflatoxicosis outbreak in 2004 found that both the incidence and amount
of aflatoxins in maize collected from markets in Makueni were higher than other markets
located in the Thika area [32]. Makueni is located in the eastern part of the country and
is among the areas affected by acute aflatoxicosis, while Thika is located in the central
highland regions of the country. The findings by Yard et al. [36], suggesting that people
in the Nyanza and Rift Valley regions were less exposed to aflatoxins (by testing blood
indicators), align with the suggestion that despite high levels of contamination observed
in peanuts [31,37], the community in western Kenya might be at lower risk of consuming
contaminated grain as compared with those located in the Eastern and Coast regions. A
study of maize collected from 243 posho mills in eastern and western Kenya in 2009 and
2010 reported that 60% of the 2466 samples had detectable levels of aflatoxin and 28% of
these samples had levels above the regulatory limit of 10 µg/kg [19].

Several prior studies have demonstrated the relationship between aflatoxin occurrence
and environmental conditions by indicating that a short-term increase in temperature or
reduced soil moisture may lead to increased levels of contamination [38], which in turn
might be associated with fungal responses to increased expression of the aflatoxin synthesis
genes [39]. The effects of short-term and long-term variation in weather conditions on
aflatoxin production are not clearly established in the prior literature. Smith et al. [19]
provide evidence of some association between presence of aflatoxin in samples collected
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from eastern and western Kenyan posho mills with normalized difference vegetation
index (NDVI) and soil characteristics including soil organic content and cation exchange
capacity. They did not find any association with rainfall (pre-flowering or post-flowering)
however any such effect may have been suppressed by the presence of NDVI in the model.
Interestingly, the association between NDVI and the presence of aflatoxin in this study were
in different directions between pre-flowering and post-flowering NDVI measurements.

The regional variation observed and the weather associations established in this study
are in accordance with the notion that high incidences and amounts of aflatoxin occurrences
are associated with low annual rainfall and high average temperatures. For each millimetre
increase in daily rainfall in the early maturing growth stage of maize, the likelihood of
aflatoxin drops four-fold, while for every degree increase on average daily temperature in
the later maturing stage the likelihood of detectable aflatoxin contamination increases by a
factor of a little less than 30%.

5. Conclusions

This study provides some evidence of the relationship between the occurrence of
aflatoxins and weather conditions for one season of maize crops in East Africa. Low
rainfall occurring during the early stage of the maize plant maturing combined with high
temperatures leading up to full maturity provide warning signs of aflatoxin contamination
in maize growing in this region. Our results provide direction for further investigation into
the use of statistical models to forecast the production of aflatoxin by Aspergillus flavus in
maize crops using the weather features investigated in this study.

Author Contributions: Conceptualization, D.J.K.; Data curation, R.E.D., J.J.H. and J.M.W.; Formal
analysis, B.A.T. and D.J.K.; Funding acquisition, R.E.D., J.J.H. and M.T.F.; Investigation, D.J.K.;
Methodology, R.E.D., P.G.P., N.O., M.T.F. and D.J.K.; Project administration, A.G., D.L., J.J.H., J.K.,
S.M.S.M., J.M.W. and M.T.F.; Resources, J.J.H. and M.T.F.; Software, B.A.T. and R.E.D.; Supervision,
M.T.F. and D.J.K.; Validation, B.A.T., M.T.F. and D.J.K.; Visualization, R.E.D. and N.O.; Writing—
original draft, B.A.T.; Writing—review & editing, R.E.D., M.T.F. and D.J.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Australian Department of Foreign Affairs grant number
57685.

Institutional Review Board Statement: Ethics approval for the survey was granted by the Common-
wealth Scientific and Industrial Research Organisation (CSIRO) Social and Interdisciplinary Science
Human Research Ethics Committee (ID: 009/12).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Data included in these analyses required exact locations to be used to
harmonize aflatoxin and weather information. As part of the ethics approval for this study, we are
unable to provide these data that may identify surveyed farmers.

Acknowledgments: This study was sponsored by Australian Government through an Australian
Awards scholarship of Benigni Temba and the Australian Department of Foreign Affairs and Trade
(DFAT) funding of CAAREA Project in Kenya as part of the DFAT-Commonwealth Scientific and
Industrial Research Organisation (CSIRO) Africa Food Security Initiative (Grant 57685). Very sadly,
George Frederick (Frikkie) Liebenberg passed away on 10 March 2017 under tragic circumstances.
Frikkie was involved in this project from its inception, working out ways to make the field surveying
practical, and handling the downstream data management. He and his team captured the field
data digitally, ensuring that it passed stringent quality-assurance checks. He is survived by his two
children, a daughter, Nienke, a son, Nieko, three brothers and two sisters. Frikkie will be sadly
missed by his colleagues in this project. We would also like to acknowledge the contribution of Jason
Beddow (University of Minnesota) who died suddenly and unexpectedly during the course of the
research that led to this paper. Jason was a great colleague and friend and he will be sorely missed.

Conflicts of Interest: The authors declare no conflict of interest.



