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Abstract: The Aspergillus niger exometabolome was recently investigated using advanced gas chro-
matography in tandem with multivariate analysis, which allowed a metabolite biomarker pattern
to be proposed. Microbial metabolomics patterns have gained enormous relevance, mainly due to
the amount of information made available, which may be useful in countless processes. One of the
great challenges in microbial metabolomics is related to applications in more complex systems of
metabolomics information obtained from studies carried out in culture media, as complications may
occur due to the dynamic nature of biological systems. Thus, the main objective of this research
was to evaluate the applicability of the A. niger metabololite biomarkers pattern for in situ and early
evaluation of table grapes contamination, used as study model. A. niger is a ubiquitous fungus
responsible for food contamination, being reported as one of the main agents of the black mold
disease, a serious post-harvest pathology of table grapes. This work included analysis from 1 day
of growth time of pure A. niger cultures, A. niger cultures obtained from previously contaminated
grapes, and finally, an in situ solid-phase microextraction (SPME) approach directly on previously
contaminated table grapes. Supervised multivariate analysis was performed which revealed that
after 1 day of inoculation it was possible to detect A. niger biomarkers, which can be extremely useful
in making this type of method possible for the rapid detection of food contamination. The results
obtained confirm the potential applicability of the pattern of A. niger biomarkers for early detection
of the fungi (after 1 day of contamination), and may be further explored for access food susceptibility
to fungi contamination, based on direct analysis of the food item.

Keywords: Aspergillus niger; food contamination; GC×GC; metabolites; HS-SPME

1. Introduction

Fungal contamination plays a major role in food spoilage and represents a problem
which can result in huge economic losses, deterioration of food quality, reduction in
nutrients availability, and contamination with compounds with high potential toxicity,
such as mycotoxins [1]. Mycotoxins are secondary metabolites produced by fungi that
have adverse health effects on humans, animals, and crops. In this sense, prevention and
control of these toxigenic fungi and mycotoxins in agricultural commodities have been
priority objectives in food quality and safety [2–4]. Among different classes of food which
are susceptible to fungal infection, table grapes are a very common case due to their thin
pericarp and succulent flesh. Thus, grapes can be easily contaminated with filamentous
fungi in different steps across their production chain and for this reason, the quality control
of table grapes must be very strict and effective [5,6].

Some of the most relevant species related to the fungal infection of grapes are members
of the genus Aspergillus [5]. Aspergillus niger is one of the main species responsible for
contamination in grapes and derived products, causing serious economic losses, with
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the distribution of black aspergilli in table grapes reported worldwide [6–8]. The produc-
tion of mycotoxins by A. niger is well known but the contribution to mycotoxin content
in foodstuffs as well as the differences in production among species are controversial
topics. Ochratoxin A is one of the metabolites usually associated to contamination by
A. niger [2,9–11], including in grapes [7]. However, as it is not specific for this species, it
therefore cannot be used as an unambiguous biomarker. On the other hand, recent studies
reported a set of metabolites that may be assigned as A. niger biomarkers [12–14]. These
metabolites are distributed in several chemical families, such as aldehydes, ethers, alco-
hols, esters, ketones, hydrocarbons, and terpenic compounds. Metabolic pathways such
as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of
aromatic compounds, mono and sesquiterpenoid synthesis, and carotenoid cleavage are
found to be related to these set of compounds [14]. Nevertheless, studies on production of
these metabolites specifically by A. niger have still not been completely explored [14,15].

Considering the importance of early diagnosis in food authentication and contam-
ination, metabolomics enables the development of rapid and highly accurate chemical
methods for the identification of the species [9,16–22]. Microbial metabolomics represents
a holistic approach for comprehensive monitoring of metabolites directly linked to cellular
metabolism, providing an accurate snapshot of the microorganism metabolic profile and
can be potentially useful for early detection [23–28]. Untargeted microbial metabolomic
approaches using mass spectrometry or mass spectroscopy-based analytical platforms have
become extremely important in the last few years [13,29,30]. Although it is very informative
whole metabolome studies can provide a huge volume of data, when it comes to detection
of food contamination, only a partial and significant fraction of the metabolic profile is
useful and desirable in order to detect the contaminant [13,14]. However, access to properly
interpretable data from a specific microbe’s metabolite profile can be a real challenge due
to the complexity of these samples. Therefore, the use of high throughput and highly sensi-
tive tools like comprehensive two dimensional gas chromatography (GC×GC) has been
used in order to explore and extract useful data from microbial metabolome [22,27,31–37].
GC×GC provides higher sensitivity and resolution when compared to conventional one-
dimensional gas chromatography (1D-GC), which fulfils the requirements for the analysis
of complex biological samples. Additionally, GC×GC combined with time-of-flight mass
spectrometry (ToFMS) increases sensitivity and detectability providing reliable identifica-
tion of metabolites based on retention rates and mass spectra [27,38,39].

