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Abstract: Meat quality data can only be obtained after slaughter when selection decisions about
the live animal are already too late. Carcass estimated breeding values present major precision
problems due to low accuracy, and by the time an informed decision on the genetic merit for meat
quality is made, the animal is already dead. We report for the first time, a targeted next-generation
sequencing (NGS) of single nucleotide polymorphisms (SNP) of lipid metabolism genes in Tattykeel
Australian White (TAW) sheep of the MARGRA lamb brand, utilizing an innovative and minimally
invasive muscle biopsy sampling technique for directly quantifying the genetic worth of live lambs
for health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular
fat (IMF), and fat melting point (FMP). NGS of stearoyl-CoA desaturase (SCD), fatty acid binding
protein-4 (FABP4), and fatty acid synthase (FASN) genes identified functional SNP with unique DNA
marker signatures for TAW genetics. The SCD ¢.23881050T>C locus was significantly associated
with IME, C22:6n-3, and C22:5n-3; FASN ¢.12323864A>G locus with FMP, C18:3n-3, C18:1n-9, C18:0,
C16:0, MUFA, and FABP4 g.62829478A>T locus with IMF. These add new knowledge, precision, and
reliability in directly making early and informed decisions on live sheep selection and breeding for
health-beneficial n-3 LC-PUFA, FMP, IMF and superior meat-eating quality at the farmgate level.
The findings provide evidence that significant associations exist between SNP of lipid metabolism
genes and n-3 LC-PUFA, IMEF, and FMP, thus underpinning potential marker-assisted selection for
meat-eating quality traits in TAW lambs.

Keywords: SNP; FASN; SCD; FABP4; IMF; FMP; eating quality; TAW MARGRA lamb; biopsy; n-3
LC-PUFA
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1. Introduction

Eating quality is the single largest determinant of consumer acceptability and satis-
faction with meat products. The eating and nutritional quality of lamb is influenced by
intramuscular fat (IMF) content [1], fat melting point (FMP), tenderness, juiciness, flavor [2],
and health-promoting omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) that
optimize retinal, maternal, and childhood brain functions while minimizing the risks
associated with cardiovascular and chronic diseases [3,4].

In a recent review of the development, calibration, and validation of objective mea-
surement technologies for carcass composition, lean, fat, and meat-eating quality traits in
the Australian and New Zealand livestock industries, Gardner et al. [5] highlighted the
inherent difficulties associated with the poor measurement of meat-eating quality and lean
meat yield. Attempts to predict IMF [6-8], intramuscular connective tissue [9], composition
and quality characteristics [10], tenderness, ultimate pH, and IMF content [11-13] from near
infra-red based regression equations were characterized by low accuracy, inconsistency,
and divergence between calibration and validation data. Such inaccuracies lead to lamb
inefficiencies and an estimated annual value-chain wastage costs of $130 million to the
Australian beef industry [5].

However, meat quality data can only be obtained after slaughter when selection deci-
sions about the live animal are already too late. Carcass estimated breeding values [14,15],
visual marbling score and meat imaging camera marbling systems [16], and dual X-ray
absorptiometry scanner based computed tomography determined fat, lean muscle, and
bone compositions of lamb carcasses [17] are all useful technological advancements, but
still present precision problems due to low accuracy, and by the time an informed decision
on the genetic merit for meat quality is made, the animal is already dead. In a study of
associations of sire estimated breeding values and objective meat quality measurements
with sensory scores in Australian lamb, Pannier et al. [18] confirmed the growing concerns
that selecting for lean meat yield would reduce consumer eating quality and concluded
that careful monitoring of selection programs is needed to maintain lamb eating quality. In
an experimental trial to understand the impact of sire lean meat yield breeding value on
carcass composition, meat quality, nutrient, and mineral content of Australian lamb, Knight
et al. [14] concluded that to avoid deterioration in meat quality, the nutritional content
of lamb and fresh meat color, Australian sheep producers will need to incorporate other
aspects of meat quality when selecting sires with increased lean meat yield. To date, the
use of conventional laboratory-based fat extraction, ‘slip point” and gas chromatography
methods still remain the most accurate techniques for not only measuring IMFE, FMP, and
n-3 LC-PUFA, but also for predicting consumer acceptance of beef and sheep meat [19].
Herein, we report for the first time, a combination of an innovative and minimally invasive
longissimus dorsi thoracis et lumborum muscle biopsy sampling of Tattykeel Australian White
(TAW) sheep exclusive to MARGRA lamb brand, laboratory-based IMF, FMP, and fatty acid
analyses, and advanced genomics technique of next-generation sequencing (NGS) of single
nucleotide polymorphisms (SNP) of lipid metabolism genes for directly quantifying the
genetic worth of live lambs for health-beneficial n-3 LC-PUFA, IMF, and FMP. The primary
objective was to conduct a NGS of stearoyl-CoA desaturase (SCD), fatty acid binding
protein-4 (FABP4), and fatty acid synthase (FASN) lipogenic genes to identify functional
SNP that provide unique DNA marker signatures for TAW genetics, breeding, and selection
programs for meat-eating quality. The hypothesis tested was that significant associations
exist between SNP of lipid metabolism genes and n-3 LC-PUFA, FMP, and FMP underpinning
potential marker-assisted selection for meat-eating quality traits in TAW lambs.
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2. Materials and Methods
2.1. Animals and Experimental Design

The experimental design for the selection, breeding, and evaluation of n-3 LC-PUFA,
IMF, and FMP in Tattykeel Australian White (TAW) sheep is shown in Figure 1.

Figure 1. Experimental design for the selection, breeding, and evaluation of n-3 LC-PUFA, IMF, and FMP in Tattykeel

Australian White sheep.

