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Abstract: Nanotechnology has impacted the food industry, mainly on developing healthier, safer,
and high-quality functional food. Flavonoids are valuable compounds present in plants, fruits,
grains, roots, stems, tea, and wine, among others; they possess many benefits for health due to
their antioxidant properties toward reactive oxygen species, anti-inflammatory, and antiproliferative,
among others. These characteristics make flavonoids attractive in various industrial areas such
as medicine, nutraceutical, cosmetology, and pharmaceutical. Unfortunately, flavonoids lack long-
term stability, are sensitive to light, long periods of darkness with low oxygen concentration, and
often present a low water solubility and poor bioavailability. Nanoencapsulation is an alternative
to improve bioavailability and sensitivity in the manufacturing process, based on encapsulating
substances on a nanoscale. Nanocapsules are a promising strategy in significantly enhancing the
delivery of compounds to various sites in the body. The development of biopolymers to encapsulate
sensitive compounds is increasing, as well as the search for the non-toxic, biodegradable, natural and
biocompatible characteristics of polymers, is fundamental. The present review describes the recent
techniques and technologies for the nanoencapsulation of flavonoids. It discusses their potential
advantages and possible limitations, compares natural and synthetic biopolymers, and finally, details
nanoparticle regulation.
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1. Introduction

Nowadays, the consumer demands quality and health benefits in their food while
preserving all the organoleptic properties. The importance of conserving food quality
and health benefits without disturbing nutritional value in industrial processes has been
a challenge.

The development of nanotechnology has supported transforming numerous areas of
food science and the food industry with increasing investment. In recent decades, nanoscale
engineering and manufacturing have made it possible to improve different processes in
various areas, such as chemical, physical, biological, electronic, and engineering sciences [1].

The food industry has increased demand for nanotechnology applications; it provides
strategies to solve significant problems ranging from food manufacturing and processing
to packaging. Especially in food processing, nanomaterials can be used as food additives
to improve sensory properties, transport nutrients, antibacterial agents, etc. [2]. According
to its functions, the application of nanotechnology in food can affect the bioavailability
and nutritional value of food. Nevertheless, the biological properties of nanomaterials still
depend on their physicochemical parameters [3]. In addition, food nanotechnology can
enhance taste, texture, and consistency. It also helps suppress the unpleasant taste or odor
and modifies the particle size, size distribution, possible cluster formation, and surface
charge [4].

Incorporating bioactive compounds into food is challenging because they tend to have
very low chemical stability. Thus, absorption in the human body is generally limited. In ad-
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dition, bioactive compounds tend to have low solubility in water or low bioavailability [5].
These are some of the reasons that do not allow consumers to experience their benefits.
Bioavailability means that a substance or drug becomes entirely available for its intended
biological destination(s) [6]. Nutraceuticals exhibit different hydrophilic and hydrophobic
properties, affecting their assimilation into the human body.

Meanwhile, bioaccessibility refers to the portion of the compound that is released
from the food matrix and is available for absorption [5]. Bioaccessibility for hydrophobic
compounds includes how these molecules are incorporated into micelles in the small
intestine to be absorbed in the gastrointestinal tract (GIT), similar to lipids.

Compounds are absorbed through the epithelial layer of the intestine mainly by two
mechanisms: passive transport and active transport. The characteristics of bioactive com-
pounds determine the mechanism of absorption, and bioaccessibility and bioavailability
are two phenomena that influence the absorption process [5].

The unique properties of nanomaterials provide significant advantages for food pro-
cessing. They are mainly used as ingredients or supplements [7]. Nanoparticles have better
properties for encapsulation, and they release bioactive compounds with more efficiency
than traditional encapsulation systems. In addition, particle size directly affects the delivery
of compounds to numerous tissues in the organism. Interestingly, several reports suggest
that only nanoparticles can be efficiently absorbed into specific cell lines, as opposed to
larger microparticles, which significantly reduce their absorption [6]. In addition, nano-
materials could improve compatibility with the food matrix, increasing the shelf life and
bioavailability of the food products [8]. However, the toxicity and safety of nanomaterials
have not been thoroughly studied and documented [9]. However, there are agencies in
charge to legislate and regulate nanomaterials, such as the United States Food and Drug
Administration (U.S. FDA) and European Commission (EC). Several nanometric delivery
systems have been designed and approved for the food, supplements, and pharmaceutical
industries. The primary purpose of nanometric delivery systems is to improve the diges-
tion, release, and absorption of lipophilic bioactive compounds, or chemically unstable
molecules. Bioactive compounds are essential for physiological functions in the human
body. Additionally, many reports describe host disease prevention by the consumption of
nutraceuticals [5].