Despite the huge interest in metabolomics patterns in countless processes, application
in more complex biological systems of basic metabolomics information obtained from
studies carried out in culture media may face several challenges. Several difficulties may
occur due to the dynamic nature of the biological systems, and the concentrations of
the metabolites may change in response to environmental stimuli. Thus, the aim of this
research study was to evaluate the applicability of the A. niger volatile metabolite pattern
previously established for 3 and 5 days of growth [14], for early contamination detection by
direct analysis of table grapes used as study-model. To accomplish this objective, a set of
steps was established: (i) 1 day of growth time of A. niger cultures; (ii) 1 day of growth time
through A. niger cultures obtained from previously contaminated grapes; and (iii) direct
analysis of contaminated table grapes (in situ assays).

2. Materials and Methods
2.1. Fungal Strains and Culture Growth Conditions

The three fungal strains used in this study—Aspergillus niger (GenBank accession
number KT964850), Penicillium chrysogenum (GenBank accession number KT799549) and
Candida albicans (GenBank accession number SC5314)—were obtained from the Department
of Biology, University of Aveiro, Portugal. Fresh cultures were prepared by inoculation on
Yeast Glucose Chloramphenicol Agar (YGCA—20 g L−1 D-glucose, 5 g L−1 yeast extract,
0.1 g L−1 chloramphenicol and 18 g L−1 agar; Liofilchem®, Roseto degli Abruzzi, Italy).
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The first experiment was conducted following the same protocol already published for
the three fungal strains [14] and adapted in the current study for one day of growth after
the inoculation as the workflow presented in Figure 1a. Five plates were prepared with
solid YGCA for each assay, where the three fungi were inoculated separately. All essays
were performed in triplicate. Each experiment was repeated for 7 days to provide replicates
at different times (i.e., three strains with 1-day growth, repeated for 7 days). For each assay,
the sampling was performed by adding 10 mL of Ringer solution (Merck Millipore) per
plate (5 plates per assay) to collect the cellular content of each sample. After that, 50 mL of
the suspension were collected from each assay, an aliquot of 25 mL was collected to volatile
metabolites profiling and other aliquot of 25 mL for the determination of cell concentration.
The cell concentration was expressed as colony-forming units per milliliter (CFU mL−1).
The homogenized suspension was serially diluted in Ringer solution and aliquots of 100 µL
were spread on YGCA (5 replicates per dilution). These results were employed to normalize
the total areas of each chemical feature detected, therefore allowing the determination
of specific metabolite production per cell. Finally, to assess general distinction based on
metabolomics data, P. chrysogenum and C. albicans were also plated onto YGCA at 25 ◦C
also performing 5 plates for each assay under study (in a total of 15 plates per condition
corresponding to 3 independents assays), and the same procedure used for A. niger samples
in solid media mentioned above was applied. Penicillium chrysogenum was chosen to
compare two filamentous fungi from different species, and the unicellular fungus Candida
albicans was selected for its importance among immunocompromised patients within
clinical settings.

Figure 1. Workflow established for the three strategies used in this study: (a) evaluation of the volatile exometabolome for
1 day of growth of A. niger cultures, based on [14] (b) analysis of A. niger cultures obtained from previously contaminated
grapes and (c) direct analysis of contaminated table grapes with A. niger (in situ analysis).

2.2. Grapes Contamination Protocol

Red globe and Dominga table grapes (Vitis vinifera L.) in the commercially mature stage
were obtained from a local market in Aveiro, Portugal. The grapes were washed, superficially
disinfected with 0.2% (v/v) sodium hypochlorite for 3 min and rinsed in distilled water to
eliminate the residual sodium hypochlorite after being removed from the stems. After drying,
the fruits were wounded in a 2 mm depth and 10 µL of an A. niger conidial suspension
(1 × 105 conidia/mL) was inoculated in the wounded area. Inoculated fruits were kept
in a growth chamber under controlled temperature and humidity for seven days until the
sporulation stage. Independent assays were performed for red and white varieties.
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2.3. Profiling Headspace Volatile Metabolites by HS-SPME-GC×GC-ToFMS
2.3.1. Fungal Cultures