Three composite generations—parental, first (F;), and second (F;) composite gener-
ations of lambs were bred, raised, and maintained under the same management at the
Tattykeel Australian White Stud in Black Springs, Oberon, New South Wales, Australia.
The parental composite generation comprised 47 rams mated to 500 ewes after evaluating
their longissimus dorsi thoracis et lumborum muscle biopsy samples for health-beneficial n-3
LC-PUFA, IME, and FMP with minimum thresholds set at 30 mg/100 g, 3.0%, and 35 °C, re-
spectively. The top 10 rams and 200 ewes were selected and mated to generate 150 progeny
whose muscle biopsy samples were laboratory tested for n-3 LC-PUFA, IMFE, FMP, and
genomic DNA sequenced at 10 months of age prior to being finished at a commercial
feedlot. The Poll Dorset and Texel were used as positive control and the Rambouillet as the
negative control in assessing extracted genomic DNA, polymerase chain reaction products,
and next-generation sequencing procedures in the laboratory. Details of the muscle biopsy
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procedure and laboratory analyses of IMF, FMP, and fatty acid composition had already
been published [2] and are only briefly summarized below.

2.2. Muscle Biopsy Sampling Procedure

The biopsy procedure for sampling the Longissimus dorsi muscle from the 12th—13th ribs
was first described in cattle [20] and modified in sheep [2]. Pewan et al. [2] published the
details of the biopsy procedure in sheep, and these will not be repeated here.

2.3. Determination of Intramuscular Fat

Details of the procedures for laboratory analysis of intramuscular fat were published
by Pewan et al. [2], Holman et al. [21], and Flakemore et al. [22] and will not be re-
peated here.

2.4. Determination of Fat Melting Point

Details of the laboratory analysis of fat melting point were published by Pewan
et al. [2], Holman et al. [21], and Flakemore et al. [22] and needless to repeat herein.

2.5. Determination of Fatty Acid Composition

Fatty acid composition including n-3 LC-PUFA analysis of Longissimus dorsi muscle
biopsy samples was analyzed by means of gas chromatography—mass spectrophotometry
procedure described in detail by Malau-Aduli et al. [23] based on modified Bligh and
Dyer [24], Miller et al. [25], and Clayton [26] methods. Details were published by Pewan
etal. [2].

2.6. Blood Collection and Genomic DNA Extraction

About 10 mL of blood was collected from Tattykeel Australian White, Poll Dorset, and
Texel (positive control) lambs of the same age and under the same management conditions
by jugular venipuncture into vacutainers containing EDTA. Blood samples were stored at
—80 °C until ready for genomic DNA (gDNA) extraction. gDNA was extracted from 2 mL
of blood using NucleoSpin Blood Kits (Macherey-Nagel GmbH and Co. KG, Neumann-
Neander-5tr. 6-8. 52355 Duren, Germany) according to the manufacturer’s protocol. gDNA
yield was quantified with a NanoDrop ND-1000 spectrophotometer (NanoDrop, Thermo
Fisher Scientific Australia Pty Ltd., Scoresby, Victoria, Australia).

2.7. Primer Design
2.7.1. FASN, FABP4, and SCD Primers

All primers were designed using Geneious Prime Software Program 2020 v.2.2
(http://www.geneious.com). A targeted candidate gene approach of lipid metabolism
genes (FASN, FABP4, and SCD) was utilized. Single coding sequences of each gene de-
posited in the National Center for Biotechnology Information (NCBI) database (Genbank) of
FASN, FABP4, and SCD of Ovis aries breed were used as reference points. In order to amplify
the 18 kb of the FASN gene (Accession Number: NC_040262.1), a long-range PCR approach
was used to split the gene sequence into 3 overlapping fragments of 8.5 kb each (FASN1,
FASN2, and FASN3), comprising approximately 91% of the total gene sequence. For the
4 kb FABP4 (NC_040260.1) and 12 kb SCD (NC_040273.1) gene fragments, a single primer
set was designed as shown in Table 1. All primers were synthesized at Integrated DNA
Technologies Pte. Ltd., Melbourne, Australia (Itddna.Com (accessed on 12 June 2021)).

2.7.2. Long-Range PCR

Due to the different fragment lengths and DNA composition, it was necessary to use
3 different long-range PCR approaches to amplify the FASN, FABP4, and SCD genes. During
optimization, all 3 approaches were tested for all 3 genes, but only the best performing
combinations were utilized.
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2.7.3. FASN Gene

FASN PCR amplification assay was performed using the TakaRa PrimeSTAR GXL
Master Mix (TaKaRa Bio Inc., Kusatsu, Shiga, Japan). PCR reaction assay was set up in a
total volume of 50 pL containing 10 uL of 5x TakaRa PrimeSTAR GXL Buffer, 200 uM of
TaKaRa dNTP Mixture, 1.25 units of TaKaRa PrimeSTAR GXL DNA Polymerase, 0.2 pM of
each primer (IDT, Melbourne, Australia), and 100 ng of DNA template. PCR was performed
in a SimpliAmp™ Thermal Cycler (Thermofisher Scientific, Melbourne, Australia), in a
2-step protocol using the following conditions: 98 °C initial denaturation for 1 min (1 cycle);
98 °C denaturation for 10 s; 68 °C annealing/extension for 10 min for 30 cycles. PCR success
was checked in 0.8% agarose gel electrophoresis as depicted in Figures 2—4.

Figure 2. FASN fragment 1 PCR product in Tattykeel Australian White (WL), Poll Dorset (PD), and
Texel (TX) lambs.

20kb ladder
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Figure 3. FASN fragment 2 PCR product in Tattykeel Australian White (WL), Poll Dorset (PD), and
Texel (TX) lambs.
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Figure 4. FASN fragment 3 PCR product in Tattykeel Australian White (WL), Poll Dorset (PD), and
Texel (TX) lambs.