Nanotechnology also plays an essential role in reducing food waste due to food
processing or spoilage. Nanotechnology could help increase the shelf life of food and
improve the containment and preservation of food in food packaging [10]. However,
nanostructured food ingredients and delivery systems for nutrients and supplements
comprise the main focus in nanotechnology applications in foods [11].

2. Flavonoids

Flavonoids are phenolic substances isolated from natural sources because they belong
to a class of plant secondary metabolites. They are the most common phenolic compounds
in a flowering plant, and they are found in the human and animal diet. The basic structure
is the flavan nucleus, it consists in three rings (C6(A)-C3(B)-C6(C)). The classification of
flavonoids depends on the position of linkage of ring B, and their classes are anthocyanins,
chalcones, flavones, flavanones, flavanols, and isoflavonoids [12].

The interest in flavonoids for the food industry and food science is because they have
a wide range of biological activities. The most-reported bioactive activities of flavonoids
are antioxidant, antitumor, anti-inflammatory, hepatoprotective, lipid and carbohydrate
metabolism regulators, and antiviral properties. They have gained increasing attention
in therapeutic effects in different diseases such as chronic disorders including metabolic,
neurodegenerative diseases (Alzheimer), cancer, autoimmune illness, cardiovascular disor-
ders [12], and recently, as a possible potential antiviral against COVID-19 [13].

The bioavailability of flavonoids is generally low and may vary drastically among
different flavonoid classes and individual compounds in a particular group [14]. Efforts
are being made to improve the bioavailability of flavonoids. Genetic engineering is a
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recent tool to enhance plant performance and generate other sources of production such
as microorganisms. However, microbial production of flavonoids has been achieved
only at a laboratory scale, maybe due to obstacles such as adding expensive precursor
substances [15]. Thus, the industry focuses on new ways to take advantage of the limited
extraction of flavonoids and their maximum use in the human body through stabilizing
the compounds to preserve their properties until reaching the mechanism objective.

The main route of absorption of flavonoids is the gastrointestinal system because
the primary sources of flavonoids are plants, fruits and derivatives. Flavonoids have
low bioavailability, which has been associated with their degradation at various stages
of the digestion process, including degradation due to the activity of gastrointestinal
hydrolytic enzymes, their low distribution of the food matrix to the lumen of the intestine,
the composition of the microbiota and its inefficient absorption by intestinal epithelial
cells [14,16]. When ingesting flavonoids, the first stage is chewing, and then in gastric
phase, the main part of food mass is mainly hydrolyzed due to acid pH. As digestion
passes from the stomach to the small intestine, the pH gradually increases in the small
intestine from a pH of 6 to about a pH of 7.4 in the terminal ileum, and the pancreas and
bile secrete various enzymes and biosurfactants, All of these factors change the structure
of flavonoids. Finally, in the colon, the gut microbiota uses the benefits of flavonoids in a
different form and their derivates. The reasons for the low bioavailability of flavonoids are
briefly summarized in Figure 1.
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Figure 1. Summary of the factors accounting for the low bioavailability of flavonoids.

The structure of flavonoids, food matrix, processing, and external conditions may
interfere in the bioaccessibility of flavonoids [17]. As mentioned before, bioaccessibility has
defined the portion of a food constituent liberated from a food matrix in the gastrointestinal
tract and become available for absorption [18]. The food matrix is the most critical factor
that affects bioavailability and absorption in the consumption of flavonoids. Thus, it is
necessary to consider the interaction of flavonoids with other components in the food, such
as proteins, fibers, vitamins, etc. [17]. Processing and external conditions are two factors
that go hand in hand; both are important on the laboratory and industrial scale because
they directly influence the structures and, consequently, their biological activities. There
is evidence that the storage conditions can be a limiting step affecting product quality.
Chaaban et al. [19] studied six different flavonoids and their stability in two variables in
storage conditions, light and oxygen. They observed that flavonoids are not stable in the
dark with a low quantity of oxygen. Additionally, the flavonoids without the hydroxyl
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group in the third position show the highest stability compared to flavonoids that have
it [19]. Besides, refrigeration, heat, environment, food industry processing and domestic
processing, and domestic process showed degradation of flavonoid content [16].