The HS-SPME and GC×GC-ToFMS experimental parameters were adapted from a
previous study [14], and followed the procedure presented in Figure 1a. After incuba-
tion, 25 mL of the suspension mentioned in the previous Section 2.1, was centrifuged at
10,000 rpm, at 4 ◦C for 15 min (Centrifuge Beckman AVANTI, Indianapolis, IN, USA).
Sequentially, 20 mL of supernatant was transferred into a 60 mL glass vial containing 4 g of
sodium chloride (NaCl) (≥99.5%, Sigma-Aldrich, St. Louis, MO, USA) and a stirring bar via
syringe with 0.20 µm filter. The vials were sealed with a silicone/polytetrafluoroethylene
septum and an aluminum cap (Chromacol Ltd., Herts, UK). All the samples were stored at
−80 ◦C until analysis. The SPME extraction was carried out using a 50/30 µm divinylben-
zene/carboxen™/polydimethylsiloxane StableFlex™ SPME fibre (DVB/CAR/PDMS). For
the HS-SPME protocol, the vials were placed in a thermostatic water bath and headspace
extraction was performed for 30 min, at 50 ◦C, and under continuous agitation at 350 rpm.
Three independent aliquots were analyzed for each sample under study, at each day of
growth, for seven days.

2.3.2. Instrumentation

SPME fiber was manually introduced into the GC×GC–ToFMS injector and exposed
for thermal desorption into heated inlet at 250 ◦C. The inlet was lined with a 0.75 mm I.D.
splitless glass liner and splitless injections mode were used (30 s). The LECO Pegasus
4D (LECO, St. Joseph, MI, USA) GC×GC-ToFMS system was comprised by an Agilent
GC 7890A gas chromatograph (Agilent Technologies, Inc., Wilmington, DE, USA), with a
dual-stage jet cryogenic modulator (licensed from Zoex) and a secondary oven, as well as
mass spectrometer equipped with a ToF analyzer. An Equity-5 column (30 m × 0.32 mm
I.D., 0.25 µm film thickness, Supelco, Inc., Bellefonte, PA, USA) and a DB-FFAP column
(0.79 m × 0.25 mm I.D., 0.25 µm film thickness, J&W Scientific Inc., Folsom, CA, USA) were
used for first (1D) and second (2D) dimensions, respectively. Helium was employed as
carrier gas at a constant flow rate of 2.50 mL min−1. The following temperature programs
were used: the primary oven temperature was ranged from 40 ◦C (1 min) to 140 ◦C at
10 ◦C min−1, and then to 200 ◦C (1 min) at 7 ◦C min−1. The secondary oven temperature
program was 15 ◦C offset above the primary oven. Both the MS transfer line and MS
source temperatures were 250 ◦C. The modulation period was 5 s, keeping the modulator
at 20 ◦C offset above the primary oven, with hot and cold pulses by periods of 0.80
and 1.70 s, respectively. The ToF analyzer was operated at a spectrum storage rate of
100 spectra s−1, with mass spectrometer running in the EI mode at 70 eV and detector
voltage of −1480 V, using a m/z range of 35–300. ChromaTOF® (LECO) GC×GC data
processing software was used to process the total ion chromatograms at the signal-to-noise
threshold of 200. For identification purposes, the mass spectrum and retention times (1D
and 2D) of the analytes were compared with standards, when available. Additionally, the
identification process was done by comparing the mass spectrum of each peak with existing
ones in mass spectral libraries, which included an in-house library of standards and two
commercial databases (Wiley 275 and US National Institute of Science and Technology
(NIST) V. 2.0—Mainlib and Replib). Moreover, additional information such as linear
temperature programmed retention indexes (RI) were experimentally determined [40]. For
this purpose, the C8–C20 n-alkanes series (the solvent n-hexane was used as C6 standard)
was used for RI determination comparing these values with reported ones in existing
literature for chromatographic columns similar to 1D column (Table 1). The Deconvoluted
Total Ion Current GC×GC area data were used as an approach to estimate the relative
content of each metabolite under study.

2.3.3. Contaminated Table Grapes

The contaminated grapes, as described in the Section 2.2, were analyzed using two
strategies. The first protocol involved spreading the fungus spores obtained from the
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contaminated grapes after 7 days of growth into Petri dishes containing YGCA and stan-
dardizing the use of two grapes per dish (Figure 1b). After that, the samples were submitted
to the same growth conditions and extraction procedures as following the Figure 1a and
described before. In this case, five replicates for both varieties of grapes were carried out
due to confirm the metabolite profile obtained from them. The second approach employed
the in situ HS-SPME methodology to extract directly from the fruits the metabolites pro-
duced by the fungus. In this case, ten contaminated grapes were transferred to adapted
flasks which enabled them to be hermetically closed, which also included a septum for
the SPME fiber introduction. Thus, the in situ experiment was designed to analyze the
volatile organic compounds produced by the fungus after 24 h, 4 and 7 days of inoculation.
For each time under study, three independent samples were prepared. To avoid cross
contamination, for both grape varieties, the inoculation of the fungus was performed in
sterilized conditions. In cases where contamination by other species of microorganisms
was confirmed, these vials were discarded.