2.7.4. FABP4 and SCD

For the FAPB4 gene, Platinum™ SuperFi™ II PCR Master Mix (Thermofisher Scientific,
Australia) was used, while for the SCD gene, Hot Start II High-Fidelity PCR Master
Mix (Thermofisher Scientific, Australia) was used under the same PCR conditions. The
amplification reactions were performed in a total volume of 50 puL containing 25 pL of
2x Platinum™ SuperFi™ II PCR Master Mix or Phusion Hot Start II High-Fidelity PCR
Master Mix (Thermofisher Scientific, Australia), 0.5 uM of each primer (IDT, Australia),
and 100 ng of DNA template. PCR was performed in a SimpliAmp™ Thermal Cycler
(Thermofisher Scientific, Australia), in a 3-step protocol, using the following conditions:
98 °C initial denaturation in 1 min (1 cycle); 98 °C for denaturation 15 s; 60 °C (FABP4)/and
65 °C (SCD) annealing for 15 s; 72 °C extension for 9 min; 72 °C final extension for 9 min;
4 °C hold for 35 cycles. PCR success was checked in 0.8% agarose gel electrophoresis, as
depicted in Figures 5 and 6.

bl "L LSRR T TR LT TS

20kb Ladder

WP LV e e

Figure 5. SCD PCR product in Tattykeel Australian White (WL), Poll Dorset (PD), and Texel (TX) lambs.
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Figure 6. FABP4 PCR product of Tattykeel Australian White (WL), Poll Dorset (PD), and Texel (TX)
lambs.

2.8. PCR Clean-Up

Sera-Mag™ SpeedBeads was prepared according to Faircloth et al. [27] and used to
clean the PCR products using a Zephyr NGS Workstation (Caliper Lifesciences, Perkin-
Elmer) and quantified using a Promega dsDNA Quantifluor System Kit (Ref: E2670,
00002484139) on an Enspire Workstation (Perkin-Elmer). The 5 different PCR products
were pooled at approximately 0.4 nM to ensure even coverage during sequencing using
Quantifluor dsDNA System (Promega, Madison, WI, USA). The products were normalized
to 2 ng/pL using 10 mM Tris-HCI (pH 8.0). Final dilution to 0.2 ng/pL with 10 mM
Tris-HCI (pH 8.0) was conducted in preparation for library preparation and final accuracy
checks using the Tllumina Nextera*T DNA.

2.9. Library Preparation, Quantification, Normalization, and Sequencing

Libraries were prepared using Nextera XT DNA Library Prep kit (Illumina, CA,
USA) in accordance with the manufacturer’s protocols using the recommended input
of 5 puL of 0.2 ng/uL gDNA per sample. This was followed by Sera-Mag™ SpeedBeads
purification using 0.6 x beads and 2 washes using 80% ethanol to select fragments > 250 bp
and remove unincorporated adapters. Each DNA library fragment size and concentration
was determined using Agilent High Sensitivity D5000 reagents and ScreenTape on the
Tape Station 4200 Instrument (Agilent Technologies, Santa Clara, CA, USA) according
to the Agilent assay quick guide. Additionally, all individual libraries were quantified
using QuantiFluor® dsDNA System (Promega, Madison, WI, USA) to give an additional
concentration estimate. The resultant size and concentration data from Tape Station and
Quantifluor system were used to normalize each library to 4 nM by diluting with 10 mM
Tris-HCI (pH 8.5) prior to pooling. An equal volume of 5 uL was pooled and sequenced on
an Illumina MiSeq benchtop sequencer, using a 500-cycle MiSeq Reagent Nano Kit v2 with
a 10 pM input and 10% PhiX spike-in.

2.10. Bioinformatics and Next Generation Sequencing Data Analysis

Genomic data analysis was performed using commercial bioinformatics program
Geneious Prime software program 2020 v.2.24 (http:/ /www.geneious.com (accessed on
12 June 2021)) to analyze the sequences. The following reference sequences deposited in
the NCBI database were used for comparative analysis: NC_040262.1, NC_040260.1, and
NC_040273.1 for FASN, FABP4, and SCD genes, respectively. Next Generation Sequenced
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data were retrieved from Illumina Dashboard-BaseSpace Sequence Hub (https:/ /basespace.
illumina.com/dashboard (accessed on 15 July 2021)) as paired read data in 2 separate
forward and reverse read lists in FASTQ format. The retrieved raw reads were subjected to
quality control measures. Reads were trimmed and adapters removed using the BBDuk
trimmer in Geneious Prime 2020 v.2.2 with the default setting for paired-end reads. The
Quality (Q) value of Phred score was set at 20 to improve sequenced data and increase
the likelihood of calling true SNPs to 99%. Short reads with a minimum length of 20 bp
were discarded, resulting in clean reads. Regions of low coverage were excluded when
calling SNPs using the Annotate and Predict — Find Low/High Coverage. The reads
were mapped to reference in Geneious. The reference sequences were retrieved from NCBI
database (Genbank) of FASN, FABP4, and SCD of Ouis aries breed. The Sensitivity was set
on the Medium Sensitivity /Fast and Fine-Tuning (iterate up to 5 times) option selected to
improve the results by aligning reads to each other in addition to the reference sequence.
Major allele frequencies from the next-generation sequence data based on observed and
expected genotypes were computed using the Hardy—Weinberg equilibrium principle as
described by Graffelman et al. [28].