3. Nanoencapsulation

Nanoencapsulation has been commonly used to preserve and improve the benefits of
unstable or sensitive compounds. It is the process of entrapping one substance in another,
producing particles with diameters on a nanometric scale [20]. There are two forms to
apply encapsulation in the food industry, microencapsulation, and nanoencapsulation.
First, microencapsulation refers to capsules with a size range of 1 to 1000 µm, which are
small particles of solid, liquid or gas within a secondary material. In contrast, nanoencap-
sulation refers to nanoscale encapsulation; bioactive compounds are loaded into capsules
surrounded by a variety of materials that protect them.

The wall materials, during micro and nanoencapsulation, can protect flavonoids (as a
shield) from different factors that could decrease their bioavailability and bioaccessibility in
the human body [21,22]. Micro and nanoencapsulation are applied in the pharmaceutical,
agricultural, cosmetic, medical, and food industries to protect bioactive compounds. How-
ever, nanoencapsulation technologies provide possible solutions to inherent difficulties
associated with macro and microscale encapsulation to deliver bioactive compounds.

Nanocapsules allow overcoming compatibility issues with the food matrix, such as
aggregation and phase separation, which frequently affect the appearance of the final
product, texture, flavor, stability, and color. Additionally, nanoencapsulation allows us to
design the controlled and intelligent delivery of bioactive compounds. Intelligent delivery
of bioactive compounds refers to releasing the compounds under specific conditions
that enable their release into target tissues [23]. Therefore, nanoencapsulation allows us
to overcome the challenges that previously avoided taking advantage of the functional
and medicinal properties of bioactive compounds. Finally, nanoscale delivery systems
must be biocompatible for the human body and economical for the food industry and
other industries.

3.1. Nanoencapsulation Technologies

Recently, the demand for new products with healthy and beneficial compounds
has increased over recent years in different industries. That is the food industry and
nutraceutical case with the trend to consume “functional foods”, which are designed to
improve human health, well-being, and performance [24]. Thus, different techniques for
nanoencapsulation processes were developed. Figure 2 shows the most used methods to
nanoencapsulate flavonoids.

The selection of the best method depends on several parameters, such as the nature of
the encapsulant, food formulation, food processing, the final application, and the cost of
the process [22]. Table 1 summarizes the advantages and limitations of nanoencapsulation
methods applied for flavonoids.

3.1.1. Nanoemulsion

Nanoemulsions are liquid-in-liquid dispersions with sizes from 1 to 100 nm; they
are formed by mixing oil, emulsifier, and water, followed by evaporating the continuous
phase [25]. They are very versatile because they can be simply produced using natural
food ingredients. Nanoemulsions may be designed to enhance water dispersion and
bioavailability [8]. Nanoemulsions present high stability under moderate conditions,
such as pH value, temperature, or salt concentration [26]. Moreover, their small droplet
dimensions exhibit benefits such as high optical clearness, excellent physical constancy
against gravitational partition, and droplet accumulation, making them suitable for food
applications [27]. According to Singh et al. the term nanoemulsion is sometimes confused
with microemulsion, but both differ in structural aspect and long-term thermodynamic
stability [28].
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Table 1. Nanoencapsulation methods applied for flavonoids.

Technique Morphology Advantages Disadvantages

Nanoemulsion Vesicles/spherical Encapsulate high concentrations.
Low energy.

High cost.
Unstable during log-tern storage.

Nanoliposome Bilayer lipid vesicles Stable against environmental factors. Difficult scale-up.
Sensitivity to mechanical stress.

Spray drying Spherical/compact

Industrial-scale.
Less processing time.