2.4. Statistical Analysis

This study consists of two sets of data (Tables S1 and S2). The first data set matrix
consists of 54 independent observations, 30 of which refer to 3 fungal species in different
growth times (3 and 5 days); 9 referring to a data set in which only the fungus A. niger
was evaluated in growth times of 1 and 3 days; and 15 addressed to the data set obtained
in order to confirm the feasibility of the reduction for the detection time of one day, all
replicates referring to A. niger. In addition, there are ten independent observations of the
profile of metabolites from A. niger isolated from grapes (Table S1). The second set of data
was obtained from the profile of volatile organic compounds obtained for the same fungus
directly in contaminated grapes, using an in situ-SPME approach (Table S2).

All the data set was firstly normalized by colony forming unit per milliliter (CFU mL−1)
to provide an accurate idea of the metabolite’s concentration per cell. Initially, the set of
44 metabolites detected in a previous study was used to extract information about the new
conditions employed (1 day of growth). These metabolites were defined as the A. niger
molecular biomarkers pattern, and an exploratory test was done to evaluate its potential in
fungi distinction. Before the multivariate analysis, the peak areas of the 44 selected analytes
were measured for the A. niger samples and for the C. albicans and P. chrysogenum strains. To
provide a comprehensive study and a higher number of samples, archival data previously
collected in similar experiments in our laboratory were included in the evaluated models,
enabling a comparison among all the systems in different growth times and also different
periods of experiments (2014, 2016, 2018). The whole data set employed in this study can
be found in the Supplementary Materials (Tables S1 and S2). Regarding the multivariate
analysis, Principal Component Analysis (PCA) and Partial Least Squares Discriminant
Analysis (PLS-DA) strategies were employed using MetaboAnalyst 4.0. The peak areas
were previously normalized by the total area, mean-centered and autoscaled, which is a
data pre-treatment process that gives variables the same weight. The classification model
was statistically validated using leave-one-out cross-validation (LOOCV) which provides
an analysis of accuracy, R2 (quality-of-fit), and Q2 (quality-of-prediction). Model robustness
was assessed using a permutation test (1000 permutations).

3. Results and Discussion
3.1. Evaluating the Potential of A. niger Metabolite Biomarkers Pattern for Strain Distinction at
1-Day of Culture Growth

The initial experiments were performed based on a previous study which included
evaluation of the volatile profile of the fungus A. niger in comparison with other species
and under different growth conditions [14]. Thus, using previously optimized method and
other growth conditions, the growth time was reduced to one day in order to minimize the
detection time of the fungus in relation to the previous method that spends 3 and 5 days.
Table 1 presents the list of the 44 metabolites named as the A. niger molecular biomarker
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pattern [14] and determined by HS-SPME/GC×GC-ToFMS in the samples under study.
The 44 metabolites set was chosen since they were identified in all the conditions studied for
A. niger and, therefore, was defined as a standard of molecular biomarkers for this microor-
ganism. This data set includes hydrocarbons, including aliphatic and aromatic (31.8%),
alcohols (22.7%), aldehydes (20.5%), ketones (11.4%), esters (6.8%), terpenic compounds
(4.6%), and norisoprenoids (2.3%).

Table 1. List of the 44 metabolites named as the A. niger molecular biomarker pattern and determined by HS-SPME/
GC×GC-ToFMS.

Peak
Number

1 tR
a (s) 2 tR

a (s) Metabolite CAS
Number Formula MSI

Level b RICalc
c RILit

d

1 115 0.910 1-Butanol 71-36-3 C4H10O 1 644 655 [41]
2 150 1.160 3-Methyl-1-butanol 123-51-3 C5H12O 1 718 706 [42]
3 255 1.140 1-Hexanol 111-27-3 C6H14O 1 878 877 [42]
4 345 1.100 1-Heptanol 111-70-6 C7H16O 2 975 974 [43]
5 350 1.050 1-Octen-3-ol 3391-86-4 C8H16O 1 980 992 [44]
6 365 1.270 3-Octanol 589-98-0 C8H18O 1 996 996 [45]
7 395 0.990 2-Ethyl-1-hexanol 104-76-7 C8H18O 2 1029 1038 [44]
8 440 1.030 1-Octanol 111-87-5 C9H18O2 1 1079 1079 [44]
9 475 3.030 2-Phenylethanol 60-12-8 C8H10O 1 1120 1107 [46]