2.11. Statistical Analyses

All statistical analyses of the associations between detected SNP of the 3 genes and
meat-eating quality traits were performed using R statistical software version 3.6.3 [29].
Linkage disequilibrium as an index of non-random association between alleles of different
loci, was estimated as the difference between the frequency of gametes carrying the pair
of alleles A and B at two loci (pAB) and the product of the frequencies of those alleles
(pA and pB), Dap = pAB — pApB, where the allele pair AB is a haplotype and pAB is
the haplotype frequency [30]. Major and minor allele frequencies were computed, and
the Hardy—Weinberg Equilibrium was tested using the chi-square test. Pearson’s residual
correlation analysis was carried out to examine the relationships between genomic variants
and meat quality traits (FA, FMP, and IMF). Linear mixed models procedure was used
to investigate differences in FMP, IMF, and fatty acid profiles of the TAW lambs due to
FABP4, SCD, and FASN variants fitting the fixed effect of allele substitution for individual
SNP and random effect of animal (for pedigree) accounting for composite generation
effects. Functional allele mutations at the coding regions of identified FABP4, SCD, and
FASN loci were statistically analyzed for association with FMP, IMF, and fatty acids. Least-
square means were compared using the Tukey-adjusted multiple comparisons test. The
full statistical model was:

Yi]- =U+u;+ ’)qFAij + 725Ci]- + ’)/351(11- + €j

where Y = dependent variable (FMP, IMF, FA) of jth TAW of ith composite generation,
n = overall mean, oy = effect of the ith composite generation, FA = the genotype FASN (AA,
GA and GG), SC = the genotype SCD (CC, CT and TT), SK = the genotype FABP4 (GG, GA
and AA), vy = effect of the genotype, and e;; = residual error.

3. Results

This study of SCD, FASN, and FABP4 lipogenic genes SNP in TAW lamb muscle biopsy
samples bred, selected, and evaluated as per the experimental design shown in Figure 1,
was based on the Geneious-designed primers whose sequences are presented in Table 1
and successful polymerase chain reactions (PCR) products are presented in Figures 2—6.
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Table 1. Primer sequences for FABP4, FASN, and SCD polymerase chain reaction assays #,
Gene Sequence Length (bp) T, (°C)  Fragment Length (bp)
EASN 1 Forward CCTACTTTCCCATGCTCAGAGAA 23 68 7390
Reverse CTACGTTGCTGAGGAAGAACTCTA 24 68
EASN 2 Forward ACCGTCTCTCCTTCTTCTTTGAC 23 68 8798
Reverse GAAGTTGAGGGAGGCGTAATAGAT 24 68
EASN 3 Forward CTAGAGTTCTTCCTCAGCAACGTA 24 68 9288
Reverse GCCAGGGAGCTGTGAATAATACTA 24 68
FABP4 Forward TTGTTGAATGGCTGGGCTTATAAC 24 60 4107
Reverse TAAGAAAATACTTCCTGGGGCACA 24 60
scD Forward CAAACTTAGGTCTGCAACTTTCGT 24 65 11,545
Reverse TTTCCCACTTCAACTCACCCTATT 24 65 ’

# FASN, Fatty Acid Synthase; FABP4, Fatty Acid Binding Protein 4; SCD, Stearoyl-CoA Desaturase; T,, annealing temperature.

3.1. SCD, FASN, and FABP4 Gene SNP Variants and Genotypes

Using the Poll Dorset and Texel as positive controls, and Rambouillet as negative
controls, eight SCD gene SNP loci (g.23880613A>G; g.23881050T>C; g.23883280G>A;
g.23885910C>A; g.23887165A>G; g.23888763C>T; g.23889346T>G; g.23890209T>C) with ma-
jor allele frequencies ranging from 0.53 to 0.93 were identified as depicted in Table 2. It was
evident from Table 2 that TAW lambs were all heterozygous at three loci (g.23881050T>C,
£.23883280G>A g.23885910C>A) in the parental, first, and second composite generations,
thereby presenting a genetic divergence from the homozygous variants seen in the Poll
Dorset, Texel and Rambouillet controls.

Table 2. SCD gene SNP (major allele frequency) in TAW 1, Poll Dorset (+control), and Rambouillet (—control) lambs.

Lamb breed, generation, type of control and genotypes (major allele frequencies in brackets)
Parental composites 1st (F1) and 2nd (F2) composites Positive (+) and negative (—) controls
SNP Locus TAW Parents TAW F1 TAW F2 Poll Dorset Texel Rambouillet
(n=147) (n=75) (n=75) (+n=2) (+n=2) (—n=2)

8.23880613A>G GG (0.82) GG (0.93) GG (0.73) GG GG AA
£.23881050T>C CT (0.58) CT (0.54) CT (0.90) CC CcC TT
£.23883280G>A AG (0.53) AG (0.71) AG (0.60) AA AA GG
8.23885910C>A AC (0.57) AC (0.71) AC (0.53) CC CC CC
g.23887165A>G GA (0.69) GG (0.82) GG (0.70) GG GG AA
£.23888763C>T TC (0.58) TC (0.54) CC (0.93) CC CC CC
8.23889346T>G GT (0.68) GG (0.82) GG (0.70) GG GG TT
£.23890209T>C CT (0.67) CC (0.82) CC (0.70) CC CC TT

! TAW, Tattykeel Australian White.

As depicted in Table 3, nine functional SNP covering 91% of the FASN gene sequence
were identified. The genotypes at the nine loci were all the same in TAW, indicating
a consistent heredity pattern from the composite TAW parents to the first and second
generations, which were all distinguishable from the Rambouillet negative control breed.
For the FABP4 gene, three SNP loci were genotyped with major allele frequencies ranging
from 0.50 to 0.97 (Table 4).
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Table 3. FASN gene SNP (major allele frequency) in TAW !, Poll Dorset (+control) and Rambouillet (—control) lambs.