Hydrophobic
compounds without emulsifiers.

Low operating costs.

High temperature.
Retention of a compound is

generally lower.

Electro-spinning Tubular
Absence of heat.

High surface retention.
High encapsulation yield and porosity.

Limitation in industrial scale.
Challenge in setting parameters.

The increase in bioavailability is due to the nature of nanoemulsions. They have two
phases: the oil phase and the water phase stabilized by an interfacial film of surfactant.
It improves nanoparticles solubility in the gastrointestinal fluid. Moreover, nanoemul-
sions might enhance the permeability through the intestinal wall and protecting bioactive
from enzymatic degradation in the GIT. These formulations can successfully improve the
undesirable oral absorption of the poor water-soluble flavonoid compounds [26].

Nanoemulsions can be biphasic or multiple, the difference is in the nature of the
dispersed phase and the continuous phase. These can be classified as biphasic oil-in-water
(O/W) and water-in-oil (W/O) nanoemulsions and multiple nanoemulsions water-oil-
water (W/O/W) or oil-water-oil (O/W/O) [28], they are usually named direct and inverse
nanoemulsions, respectively (Figure 3). Nanoemulsions are typically prepared by either
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low-energy or high-energy methods or a combination of both. The low-energy methods
involve spontaneous emulsification. High-energy methods require using mechanical
devices, such as high-pressure homogenizers, microfluidizers, or ultrasonic homogenizers
to generate intense, disruptive forces to produce emulsification and/or reduce the particle
size. The main advantages of using methods that require low energy are their simplicity,
speed, and low cost. In contrast, the use of high-energy methods to make nanoemulsions
require low cosolvents (e.g., propylene glycol, glycerol, and sorbitol) or cosurfactants (e.g.,
short and medium-chain alcohols) and a variety of ingredients can be used [25,26].
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According to Chen and Inbaraj [25], anthocyanins are water-soluble flavonoids that
might enhance their physicochemical stability in nanoemulsions with different oil, water,
surfactant, and cosurfactant ratios for topical skin application and urinary tract infection.
The formulated W/O anthocyanin nanoemulsions are stable in storage conditions after
30 days. They showed no phase separation, and samples exhibited antioxidant activity,
high retention rates of polyphenols, and a half-life of 385 days [29].

Although nanoemulsions represent a method adequate to soluble flavonoids, there
are efforts to modify and improve the technique for insoluble compounds, as quercetin.
Quercetin is a lipophilic compound with many reported therapeutic effects. Multiple
studies have shown that quercetin solubilizes in a differentiated manner depending on
the matrix that contains it. For example, quercetin solubilizes closer to polar groups in
lipid membranes, but has intermediate polarity between hydrophobic and hydrophilic
molecules [30]. Chen et al. [31] developed quercetin-loaded rice bran protein-based na-
noemulsion with satisfactory results. The inclusion rate was 98.12 ± 0.07%, and the droplet
size of 219.7 ± 2.1 nm. Quercetin nanoemulsions had higher stability at alkaline conditions
and low salt concentrations, which simulate oral administration. Therefore, rice bran
protein-stabilized nanoemulsions were considered efficient carriers for transporting and
promoting the bioavailability of insoluble and sensitive molecules within the GIT.



Foods 2021, 10, 2701 7 of 14

3.1.2. Spray Drying

Spray drying is the oldest and most widely used technique for microencapsulation,
and now, nanoencapsulation. It is used in the food industry due to its flexibility as
well as being more economical. This method does not affect the sensory and textural
characteristics of a finished product [32]. The biggest challenge in using spray drying is
to achieve a high product yield with maximum encapsulation efficiency. The principal
factors that affect the product yield and encapsulation efficiency are the selection of the feed
formulation (solids content, surface tension, viscosity, and the concentration of wall and
core materials) and operating parameters (inlet and outlet temperatures, drying gas flow
rate, feed flow rate, and atomizer pressure and speed) [33]. Additionally, the atomization
system is the part of the instrument with a significant influence on the size of particles. The
particle size obtained by conventional spray drying usually varies from small size (1–5 µm),
medium size (5–25 µm), and large size (10–60 µm) powders. Interestingly, the appropriate
manipulation of the atomization conditions contributes to the final size [34]. The main
advantage of spray drying is that particle formation occurs in a single step. Additionally, it
is a continuous and scalable process.