10 805 2.060 2,4-bis(1,1-Dimethylethyl)phenol 96-76-4 C14H22O 2 1514 1513 [47]
11 110 0.460 3-Methylbutanal 590-86-3 C5H10O 2 633 628 [48]
12 190 0.590 Hexanal 66-25-1 C6H12O 1 801 800 [49]
13 275 0.620 Heptanal 111-71-7 C7H14O 1 901 903 [49]
14 465 0.630 Nonanal 124-19-6 C9H18O 1 1106 1106 [42]
15 555 0.630 Decanal 112-31-2 C10H20O 2 1207 1206 [49]
16 685 0.770 2-Undecenal 2463-77-6 C11H20O 2 1364 1369 [50]
17 720 0.650 Dodecanal 112-54-9 C12H24O 2 1407 1406 [49]
18 335 1.550 Benzaldehyde 100-52-7 C7H6O 1 965 954 [51]
19 410 1.620 Benzeneacetaldehyde 122-78-1 C8H8O 1 1046 1049 [41]
20 135 0.530 Methyl 2-methylpropenoate 80-62-6 C5H8O2 2 685 710 [41]

21 695 0.920 3-Hydroxy-2,4,4-trimethylpentyl
2-methylpropanoate 74367-34-3 C12H24O3 2 1376 1376 [13]

22 545 1.050 2-Phenylethylacetate 103-45-7 C10H12O2 2 1196 1196 [13]
23 880 0.490 Hexadecane 544-76-3 C16H34 1 1601 1600 [49]
24 965 0.430 Heptadecane 629-78-7 C17H36 1 1701 1700 [49]
25 115 0.460 Benzene 71-43-2 C6H6 1 643 643 [13]
26 170 0.540 Toluene 108-88-3 C7H8 1 759 771 [41]
27 250 0.590 1,3-Dimethylbenzene 108-38-3 C8H10 2 871 871 [13]
28 270 0.640 1,2-Dimethylbenzene 95-47-6 C8H10 2 901 900 [42]
29 325 0.580 Propylbenzene 103-65-1 C9H12 2 953 959 [41]
30 335 0.590 1-Ethyl-4-methylbenzene 622-96-8 C9H12 2 964 970 [41]
31 365 0.640 1,3,5-Trimethylbenzene 108-67-8 C9H12 2 995 974 [41]
32 390 0.580 1-Methyl-2-(1-methylethyl)benzene 527-84-4 C10H14 2 1023 1023 [13]
33 390 0.690 1,2,3-Trimethylbenzene 526-73-8 C9H12 1 1023 1023 [13]
34 425 0.610 2-Ethyl-1,4-dimethylbenzene 1758-88-9 C10H14 2 1062 1062 [13]
35 700 1.270 Biphenyl 92-52-4 C12H10 2 1383 1383 [13]
36 880 1.020 2-Methyl-6-phenyl-1,6-heptadiene 51708-97-5 C14H18 2 1601 1601 [13]
37 75 0.390 2-Propanone 67-64-1 C3H6O 1 559 559 [13]
38 265 0.580 3-Heptanone 106-35-4 C7H14O 1 889 884 [41]
39 355 0.740 6-Methyl-5-hepten-2-one 110-93-0 C8H14O 1 985 985 [41]
40 495 0.760 3-Nonen-2-one 18402-83-0 C9H16O 2 1140 1140 [13]
41 755 0.800 6,10-Dimethyl-5,9-undecadien-2-one 3796-70-1 C13H22O 2 1451 1451 [13]
42 435 0.790 2,6-Dimethyl-7-octen-2-ol 18479-58-8 C10H20O 2 1073 1073 [13]
43 625 0.630 Endobornyl acetate 76-49-3 C12H20O2 2 1289 1289 [13]
44 780 0.750 α-Methylionone 127-51-5 C14H22O 2 1482 1482 [13]

a Retention times for first (1 tR) and second (2 tR) dimensions in seconds. b Level of metabolite identification according to Sumner et al. [52].
(1) Identified compounds; (2) Putatively annotated compounds; (3) Putatively characterized compound classes; (4) Unknown compounds.
c RICalc: Linear Retention Index obtained through the modulated chromatogram. d RILit: Linear Retention Index reported in the literature
for Equity-5 column or equivalents.

According to Figure 2, it is possible to verify differences between the culture medium
and one day of growth, highlighting the compounds (1) 1-Butanol, (9) 2-Phenylethanol, (26)
Toluene, and (43) Endobornyl acetate, assigned in Table S1. For 2-Phenylethanol (Figure 2c),
the peak was identified at a mass spectral acquisition of 100 spectra/s for 1 day of growth
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and absent for the YGCA, corroborating the fact that the indicated compounds are directly
related to the presence of the microorganism.

Figure 2. GC×GC-ToFMS total ion chromatogram contour plot of the VOCs released from: (a) Yeast Glucose Chloram-
phenicol Agar medium (YGCA), used as control and (b) A. niger culture headspace volatile components inoculated in YGCA,
for 1 day of growth, at 37 ◦C. (c) The wide 2-phenylethanol GC×GC peak was identified at a mass spectral acquisition of
100 spectra/s for 1 day of growth and absent for the YGCA. Peak number assignment in Table S1 and bold in Table 1.