Foods 2021, 10, 216 12 of 13

References
1. Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [CrossRef]
2. Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore,

A.; DeCock, K.; et al. Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ. Health Perspect. 2005, 113,
1779–1783. [CrossRef] [PubMed]

3. Wu, F.; Groopman, J.D.; Pestka, J.J. Public health impacts of foodborne mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372.
[CrossRef] [PubMed]

4. Daily-News TFDA Tests Find Higher Aflatoxin Levels in Cereals, Maize Flour. 2016. Available online: http://www.dailynews.co.
tz/index.php/home-news/52281-tfda-tests-find-higher-aflatoxin-levels-in-cereals-maize-flour (accessed on 15 January 2021).

5. Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries:
A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122.
[CrossRef] [PubMed]

6. Kujawa, M. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins.
1994. Available online: https://www.citethisforme.com/topic-ideas/biology/Aromatic%20components%20of%20essential%
20oil-107921489 (accessed on 15 January 2021).

7. World Health Organisation (WHO). Mycotoxins in African Foods: Implications to Food Safety and Health. Available online:
www.afro.who.int/des (accessed on 15 January 2021).

8. Ngindu, A.; Kenya, P.; Ocheng, D.; Omondi, T.; Ngare, W.; Gatei, D.; Johnson, B.; Ngira, J.; Nandwa, H.; Jansen, A.; et al. Outbreak
of acute hepatitis caused by aflatoxin poisoning in Kenya. Lancet 1982, 319, 1346–1348. [CrossRef]

9. Probst, C.; Njapau, H.; Cotty, P.J. Outbreak of an acute aflatoxicosis in Kenya in 2004: Identification of the causal agent. Appl.
Environ. Microbiol. 2007, 73, 2762–2764. [CrossRef]

10. Mutegi, C.; Wagacha, M.; Kimani, J.; Otieno, G.; Wanyama, R.; Hell, K.; Christie, M.E. Incidence of aflatoxin in peanuts (Arachis
hypogaea linnaeus) from markets in western, Nyanza and Nairobi provinces of Kenya and related market traits. J. Stored Prod. Res.
2013, 52, 118–127. [CrossRef]

11. Shirima, C.P.; Kimanya, M.E.; Kinabo, J.L.; Routledge, M.N.; Srey, C.; Wild, C.P.; Gong, Y.Y. Dietary exposure to aflatoxin and
fumonisin among Tanzanian children as determined using biomarkers of exposure. Mol. Nutr. Food Res. 2013. [CrossRef]

12. Shephard, G.S. Aflatoxin and food safety: Recent African perspectives. J. Toxicol. Toxin Rev. 2003, 22, 267–286. [CrossRef]
13. Ogwang, B.A.; Chen, H.; Li, X.; Gao, C. The influence of topography on East African October to December climate: Sensitivity

experiments with RegCM4. Adv. Meteorol. 2014, 2014, 1–14. [CrossRef]
14. Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [CrossRef]
15. Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K.; Kristoffersen, A.B. Influence of agronomic and climatic factors on fusarium

infestation and mycotoxin contamination of cereals in Norway. Food Addit. Contam. Part A 2012, 29, 1129–1140. [CrossRef]
[PubMed]

16. Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119,
131–139. [CrossRef] [PubMed]

17. Pitt, J.I.; Miscamble, B.F. Water relations of Aspergillus flavus and closely related species. J. Food Prot. 1995, 58, 86–90. [CrossRef]
[PubMed]

18. Battilani, P.; Leggieri, M.C.; Rossi, V.; Giorni, P. AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin
B1 contamination in maize. Comput. Electron. Agric. 2013, 94, 38–46. [CrossRef]

19. Smith, L.M.; Stasiewicz, R.; Hestrin, L.; Mutiga, S.; Nelson, R. Examining environmental drivers of spatial variability in aflatoxin
accumulation in Kenyan maize: Potential utility in risk drivers prediction models. Afr. J. Food Agric. Nutr. Dev. 2016, 16.
[CrossRef]

20. Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass
spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20,
2649–2659. [CrossRef]

21. Sparks, A.H.; Hengl, T.; Nelson, A. GSODR: Global summary daily weather data in R. J. Open Source Softw. 2017, 2, 177. [CrossRef]
22. Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [CrossRef]
23. Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-temporal interpolation using gstat. RFID J. 2016, 8, 204–218. [CrossRef]
24. Aitkin, M.; Francis, B.; Hinde, J.; Darnell, R. Statistical Modelling in R; Oxford Statistical Series; Oxford University Press: Oxford,

UK, 2009; ISBN 978-0-19-921914-8.
25. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate

classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [CrossRef]
26. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2018.
27. Wing, J.; Kuhn, M. Contributions from Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary

Mayer; et al. Caret: Classification and Regression Training. 2016. Available online: https://ui.adsabs.harvard.edu/abs/2015ascl.
soft05003K/abstract (accessed on 15 January 2021).