It is necessary to make an emulsion to generate nanogels; then, it is sprinkled into
small droplets, and finally the solvent evaporates, resulting in small droplets of the product
stored in the carrier substance and embedded in the nanogel [35]. It is also possible to
obtain a liquid product embedded inside a solid matrix, leaving a solid matrix around the
dispersed second phase. In this case, the feed formulation must be a multiple emulsion.
Multiple emulsions contain, as a dispersed phase, an inverse emulsion, and the continuous
phase is an aqueous liquid. They are water-in-oil-in-water (W/O/W) emulsions. This type
of emulsion is basically used in pharmacy, as it allows obtaining a prolonged release of
the drugs.

Pedrozo et al. [36], produced bovine serum albumin-based nanoparticles, which con-
tain rutin by nano-spray drying. Rutin corresponds to flavonols classification of flavonoids,
which is a hydrophobic molecule. The result showed a low encapsulation efficiency of
around 32%. It may be due to the following factors: the low affinity of bovine serum
albumin to rutin, or the degradation of rutin during spray drying due to the high tem-
peratures involved in the process. Although high temperatures limit spray drying when
using heat-sensitive compounds, there are advantages compared to other methods. The
degradation during storage conditions is normally lower in comparison with freeze-drying
and follows first-order kinetics. Besides, as a wall material for flavonoids are biopolymers,
and sometimes there is no need to apply emulsifiers during spray drying due to hydrophilic
behavior. The encapsulating materials are generally carbohydrates with different complex-
ity and length. The most common are alginate, gums, starch, chitosan, cellulose derivatives,
and maltodextrin. There are other common encapsulating materials of different nature,
such as gelatins, proteins, and smaller peptides [31].

3.1.3. Electro-Spinning

Electro-spinning is an innovative technique for the production of polymeric nanofibers;
the electrostatic forces cause nanofibers formation from the electrically charged jet of a
polymer solution followed by depositing onto a grounded collector. Additionally, several
parameters can influence the production of nanofibers by electro-spinning, for example, the
solution properties, such as viscosity, conductivity, concentration and molecular weight of
the polymer, viscosity, etc. The processing conditions also affect the characteristics of final
nanofibers. Some of them are the hydrostatic pressure in the capillary tube, the distance
between the tip and the collecting screen, the volume and rate of feed solution, and the
electric potential at the capillary tip. Additionally, ambient parameters can also affect the
process, e.g., feed solution temperature, humidity in the electro-spinning chamber, air
velocity, among others [37].

This method offers an alternative to stabilize flavonoids with a structure that are
thermodynamic unstable. Additionally, it can enhance the poor slow-release performance
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obtained in the nanoemulsion technique. Zhan et al. [38] developed nanofibers by electro-
spinning. They encapsulated tangerine as a water-insoluble drug delivery made of water-
resistant poly (vinyl alcohol)/poly (acrylic acid). Tangerine is a flavonoid with more than
two methoxy groups on the chemical skeleton (flavones class). It has beneficial effects such
as antioxidant, antitumor, anti-inflammatory activity, etc., but its bioavailability is limited
due to its poor solubility and high melting point. The results showed that methodology
and polymer do not affect antioxidant activity. Other successful cases are the use of β-
cyclodextrin as the host and quercetin to generate nanofilm by electro-spinning. These
nanofibers exhibited quite high antioxidant activity and photostability. Furthermore, they
had an efficient inhibitory effect on E. coli and S. aureus and prolonged the active time of
quercetin [39].

Few studies have been focused on the encapsulation of phenolics for the food industry
through electro-spinning techniques. The main limitation of applying these techniques
in the food industry is the final cost of the product, which is higher compared to other
technologies. Other reasons are the low production yield and the lack of reproducibility of
food-grade nanofibers. The scaling process usually becomes challenging, along with the
high investment required and the challenges in working with biopolymers. Consequently,
the main application of these techniques is still in the pharmaceutical field for drug delivery
systems [40].