Therefore, the data set was submitted for evaluation using PLS-DA. This type of tool
has been widely used in metabolomics approaches, essentially when each of the selected
classes is known. The variation of the samples can be explained by the latent variable which
in statistics can be considered the variables that are not directly observed but are rather
inferred (through a mathematical model) [53,54]. Figure 3 shows a distinction between the
three classes of microorganisms under study. A higher dispersion along LV1 was observed
for A. niger, which may be explained as this data set comprises samples with 1, 3, and
5 days of growth (Table S1). Additionally, it is possible to observe that most of the related
loadings are grouped closed to the A. niger samples, which confirms this set of metabolites
may be considered as a biomarker pattern of this species. Thus, to verify the classification
model established for the data set, it was evaluated using cross-validation.
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Figure 3. PLS-DA biplot of the samples (LV1×LV2) using the set of 44 metabolites listed in Table 1, which shows a distinction
between the three classes of microorganisms under study. The areas were previously standardized by CFU mL−1 (Table S1,
gray-highlighted). Results obtained by performing the pure culture growth in solid YGCA culture medium and using
different growth times.

Cross-validation was performed by using a specific number of samples that are
reserved for the construction of the model (training set) and another portion for testing
the built model (validation set). The proper choice of cross-validation method from those
available basically depends on the number of samples available for use in the training
set and validation. In this case, LOOCV was used for the data set in this study once the
number of samples is small and it is not possible to assign a sample set to the validation
set. The LOOCV consists of choosing one of the samples to compose the validation set and
the remaining samples are used for the training set. A new sample is then taken to make
up the validation set and the sample that was previously used for the validation set this
time will make up the training set; these operations are repeated iteratively several times
until all the samples have been part of the validation set at least once [55]. Table 2 presents
the results for the statistical parameters obtained in the model validation according to the
number of main components used to describe the data.

Table 2. Statistical parameters for the evaluation of the PLS-DA model according to the number of components for the
classification model.

Parameters Latent Variable 1 Latent Variable 2 Latent Variable 3 Latent Variable 4 Latent Variable 5

Accuracy 0.7778 0.7778 0.9815 1.0 1.0
R2 0.4548 0.8821 0.9152 0.9312 0.9557
Q2 0.2957 0.7888 0.8252 0.81084 0.8128

By looking at the three components, the values of R2, Q2, and accuracy are 0.9152,
0.8252, and 0.9815, respectively. However, statistical parameters R2 and Q2 are the most
important diagnostic tools for evaluating the performance of the built model. The R2

parameter refers to the fitting quality of the model and it is responsible for measuring the
performance considering adjusting the raw data. Thus, the values of R2 range from 0 to 1,
where 1 indicates a perfect model and 0 indicates no adjustment or modeling [56]. The main
disadvantage of parameter R2 is that it can be adjusted to close to 1 including more terms to
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the model (in this case, latent variables), and therefore is not a sufficient indicator to assess
the validity of the model. Another parameter that should also be evaluated in indicating
the utility of a regression model is Q2. This parameter is called “predictive quality” and
estimates the predictive power of the model, i.e., the model’s ability to predict results from
unknown samples. Q2 represents a more realistic and useful performance indicator since
it reflects the final objective of modeling that refers to predictions for new experiments.
Thus, R2 and Q2 have an upper limit of 1 and the validity of a model is related to the high
values of R2 and Q2. In general, Q2 > 0.5 can be considered good and Q2 > 0.9 excellent.
Accuracy, in general, is used to describe the proximity of a measure to a value taken as true.
In classification models, accuracy represents the number of correctly predicted samples in
relation to the total of samples in the test set. Always use as few components as possible in
the construction of the model from which there is no significant gain in the accuracy and
other parameters of the model evaluation, and this should be done by keeping the values of
these parameters close to 1, thus ensuring the high predictability of the model. The use of
more components than necessary results in the inclusion of unnecessary information to the
model, making it over-adjusted and thus compromising its predictive ability. Thus, taking
into account that the construction of a model based on living organisms and its metabolic
production may vary according to environmental conditions and other external factors, the
values obtained by the parameters R2, Q2 and accuracy ensure the rationality of the model
built for this study, making it possible to use in the prediction of new samples [55,57].

Compounds such as 2-phenylethanol, 3-octanol, 3-methyl-1-butanol are among the
most important variables and have already been described in the literature as characteristic
volatile metabolites of fungal species, including A. niger [13,14,58]. Volatile organic com-
pounds such as geosmin, methylisoborneol, 1-octen-3-ol, 1-octen-3-one and 3-octanone
have been reported as common to several fungal species and also, sensory differences
between wines made with grapes contaminated with different kinds of bunch rots have
already been described [13]. In this sense, it is important to choose compounds that can
be used as unique biomarkers for classes of microorganisms, as this targeted approach
facilitates their identification without the use of highly complex data. Thus, statistical
models can be concluded based on these metabolites to evaluate if this selection is sufficient
and valid for a classification model.