Lamb breed, generation, type of control, and genotypes (major allele frequencies in brackets)
Parental composite 1st (F1) and 2nd (F,) composites, Positive (+) and negative (—) controls

SNP L TAW Parents AW F; TAW F, Poll Dorset Texel Rambouillet
ocus (n = 147) (n=75) (n=75) (+n=2) (+n =2) (—n=2)

2.12316077T>G GG (0.89) GG (0.86) GG (0.95) GG GG TT
g.12318491A>G GG (0.89) GG (0.86) GG (0.95) GG GG AA
£.12320583T>C CC (0.89) CC (0.86) CC (0.97) CcC CC TT
£.12321671T>C CC (0.89) CC (0.86) CC (0.97) CcC CC TT
g.12323864A>G GA (0.70) GA (0.69) GA (0.70) GG GG AA
g.12324288G>A AG (0.69) AG (0.68) AG (0.69) AA AA GG
£.12326992T>C CC (0.88) CC (0.79) CC (0.90) CcC CcC TT

g.12>3(2;084— CT (0.50) CT (0.50) CT (0.50) CT CT T
g.12328120T>C CC (0.89) CC (0.86) CC (0.97) CC CC TT

! TAW, Tattykeel Australian White.

Table 4. FABP4 gene SNP (major allele frequency) in TAW 1 Poll Dorset (+control) and Rambouillet (—control) lambs.

Lamb breed, generation, type of control, and genotypes (major allele frequencies in brackets)
Parental composites 1st (F1) and 2nd (F,) composites Positive (+) and negative (—) controls

SNP Locu TAW Parents TAW Fq TAW F, Poll Dorset Texel Rambouillet
ocus (n = 147) (n=75) (1 =75) (+1=2) (+11 = 2) (—n=2)
8.62826961T>C CT (0.61) TT (0.64) CT (0.60) T TT T
8.62826965C>G GC (0.61) GC (0.57) GC (0.60) GG GG CC
g.62829478 A>T AT (0.55) AT (0.61) AT (0.53) AA AA AA

1 TAW, Tattykeel Australian White.

3.2. Correlations between SCD, FASN, and FABP4 Gene SNP, FMP, IMF, and Fatty Acids

Figure 7 shows significant correlations between detected SCD SNP loci, several fatty
acids and other meat-eating quality traits. Among SCD SNP loci, the highest correlations
of 0.98 were observed between g.23888763C>T and g.23881050T>C; g.23889346T>G and
8.23887165A>G. Moderate correlations between health-promoting n-3 LC-PUFA (EPA,
DHA, and DPA), and g.23888763C>T and g.23881050T>C loci ranging from 0.37 to 0.47
were observed. IMF was moderately to highly correlated with n-3 LC-PUFA (0.38-0.66),
while FMP was negatively correlated with IMF (—0.66) and DHA (—0.42). Among the
different fatty acids and their summations, very high correlations of up to 0.99 were evident

(Figure 7).
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Figure 7. Correlations between SCD gene SNP loci, IMF, FMP, and fatty acids in TAW lambs.
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Figure 8 shows that among FASN gene SNP, there were highly significant correlations
between the loci, while correlations between the g.12323864A>G locus and most fatty acids
were negative, ranging from —0.3 to —0.34. Negative correlations between IMF and FMP
(—0.66) and DHA (—0.42) were also observed, while the highest positive correlations were
between the various fatty acids (Figure 8).

FASN

0.12316077T>G
0.12318491A>G
0.12320583T>C
9.12321671T>C
0.12323864A>G
0.12324288G>A
0.12326992T>C
0.12327084->CT
0.12328120T>C

FMP o

IMF -
ALA(18:30.3)
EPA (20:50-3) o

DHA (22:6n-3) -

DPA (225n-3) -|
EPA+DHA o

EPA+DHA+DPA -

MUFA - =
SFA o ~

18206 -

140 - -

16:0

180 - =

18:1n-9

Figure 8. Correlations between FASN gene SNP loci, IMF, FMP, and fatty acids in TAW lambs.

0.12316077T>G - *

0.12318491A>G  *

0.12320583T>C - ¢

0.12321671T>C -

0.12323864AG

0.12324288G>A | ¢

0.12326992T>C - *

0.12327084->CT -

0.12328120T>C - ¢

T
a
=
[

IMF

ALA (18:3n-3)
EPA (20:5n-3)

DHA (22:6n-3)

DPA (22:5n-3)

EPA+DHA

EPA+DHA+DPA

MUFA

SFA

18:2n-6

140

16.0

180

18:1n-9

08

06

- 04

- 02

r-02

- 04




Foods 2021, 10, 2288

12 of 21

Figure 9 shows that among FABP4 gene SNP, the highest correlation of 0.53 was
between the loci g.62826965C>G and g.62826961T>C, while a negative correlation of
—0.42 was observed between g.62826965C>G and g.62829478 A>T. Consistently positive
correlations between IMF and n-3 LC-PUFA of up to 0.66 with DHA, 0.47 with DPA, and
0.38 with EPA were also observed, while the highest positive correlations were among the

various fatty acids and their summations (Figure 9).
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Figure 9. Correlations between FABP4 gene SNP loci, IMF, FMP, and fatty acids in TAW lambs.
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3.3. Associations between SCD, FASN and FABP4 SNP, FMP, IMF, and Fatty Acids

Descriptive statistics of mean, standard deviation, and coefficient of variation of the
meat quality traits and full suite of fatty acids breakdown are presented in Table 5. FMP
had a mean of 33.65 °C with a standard deviation of 2.74 and coefficient of variation of
8.14%, while IMF averaged 4.43% with a standard deviation of 1.31 and coefficient of
variation of 29.58%.