3.1.4. Nano Liposome

Liposomes are defined as colloidal spherical structures surrounded by polar lipids. In
these colloidal spherical structures, the arrangement of lipophilic tails away from the water
is toward the center of the vesicle, while the orientation of hydrophilic heads is toward the
aqueous phase. Nanoliposomes involve the preparation of conventional liposomes and the
reduction of the particle size using high-pressure homogenization, membrane extrusion, or
ultrasound [25]. Phospholipids mainly produce liposomes as bilayer components. Usually,
phospholipids are obtained from many food resources, such as soy, pea, egg, and milk [22].

Several disadvantages have been related to conventional nanoliposome preparation
methods: heterogeneous size distribution, high energy cost with the multi-step opera-
tion, low encapsulation efficiency and reproducibility, lack of long-term stability, and
the presence of solvent/surfactant residue are some of them. Improved methods could
overcome these limitations. Those improved methods are freeze-drying double emulsion,
microfluidic hydrodynamic focusing, dual asymmetric centrifugation, crossflow filtration
detergent depletion, membrane contactor technology, and the use of supercritical CO2
technology [25].

Hao et al. [41] produced chitosan-coated nanoliposomes delivery carriers of quercetin.
These nanoliposomes showed an encapsulation efficiency of 71.14%, and increased the
stability of quercetin in storage conditions at 4 ◦C and 25 ◦C in natural light. Quercetin
was successfully encapsulated in chitosan coating by the electrostatic deposition method,
utilizing the electrostatic interactions between positively charged chitosan and negatively
charged phosphates. Furthermore, it has been reported that nano-encapsulated quercetin
exhibited similar cytotoxicity compared to free quercetin on HepG2 cells. Thus, nanoen-
capsulation systems based on nanoliposomes have enormous potential to be applied in the
food industry to conserve the quality and benefits of quercetin.

The development of new strategies to generate safe and straightforward nanoencap-
sulation methods has increased, causing an area of opportunity for the nanotechnological
field. Nanoliposomes are the case. Sun et al. [42] developed a simpler process using
the ethanol injection method to combine ultrasonication to generate anthocyanins-loaded
liposomes. It also has many advantages, including the higher encapsulation efficiency
(91.1 ± 1.7%), the smaller particle size, and the higher absorption. Nanocapsules proved a
negative influence on the proliferation of cancer cells (Caco-2 cells). This effect was due to
anthocyanins and the phospholipids (lecithin) used in the preparation of nanoliposomes.
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Recently, the trend of using biopolymers, for coating liposome droplets with polymers,
to improve liposome stability has increased. The results in the use of chitosan and lecithin
showed that these liposomes could be used as an appropriate delivery system for functional
bioactive compounds. Table 2 shows the most applied methods for particular flavonoids
encapsulation.

Table 2. Nanoencapsulation techniques of various flavonoids.

Flavonoid(s) Excipient Technique EE (Encapsulation Efficiency) % Reference

Rutin BSA (Bovine serum albumin) Spray Drying 32% [36]

Quercetin Casein and casein with
2-HbetaC Spray Drying Without 2-HbetaC: 75.4%

With 2-HbetaC: 82.9% [43]

(−) Epicatechin Lecithin-chitosan Nanoemulsion 56% [44]

Catechins Zein Electro spraying >85% [45]

Hesperetin Polyamide (PA) Nanoliposomes 98.1% [46]

Fisetin

Poly-(ε-caprolactone) (PCL)
and PLGA-PEG-COOH

(poly(d,l-lactic-co-glycolic
acid)-block-poly(ethylene

glycol) carboxylic acid)

Nanoprecipitation 70–82% [47]

Anthocyanis lecithin Nanoliposome 85.60% [48]

3.2. Biopolymers

One of the major obstacles in food applications is the replacement of nonfood-grade
materials by bio-based, biodegradable food-grade alternatives. Currently, many research
groups are interested in using biodegradable polymeric nanoparticles in food and pharma-
ceutical fields due to their promising properties of flavonoids such as good biocompatibility,
accessible design and preparation, structure variations, and interesting bio-mimetic charac-
ters [35].