3.2. Following the A. niger Metabolites Biomarkers Pattern over 7 Days
3.2.1. By Analysis of A. niger Cultures Obtained from Contaminated Grapes

Based on the previous model, an application study was carried out to detect A. niger
in contaminated grapes. The same growth strategies, analysis, and data treatment were
employed, and the data obtained were tested to predict the contamination of the samples
with this pathogen. Thus, after 7 days of growth, the spores of A. niger in the grapes were
transferred to petri dishes with YGCA medium. For this procedure, two grapes per plate
were used and the experiments were performed in five repetitions for each grape variety.
Figure 4 presents the complete data set, using the same previous model, including the
samples from contaminated grapes.

According to Figure 4, the set of data obtained with the contaminated grapes is
similar to the previous data obtained to construct the model, following the PLS-DA graph.
Therefore, the fungus can be detected after only one day of infection. The interest in
detecting the presence of microorganisms has been widely studied [59,60], with applications
employed in the hospital area [61,62], the environment [63], and mainly food [12,64],
including the fungus A. niger [65]. Nevertheless, the differential of this study lies in the fact
that the detection of contamination by A. niger can be performed in only one day involving
all the steps described above, which is quite significant when compared to traditional
methods dependent on the isolation and characterization of infectious agents; usually a
very long and troublesome path. Although the protocol is not an identification that can
completely replace the use of molecular tools, the strategy employed can assist in the early
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investigation due to detection or not of the microorganisms’ presence before using other
approaches for accurate identification.

Figure 4. PLS-DA biplot of samples (LV1×LV2) using the set of 44 metabolites listed in Table 1, which shows that the grapes
contaminated with A. niger presents a metabolomics pattern like the pure cultures. The areas were previously standardized
by CFU mL−1 (Table S1). Results obtained by performing the pure culture growth in solid YGCA culture medium and by
contaminated grapes (Red Globe and Dominga) with A. niger.

3.2.2. By Direct Analysis of Contaminated Table Grapes—In Situ SPME

The followed volatile metabolite profile of the disease was evaluated through 7 days
of growth by using 42 metabolites associated with A. niger metabolism, because in this
study only 42 of the total set of metabolites were identified in grapes. By employing
this strategy, 2-methyl-6-phenyl-1,6-heptadiene and methyl 2-methylpropenoate were not
found. Although there is no clear indication regarding their absence, the differences in
the substrate can slightly modify metabolite production, indicating the importance of in
situ studies. An in situ SPME strategy was performed using a non-invasive headspace
approach. Data were equally subjected to statistical analysis using MetaboAnalyst 4.0 tool
to identify possible groupings of the investigated samples. Figure 5 shows that there was
a clear separation between the samples, associated with a variation in the concentration
of metabolites over the days of fungal growth. In vivo SPME studies have been widely
applied in food analysis, since coated surfaces are biocompatible and also provide higher
sensitivity and reduced analysis time [66–68].

PLS-DA scores plot (Figure 5) revealed the dispersion of the samples according to main
factors; time of growth and variety. The latent variable 1 (LV1) is mainly responsible for
explaining the data variability (41.1%), which showed dispersion of the samples according
to the growth time, from 1 day (LV1 negative) to 7 days (LV1 positive). Along LV2, which
explained 13.1% of the data variability, the samples are organized according to the variety,
with Do mainly in the LV2 positive and the RG in the LV2 negative.
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Figure 5. PLS-DA biplot of samples (LV1×LV2) using the set of 42 metabolites listed in Table 2, showing clear distinction
between both contaminated grape varieties over time. Results obtained over 7 days (Table S2) for White (Dominga—Do) and
Red (Red Globe—RG) grapes contaminated with A. niger. Independent assays were performed for red and white varieties.

In addition, from these data it was also possible to infer that red variety (RG) was more
resistant to contamination than white one (Do), as for RG after 4 days of contamination
the metabolite profile was still quite similar to that of the first day. This fact can be
explained by the higher concentration of phenolic and antioxidant compounds in general
present in this type of grape, ensuring a higher resistance to contamination. A recent study
demonstrated the antagonistic activity of essential oils of eight plants against strains of
A. niger, and one of the factors highlighted by the authors was the presence of antioxidant
compounds that helped to control the disease in stored wheat grains [69,70]. Fu-xiang
et al. demonstrated that fresh grapes are rich in bioactive phenolic compounds, and the
concentration depends heavily on the grape varieties. The Mascot Kyoho variety (red
skin) had the highest concentration of antioxidant compounds such as (+)-catechin, (−)-
epicatechin, rutin, isoquercitrin, and kaempferol. The phenolic compounds of grapes are
mainly in their skins, and this corroborates the results shown above, where the high content
of antioxidant compounds promotes resistance to the growth of the pathogen. The effect of
inhibiting the growth of A. niger against antioxidant enzymes has been previously studied
and possibly suggests the induction of antioxidant defense response by Trichoderma bio-
controller to combat oxidative bursts produced by invading pathogens [70,71].