http://doi.org/10.1016/j.jscs.2010.06.006
http://doi.org/10.1289/ehp.8384
http://www.ncbi.nlm.nih.gov/pubmed/16330363
http://doi.org/10.1146/annurev-food-030713-092431
http://www.ncbi.nlm.nih.gov/pubmed/24422587
http://www.dailynews.co.tz/index.php/home-news/52281-tfda-tests-find-higher-aflatoxin-levels-in-cereals-maize-flour
http://www.dailynews.co.tz/index.php/home-news/52281-tfda-tests-find-higher-aflatoxin-levels-in-cereals-maize-flour
http://doi.org/10.1093/ajcn/80.5.1106
http://www.ncbi.nlm.nih.gov/pubmed/15531656
https://www.citethisforme.com/topic-ideas/biology/Aromatic%20components%20of%20essential%20oil-107921489
https://www.citethisforme.com/topic-ideas/biology/Aromatic%20components%20of%20essential%20oil-107921489
www.afro.who.int/des
http://doi.org/10.1016/S0140-6736(82)92411-4
http://doi.org/10.1128/AEM.02370-06
http://doi.org/10.1016/j.jspr.2012.10.002
http://doi.org/10.1002/mnfr.201300116
http://doi.org/10.1081/TXR-120024094
http://doi.org/10.1155/2014/143917
http://doi.org/10.1016/j.foodres.2009.07.010
http://doi.org/10.1080/19440049.2012.672476
http://www.ncbi.nlm.nih.gov/pubmed/22494553
http://doi.org/10.1016/j.ijfoodmicro.2007.07.034
http://www.ncbi.nlm.nih.gov/pubmed/17764773
http://doi.org/10.4315/0362-028X-58.1.86
http://www.ncbi.nlm.nih.gov/pubmed/31121770
http://doi.org/10.1016/j.compag.2013.03.005
http://doi.org/10.18697/ajfand.75.ILRI09
http://doi.org/10.1002/rcm.2640
http://doi.org/10.21105/joss.00177
http://doi.org/10.1016/j.cageo.2004.03.012
http://doi.org/10.32614/RJ-2016-014
http://doi.org/10.1038/sdata.2018.214
https://ui.adsabs.harvard.edu/abs/2015ascl.soft05003K/abstract
https://ui.adsabs.harvard.edu/abs/2015ascl.soft05003K/abstract


Foods 2021, 10, 216 13 of 13

28. Kimanya, M.E.; Meulenaer, B.D.; Tiisekwa, B.; Ndomondo-Sigonda, M.; Devlieghere, F.; Camp, J.V.; Kolsteren, P. Co-occurrence
of fumonisins with aflatoxins in home-stored maize for human consumption in rural villages of Tanzania. Food Addit. Contam.
Part A 2008, 25, 1353–1364. [CrossRef] [PubMed]

29. Manjula, K.; Hell, K.; Fandohan, P.; Abass, A.; Bandyopadhyay, R. Aflatoxin and fumonisin contamination of cassava products
and maize grain from markets in Tanzania and Republic of the Congo. Toxin Rev. 2009, 28, 63–69. [CrossRef]

30. Kajuna, F.F.; Temba, B.A.; Mosha, R.D. Surveillance of aflatoxin B1 contamination in chicken commercial feeds in Morogoro,
Tanzania. Livest. Res. Rural Dev. 2013, 25, 51.

31. Mutiga, S.K.; Hoffmann, V.; Harvey, J.W.; Milgroom, M.G.; Nelson, R.J. Assessment of aflatoxin and fumonisin contamination of
maize in western Kenya. Phytopathology 2015, 105, 1250–1261. [CrossRef] [PubMed]

32. Lewis, L.; Onsongo, M.; Njapau, H.; Schurz-Rogers, H.; Luber, G.; Kieszak, S.; Nyamongo, J.; Backer, L.; Dahiye, A.M.; Misore, A.;
et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central
Kenya. Environ. Health Perspect. 2005, 113, 1763–1767. [CrossRef] [PubMed]

33. Hiza, P. Epidemiological study of carcinoma of liver in Dodoma region in Tanzania. J. Natl. Med Assoc. 1979, 71, 585.
34. Mutiga, S.K.; Were, V.; Hoffmann, V.; Harvey, J.W.; Milgroom, M.G.; Nelson, R.J. Extent and drivers of mycotoxin contamination:

Inferences from a survey of Kenyan maize mills. Phytopathology 2014, 104, 1221–1231. [CrossRef]
35. Diao, E.; Dong, H.; Hou, H.; Zhang, Z.; Ji, N.; Ma, W. Factors influencing aflatoxin contamination in before and after harvest

peanuts: A review. J. Food Res. 2014, 4, 148. [CrossRef]
36. Yard, E.E.; Daniel, J.H.; Lewis, L.S.; Rybak, M.E.; Paliakov, E.M.; Kim, A.A.; Montgomery, J.M.; Bunnell, R.; Abudo, M.U.;

Akhwale, W.; et al. Human aflatoxin exposure in Kenya, 2007: A cross-sectional study. Food Addit. Contam. Part A 2013, 30,
1322–1331. [CrossRef]

37. Mutegi, C.K.; Ngugi, H.K.; Hendriks, S.L.; Jones, R.B. Prevalence and factors associated with aflatoxin contamination of peanuts
from western Kenya. Int. J. Food Microbiol. 2009, 130, 27–34. [CrossRef] [PubMed]
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