The external polymeric membrane is essential in nanocapsules synthesis. The selec-
tion of polymer according to its physicochemical properties plays a critical role in the
responsiveness of the nanomaterial. Therefore, a few factors must be considered before
deciding on a polymer. These include whether the polymer and its degraded products
are safe, non-toxic, non-immunogenic, and biodegradable, or eliminated from the body
in a short period of time [49]. The nanoparticles could be made from natural or synthetic
polymers, and they also could be biodegradable or non-biodegradable. Polymers can
be customized for targeted delivery of compounds, provide a controlled or prolongated
release of compounds, improve bioavailability, and/or prevent endogenous enzymes from
degrading the bioactive compound [50].

The biodegradable biopolymers are divided into natural and synthetic polymers.
The commonly natural biopolymers used to prepare nanoencapsulated materials are chi-
tosan, gelatin, sodium alginate, and albumin [41]. Natural biopolymers can be generated
from proteins and polysaccharides. The most employed proteins and carbohydrates are
gelatin, soy and milk proteins, and chitosan, alginate, and starch. On the other hand, the
most utilized synthetic polymers are poly(lactic acid), poly(D,L-glycolide), poly(lactide-co-
glycolide), among others (Table 2) [35]. However, general challenges persist in applying
biodegradable nanoparticles, circulation time, drug incorporation, and efficiency because
nanomaterials compete with the degradation rate of the bioactive compounds [51]. Table 3
presents the main advantages and limitations of the most used polymers for flavonoid
nanoencapsulation.
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Table 3. Advantages and limitations of biopolymers.

Biopolymers Example Advantages Limitations

General Biodegradable
Nanoparticles

Formulated using
FDA-approved

- Biocompatibility.
- Low immunogenicity.
- Targeted delivery.
- Enhanced therapeutic effects.
- Modifiable size and surface.

- Unstableif not modified.
- High-cost production.
- Heterogeneous size and structure.
- Low encapsulation efficiency.
- Difficulty in large scale production.
- Difficulty in cleaning or sterilization.

Synthetic

PLGA (D, L-lactic-
co-glycolic acid)
PLA (lactic acid)

PLG (D,
L-lactide-co-glycolide)

- Long drug release period.
- Mechanical and

chemical stability.
- Reproducibility.
- Nonspecific protein binding.
- Ease of modification.
- Tunable properties.

- Possibility of toxic and non-degradable.
- Complex and costly production process.

Natural

Chitosan
BSA (Bovine

Serum Albumin)
Sodium alginate

- The high amount of hydroxyl
groups on their backbone.

- Biodegradable (degraded into
components that are easily
re-absorbed or eliminated).

- Biocompatible.
- Adhesion or attraction to

target tissues.
- Increased residence time.
- Neutral coating with low

surface energy.

- Variability in animal sources.
- Complex structures.
- Complicated and costly

extraction processes.

The hybrid nanoparticles show advantages compared to nanoparticles made of one
material. They endow multifunction to the delivery system and are usually coated with
polysaccharides [52]. Different combinations of polysaccharides (polysaccharides with
protein, lipid, synthetic biopolymer) have an advantageous effect on flavor retention and
release characteristics [53].

In some cases, the performance of biopolymers is related to the method and technology
chosen to produce nanocapsules. It is the case of electro-spinning, where biopolymers have
proven to be quite challenging to form gels through hydrogen bonding. To counteract this
limitation, adjusting an optimal concentration is critical, as it determines the morphology
of the final product [38]. On the other hand, some studies have shown that combined
biopolymers result in better efficiency and stability in the encapsulation process in the spray
drying method. Still, other studies contradict this statement, ensuring that a combination of
two or three biopolymers can decrease the encapsulation efficiency [54,55]. Consequently,
the choice of nano-carrier should be controlled by the nature of the bioactive compound,
the presence of surface groups, temperature and pH during processing, release rate, and
degree of cellular uptake, as well as economic considerations [21].

Due to the application of biodegradable materials, the toxicity of nanomaterials has
mainly been decreased, but not all biodegradable materials are considered safe for human
consumption. Despite their biodegradability, some nanoparticles may still have unwanted
side effects, for example, on the blood coagulation system due to their physicochemical
properties [43].