Table 5. Associations between SNP mutations and FMP, IMF, and fatty acids in TAW lambs #

SNP effect (p-values)

SCD FABP4 FASN
Variable Mean SD CV (%) g.23881050T>C  g.62829478A>T  g.12323864A>G
FMP (°C) 33.65 2.74 8.14 0.2700 0.6115 0.0544 *
IMF (%) 443 131 29.58 0.0089 ** 0.0539 * 0.1915
Fatty acids (mg/100 g)
ALA (C18:3n-3) 163.03 192.27 117.94 0.7755 0.1419 0.0033 **
EPA (C20:5n-3) 25.20 11.62 46.10 0.7683 0.1023 0.9810
DHA (C22:6n-3) 8.43 4.16 49.27 0.0111* 0.2145 0.9480
DPA (C22:5n-3) 23.85 13.70 57.44 0.0532 * 0.3894 0.0927
EPA + DHA 33.64 14.75 43.84 0.2036 0.4794 0.9915
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Table 5. Cont.

SNP effect (p-values)

SCD FABP4 FASN
Variable Mean SD CV (%) g.23881050T>C  g.62829478A>T  g.12323864A>G

EPA + DHA + DPA 57.49 26.97 46.92 0.0728 0.8958 0.2004
MUFA 3694.70 4099.08 110.94 0.6824 0.3949 0.0025 **
SFA 4392.18 5238.81 119.28 0.4000 0.5472 0.0029 **
C18:2n-6 253.68 247.70 97.64 0.6781 0.0647 0.0138 *

C14:0 287.92 437.58 151.98 0.0632 0.7354 0.1190
C16:0 2076.17 2419.46 116.53 0.5414 0.3751 0.0039 **
C18:0 1683.83 2065.71 122.68 0.3891 0.9125 0.0012 **
C18:1n-9 2901.10 3212.65 110.74 0.8555 0.3696 0.0023 **

#* p <0.05, ** p < 0.01; SFA, Saturated fatty acids; MUFA, Monounsaturated fatty acids; SD, Standard Deviation; CV, Coefficient of variation.

Table 5 also shows that the SCD ¢.23881050T>C SNP was significantly associated with
IMF (p < 0.0089) and DHA (p < 0.0111), while FABP4 g.62829478 A>G SNP was associated
with only IMF (p < 0.0539). The FASN £.12323864A>G SNP was associated with FMP
(p <0.0544), ALA (p < 0.0033), MUFA (p < 0.0025), SFA (p < 0.0025), C18:2n-6 (p < 0.0138),
C16:0 (p < 0.0039), C18:0 (p < 0.0012) and C18:1n-9 (p < 0.0023) fatty acids (Table 5).

3.4. Tukey-Adjusted Multiple Comparison Tests for Significant SNP, FMP, IMF, and Fatty Acids

As depicted in Table 6, Tukey-adjusted multiple genotype comparison tests at the
SCD £.23881050T>C SNP locus confirmed significant differences where the homozy-
gous TT genotype had the highest DHA (11.00 £ 2.34 mg/100 g), IMF (5.43 & 0.516%),
and DPA (27.1 + 3.26 mg/100 g) compared to the CC genotype with the lowest DHA
(7.00 £ 2.11 mg/100 g), IMF (3.98 + 0.312%), and DPA (17.9 &+ 6.81 mg/100 g). The het-
erozygous genotype CT had intermediate DPA (7.64 &= 2.09 mg /100 g), IMF (4.39 £+ 0.287%),
and DPA (19.4 £ 6.74 mg/100 g) that were in-between the highest and lowest values
(Table 6).

Table 6. Tukey-adjusted multiple comparisons between SNP mutations and FMP, IMF, and fatty acids in TAW lambs #,

Multiple Genotype Comparisons

SNP Locus Variable Mean =+ SE Genotypes Difference + SE p-Value
SCD DHA (C22:6n-3)
£.23881050T>C (mg/100 g)
CcC 7.00 £2.11 CCvs. CT —0.639 £ 0.834 0.7247
CT 7.64 £+ 2.09 CCvs. 1T —3.998 £ 1.334 0.0105 *
1T 11.00 £ 2.34 CT vs. 1T —3.359 £1.235 0.0223 *
IMF (%)
CcC 3.98 = 0.312 CCvs. CT —0.407 £ 0.323 0.4224
CT 4.39 +£0.287 CCs. 1T —1.446 £ 0.532 0.0222 *
1T 5.43 £ 0.516 CT vs. 1T —1.038 £ 0.502 0.1041
DPA (C22:5n-3)
(mg/100 g)
CcC 17.9 £+ 6.81 CCvs. CT —1.56 £ 2.65 0.8270
CT 19.4 +6.74 CCvs. 1T —9.19+£4.25 0.0850
1T 27.1 £3.26 CT vs. 1T —7.63 £3.93 0.0356 *
FASN .
8.12323864A>G FMP (°C)

GG 342+04 GG vs. GA 0.81 £ 0.64 0.4201
GA 334£0.3 GG vs. AA 298 £ 1.61 0.0536 *
AA 315+15 GA vs. AA 2.16 = 1.60 0.3685
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Table 6. Cont.