Additionally, the dendrogram and heatmap (Figure S1) illustrate the formation of
two main clusters related to the two grape varieties, within each one there is organiza-
tion of the samples as a function of growth time. The biplot (Figure 5) and heatmaps
(Figure S1) demonstrate that the most important compounds directly related to A. niger
contamination are 3-octanol, 2-phenylethanol, 3-methyl-butanol, and 1-octen-3ol (only for
Dominga). Based on previously reported studies, all of these compounds can be associ-
ated to volatile organic compounds produced by microorganism species [15,27,72], even
A. niger [13,14]. Previous studies have demonstrated the pathway for the production of
1-octanol is from glucose and fatty acids in E. coli and this compound is mainly accumu-
lated in the culture media fraction [15]. Furthermore, 2-phenyletanol and 3-methyl-butanol
compounds are very common as microorganism biomarkers. Production of these metabo-
lites are associated with the isoleucine/leucine and phenylalanine pathway metabolism,
respectively [27,72,73].
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Non-invasive methods such as HS-SPME are very useful in the detection and mon-
itoring of food contamination, including the level of contamination. Recent works have
demonstrated the utilization of metabolomic strategies in the detection of several microor-
ganisms in grapes and grape juices [4,13,14]. In general, the approaches utilized involve a
non-target metabolic exploration step in order to verify a pattern of compounds responsible
for the contamination and from this point on, only these target compounds are monitored
to verify different levels of contamination [13,74]. This was also the approach initially used
during this work, and therefore justifies the choice of the set of metabolites investigated.

The data obtained so far demonstrate that it is possible to detect contamination by
A. niger directly in grapes using a non-invasive and rapid method. From this initial
information, new statistical tools and approaches will be employed in order to explore
these data in more depth and obtain important information regarding the profile of volatile
metabolites and their relationship with the level of fungal contamination [69,75].

4. Conclusions

In conclusion, the developed tools can be used to ensure the quality and food safety
of grapes by employing early and sophisticated metabolomics strategies. It was possible to
perform the construction of an experimental model from previously selected metabolites by
reducing the growth time to one day. The model was validated employing statistical tests,
and the results were considered satisfactory in modeling the microorganism’s behavior.
In addition, the model was tested to verify the presence of the microorganism A. niger
in contaminated grapes for two varieties, and proved the presence of the microorganism
even with one day of detection time. Fungus detection from the set of metabolites was
also used for kinetic follow-up of fungus growth over 7 days. Using a PLS-DA approach,
it was possible to observe that the matrix is an important factor for fungi development,
as different concentrations of the metabolites were observed for the red and white grape
varieties. The results obtained throughout this study suggest that even when the analysis
was performed for the samples with one day of growth time, the pattern of metabolites
associated with the A. niger species was detected, which may be extremely useful in making
this type of method possible for the rapid detection of food contamination.

Moreover, it is hoped that the methodology developed can be extended to other
problems involving the detection of this microorganism, such as its detection in other
foods, or even in other environments where it may be present in a way that is harmful
to human health. Although this article represents a step forward in the evaluation of the
applicability of the metabolome of A. niger in contaminated real samples, for its further
application in other scenarios, it is mandatory to look for other parameters, such as limits
of detection, evaluation of confounders, matrix effects, and the presence of a mixture of
species (co-cultures), among others.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10112870/s1, Figure S1: Dendrogram and heatmap representation of the 42 metabo-
lites putatively identified from red (RG) and white (Do) table grapes contaminated with A. niger,
determined by in situ HS-SPME/GC×GC-ToFMS over 7 days, which illustrates the formation of
two main clusters related to the two grape varieties, within each one there is an organization of
the samples as a function of the growth time. Table S1. Full data set used for statistical processing
including the chromatographic data of the 44 metabolites putatively identified and normalized by
CFU mL−1 from A. niger, P. chrysogenum and C. albicans cultures in different growth times, using
HS-SPME/GC×GC-ToFMS. Results obtained by performing the pure culture growth in solid YGCA
culture medium and by contaminated grapes (Red Globe and Dominga) with A. niger after 7 days of
growth. Table S2. Full-data set used for statistical processing including the chromatographic data of
the 42 metabolites putatively identified from red and white tables grapes contaminated with A. niger
and determined using in situ-HS-SPME/GC×GC-ToFMS.
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