4. Safety and Regulatory Issues

Nowadays, the possibility of humans spreading and being exposed to nanoparticles is
rapidly growing. This justifies a thorough study and review of the advantages of nanoparti-
cles as alternatives to improve the bioactive and sensory properties of products, knowledge
about their potential toxicological and side effects, and the impacts of the use of nanoma-
terials on the environment [30]. Nevertheless, few studies have focused on the potential
toxicity or environmental impact of nanomaterials in foods [3]. Countries worldwide
have developed an organization that regulates nanotechnology, especially the European
Union (EU) and US food and Drug Administration (FDA). FDA has formed an internal
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FDA nanotechnology task for determining regulatory approaches for nanomaterials [56].
In EU, food with nanomaterials must be notified to consumers [57]. Ensuring consumer
confidence and acceptance of food containing nanomaterials remain a challenge for the
government and industry.

Further studies are needed to overcome the limitations of current nanoencapsulation
processes methods and their production at an industrial scale. Additionally, there is a need
to generate information about the optimization of formulations and encapsulation systems,
as well as to meet commercial demands and to explore the application of nanosized food
ingredients characteristics and gastrointestinal systems [21]. It is necessary to documented
the impact of nanoparticles on the human body (i.e., nanotoxicity), and the influence
of particle size, mass, chemical composition, surface properties, and the aggregation of
individual nanoparticles in their toxicity [58].

Furthermore, the use of GRAS substance (generally regarded as safe) as a nanomaterial
does not guarantee safety. Other studies must be developed to analyze the potential hazards
of nanoparticles in food products. This is because the physicochemical properties at the
nanoscale are entirely different from those found at the macro-scale. Besides, the size of
these nanomaterials may increase the risk for bioaccumulation within body organs and
tissues [59].Therefore, it is essential to consider the following aspects to reduce the possible
side effects of oral bioavailability:

• Discover effective and non-toxic materials obtained from natural products for the
production of nanomaterials used as absorption enhancers.

• Systematically evaluate the potential toxicity of nanoformulations in vitro and preclin-
ical study.

• Determine in detail the mechanism of action through which the nanomaterial exerts
its effect, for example, the absorption enhancer to adequately control its concentration
and exposure time in intestinal epithelial cells [12].

Finally, and as mentioned above, there is not enough scientific information concerning
the impacts of nanotechnology on the environment and ecosystem. Besides, nanosized
food ingredients and nano packaging materials might impact general human health and the
immune system. Consequently, if there is increasing effort in the design and development of
nanomaterials, it is necessary to constantly study their side effects and toxicity throughout
in vitro assays, animal studies, and even clinical trials for long-term follow-up [58].

5. Conclusions and Future Perspectives

Flavonoids are compounds with several benefits to human health. They are present
in many vegetables, fruits, plants, and food, but the human body cannot take advantage
of all properties due to poor bioavailability during GIT. Furthermore, they represent a
challenge in the food industry because of their sensitivity in manufacturing and storage
conditions. However, the food nanotechnologies open several possibilities to improve the
stability and benefits of flavonoids according to structure, storage conditions, processing,
and final application.

This review summarizes the role of nanotechnology in food science; in specific, food
processing focuses on improving the bioavailability of flavonoids and discusses some
facts associated with the safety and regulation of this technology. The nanoscale improves
bioavailability in the gastrointestinal tract. Several technologies have been used to stabilize
bioactive compounds. Nanoemulsions, nanoliposomes, spray drying, and electro-spinning
are the most used techniques to stabilize flavonoids. Each one has advantages and disad-
vantages depending on the desire application and the properties of the used flavonoid.
Additionally, there is a tendency to develop nanocapsules elaborate with biopolymers.
Biopolymers are divided into two categories, synthetic and natural. Both have a lot of
benefits, such as non-toxic, biocompatible, biodegradable, etc.

Although nanotechnology is an alternative to improve the bioavailability of flavonoids,
security and regulations are evolving slowly. Regulatory institutions already exist, but
there is still a gap in long-term health and environmental impact research. As an area
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of opportunity, more studies are needed to develop technologies that generate low-cost
nanoparticles that improve the bioavailability of flavonoids in the food industry.
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