Multiple Genotype Comparisons

SNP Locus Variable Mean =+ SE Genotypes Difference + SE p-Value
ALA (C18:3n-3)
(mg/100 g)
GG 188.7 + 67.6 GG vs. GA 114.7 £ 39.9 0.0149 *
GA 74.0 £ 66.7 GG vs. AA 147.2 £100.1 0.3115
AA 415+ 113.7 GA vs. AA 32.6 £99.8 0.9430
MUFA (mg/100 g)
GG 4524 + 1384 GG vs. GA 2617 £ 867 0.0099 **
GA 1907 + 1361 GG vs. AA 3089 £ 2175 0.3363
AA 1436 4 2415 GA vs. AA 472 £ 2168 0.9742
SFA (mg/100 g)
GG 5479 £+ 1715 GG vs. GA 3270 £ 1121 0.0132*
GA 2208 + 1684 GG vs. AA 4162 £ 2812 0.3068
AA 1317 + 3086 GA vs. AA 892 + 2803 0.9458
C18:2n-6 (mg/100
8
GG 281 £+ 84.8 GG vs. GA 142.5 +£52.2 0.0216 *
GA 139 £+ 83.4 GG vs. AA 105.8 £ 130.8 0.6988
AA 175 + 146.4 GA vs. AA —36.7 = 130.4 0.9573
C16:0 (mg/100 g)
GG 2539 + 800 GG vs. GA 1475 £ 518 0.0158 *
GA 1063 4 786 GG vs. AA 1826 4 1298 0.3433
AA 713 £ 1429 GA vs. AA 350 £ 1294 0.9604
C18:0 (mg/100 g)
GG 2227 + 658 GG vs. GA 1419 4 441 0.0056 **
GA 809 + 646 GG vs. AA 1711 £+ 1106 0.2756
AA 516 £ 1205 GA vs. AA 292 £+ 1102 0.9620
C18:1n-9 (mg/100
g
GG 3589 £ 1078 GG vs. GA 2103 £ 679 0.0080 **
GA 1486 + 1060 GG vs. AA 2353 £ 1704 0.3566
AA 1236 + 1892 GA vs. AA 250 £ 1698 0.9882
FABP4 o
g.62829478 A>T IMF (%)
A 4.57 +0.39 Avs. AA 0.07 + 0.344 0.0556
AA 3.92 +£0.39

#x p <0.05, ** p < 0.01; SFA, Saturated fatty acids; MUFA, Monounsaturated fatty acids; SD, Standard Deviation; CV, Coefficient of variation.

There were many more significant genotype variations at the FASN §.12323864A>G

SNP mutation that was associated with FMP, ALA, MUFA, SFA, C18:2n-6, C18:1n-9, C18:0,
and C16:0, in which the homozygous genotype GG had the highest values compared
to the lowest values in AA genotype for all variables, with the exception of C18:2n-6
that was lowest in the heterozygous GA genotype (Table 6). In contrast, at the FABP4
§.62829478 A>G SNP locus, only IMF variation tended towards significance between the
genotypes (p < 0.06).

4. Discussion

It is well-established that DNA-based inheritance enables the transmission of selected
phenotypes across generations either without changes in the DNA sequence through
epigenetic inheritance [31] or through functional mutations involving changes in only one
base pair (single nucleotide polymorphisms—SNP). Through next-generation sequencing,
SNP are valuable for detecting genetic variability and genomic prediction in sheep breeding
programs [32], developing breed-specific DNA markers for breed identification [33,34],
animal productivity [35], parentage assignment [36,37], forensics [38], and prediction of
meat quality traits [39-41].
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The prediction of meat-eating quality traits is highly challenging due to the hurdles
associated with low accuracy of estimated breeding values, inconsistency in technical ease
of measurement in live animals, non-repeatable reproducibility of carcass data, and high
costs of rapid generation of data from large scale consumer sensory panels [19]. While the
n-3 LC-PUFA profile of lamb and beef can be nutritionally enhanced using rumen-protected
dietary supplements and pasture-based feeding [42—44], several research findings [2,4]
emphasized the need for the more permanent and cumulative genetic selection route for
meat sheep producers to guarantee the consistency of their lamb products in order to
meet consumer preferences and adapt to the dynamics of purchasing decisions based
on meat-eating quality. Consumers prefer meat with low FMP, moderate IMF, and fatty
acid composition with proportionately more of the health-promoting n-3 LC-PUFA [45,46].
Since humans and other vertebrates lack A15 desaturase enzyme to synthesize n-3 LC-
PUFA, they must obtain these from dietary intake sources in order to meet their daily
requirement of 500 mg of n-3 LC-PUFA [4]. Therefore, lamb producers can tap into the
omega-3 functional meat market niche through novel strategies for developing healthy
meat products and reducing saturated fats [47] by matching their sheep breeding and
production system to meet this health-conscious consumer preference [2,4].

4.1. SCD Gene Polymorphism

The SCD gene increases the desaturation of stearic acid to oleic acid and a functional
variant in the SCD gene promoter affects fattening performance, carcass traits, meat qual-
ity, blood metabolites, and gene expression in ovine muscle [48,49]. Our results herein
showing that TAW lambs were all heterozygous at three SCD SNP loci g.23881050T>C,
£.23883280G>A and g.23885910C>A in the parental, first, and second composite genera-
tions (Table 2), presents a hereditary pattern and genetic divergence from the homozygous
variants seen in the Poll Dorset, Texel, and Rambouillet controls that can be used as
molecular markers for breed-specific identification. The significant correlations (Figure 7)
and associations (Tables 5 and 6) between detected SCD SNP loci, several fatty acids,
and other meat-eating quality traits in TAW sheep is in consonance with other stud-
ies in Bashby x Argali [50], Rasa Aragonesa [49], Iranian fat- and thin-tailed [51], Poll
Dorset x Border Leicester x Merino [52], Spanish, French, Egyptian, and Israeli sheep
breeds [53] and Spanish goats [54]. In a comprehensive review of the genetics of n-3 LC-
PUFA metabolism and meat-eating quality in TAW lambs [4], it was reported that although
they were renowned for an outstanding low fat melting point (28-39 °C), high n-3 LC-PUFA
EPA + DHA content (33-69 mg/100 g), marbling (3.4-8.2%), tenderness (20.0-38.5 N), and
overall consumer liking (7.9-8.5), correlations between n-3 LC-PUFA profile, SCD, FABP4,
FASN, and other lipogenic genes and meat quality traits presented major knowledge gaps.
Therefore, the significant differences and associations observed at the SCD g.23881050T>C
SNP locus in the present study where TAW lambs with the TT genotype had the highest
DHA, IMFE, and DPA compared to CC and CT genotypes (Table 6), have not only filled
these knowledge gaps, but also equip lamb producers at the farmgate level to use this
locus as a molecular marker for selection and breeding targeted at improving marbling
and health-beneficial n-3 LC-PUFA. Since IMF in lamb has a moderately high heritability
of 0.32-0.48 [55], has a direct relationship with tenderness, juiciness, and flavor [56] and
surpasses the minimum acceptable consumer satisfaction threshold of 4% [57], the TAW
lamb is well-positioned for a rapid genetic improvement for these meat-eating quality traits
using the SCD gene g.23881050T>C SNP locus for identifying lambs at an early age.

4.2. FASN Gene Polymorphism

FASN catalyzes the synthesis of fatty acids such as palmitate from acetyl-CoA and
malonyl-CoA, in the presence of NADPH, into long-chain saturated fatty acids, hence
its involvement with fat deposition and fatty acid synthesis [58]. While novel genetic
polymorphisms and gene expressions associated with carcass traits in Texel [59] and Rasa
Aragonesa [60] sheep have been published, Sanz et al. [61] reported that only few studies
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focused on genetic variation in 5’ regulatory regions of genes involved in fat synthesis
and metabolism pathways that could be good candidate genes. They went on to identify
FASN gene polymorphisms and the potential use of these variants as markers associated
with fat-related traits in Assaf, Roja Mallorquina, and Rasa Aragonesa sheep breeds [61].
In TAW sheep, our current study was the first to report significant genotype variations at
the FASN £.12323864A>G SNP locus associated with FMP, ALA, MUFA, SFA, C18:2n-6,
C18:1n-9, C18:0, and C16:0, in which the homozygous genotype GG had the highest values
compared to the lowest values in AA genotype, with the exception of C18:2n-6 that was
lowest in the heterozygous GA genotype (Figure 8, Tables 5 and 6). This finding fills
in a significant knowledge gap in sheep where very little has been reported on FASN
gene, in stark contrast to many publications in cattle [62-65] and pigs [66—69]. Since
fatty acid compositions determine the melting point and quality of fat and are closely
related to the nutrition and meat-eating quality of lambs [70], our findings will assist TAW
lamb producers to select the FASN genotypes best suited to their environments, market
specifications, and processing needs in achieving efficiency in their management operations
aimed at meeting consumer demand for healthy and nutritious lamb eating quality.

4.3. FABP Gene Polymorphism

The proteins of the FABP4 family are small molecular-weight proteins that have a high
binding affinity for long-chain fatty acids, participate in fatty-acid transportation from the
plasma membrane to the sites of 3-oxidation, triacylglycerol, and phospholipid synthesis,
and variation in FABP4 gene has been reported to affect fat deposition, growth, and meat
production in sheep [71,72]. Several other research findings in sheep have demonstrated
that dietary manipulation of omega-3 fatty acids can influence intramuscular fat deposition,
growth, milk, wool, and meat quality [42,73-90], while only a handful of studies [52,91-93]
have validated independent associations of carcass quality, shear force, intramuscular
fat percentage, and omega-3 polyunsaturated fatty acid content with gene markers or
the expression of genes encoding enzymes regulating fat metabolism in Australian lamb.
Therefore, our current findings at the FABP4 g.62829478 A>- SNP locus showing consistently
positive correlations between IMF and n-3 LC-PUFA of up to 0.66 with DHA, 0.47 with
DPA, and 0.38 with EPA (Figure 9 and Tables 5 and 6) provides a novel molecular marker
for TAW sheep producers to select and breed lambs that are not only of high meat-eating
quality, but also provide a healthy product for brain growth and development. This stems
from the fact that IMF provides the needed marbling for taste, juiciness, and tenderness,
while DHA being the major prevalent fatty acid in the brain membrane, is vital for the
maintenance of healthy and functional brain development in infants and adults [94]. In
pigs, Shang et al. [95] identified 3 FABP gene SNP and demonstrated that the genotype C-
1375G was associated with fat deposition, while Gao et al. [96] reported that an association
analysis of FABP SNP indicated that the polymorphism had a significant effect on marbling,
in which pigs with the DD genotype had higher marbling than CD and CC genotypes,
but the difference between CD and CC genotypes was not significant. They also reported
that this FABP SNP had a highly significant effect on intramuscular fat content (p < 0.01).
Our current study is the first report in TAW, which provides foundational data for the
selection and breeding of lambs for marbling and healthy n-3 LC-PUFA using the identified
SNP herein.

5. Conclusions

This study has provided novel insights into the shared genetic control of the fat
melting point, intramuscular fat content, and health-beneficial omega-3 long-chain fatty
acid composition traits that are helpful in designing breeding strategies to genetically
improve meat-eating quality traits in TAW lambs while they are still alive. The early
decision making utilizing this innovative and minimally invasive longissimus dorsi thoracis
et lumborum muscle biopsy sampling technique for directly quantifying the genetic worth
of live lambs overcomes the problem of waiting to collect meat quality data after slaughter
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when selection decisions about the live animal are already too late. As the present data are
laboratory-tested, personalized, and customized to actual individual lamb performance
and not based on estimated breeding values, precision problems due to low accuracy
are minimized. The identified SNP of these lipid metabolism genes can also be used for
breed-specific identification and marker-assisted selection of Tattykeel Australian White
(TAW) sheep exclusive to MARGRA lamb brand for high-end meat-eating quality. Next-
generation sequencing of the FABP4, FASN, and SCD genes also provides foundational
data underpinning their roles in fatty acid metabolism unique to the TAW breed.
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