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Abstract: In dairy processing environments, many bacterial species adhere and form biofilms on
surfaces and equipment, leading to foodborne illness and food spoilage. Among them, Listeria
monocytogenes and Pseudomonas spp. could be present in mixed-species biofilms. This study aimed
to evaluate the interactions between L. monocytogenes and P. fluorescens in biofilms simulating dairy
processing conditions, as well as the capability of P. fluorescens in co-culture to produce the blue
pigment in a Ricotta-based model system. The biofilm-forming capability of single- and mixed-
cultures was evaluated on polystyrene (PS) and stainless steel (SS) surfaces at 12 ◦C for 168 h. The
biofilm biomass was measured, the planktonic and sessile cells and the carbohydrates in biofilms
were quantified. The biofilms were also observed through Confocal Laser Scanning Microscopy
analysis. Results showed that only P. fluorescens was able to form biofilms on PS. Moreover, in
dual-species biofilms at the end of the incubation time (168 h at 12 ◦C), a lower biomass compared to
P. fluorescens mono-species was observed on PS. On SS, the biofilm cell population of L. monocytogenes
was higher in the dual-species than in mono-species, particularly after 48 h. Carbohydrates quantity
in the dual-species system was higher than in mono-species and was revealed also at 168 h. The
production of blue pigment by P. fluorescens was revealed both in single- and co-culture after 72 h
of incubation (12 ◦C). This work highlights the interactions between the two species, under the
experimental conditions studied in the present research, which can influence biofilm formation
(biomass and sessile cells) but not the capability of P. fluorescens to produce blue pigment.

Keywords: Listeria monocytogenes; Pseudomonas fluorescens; multi-species; biofilms; blue pigment;
dairy product

1. Introduction

Microbial biofilms are three-dimensional structures of various bacteria that adhere to
biotic or abiotic surfaces and differentiate into complex communities embedded within
extracellular polymeric substances (EPSs) [1]. The relevance of microbial biofilms has been
described in different fields including the food industry, where biofilms are responsible for
potential food contamination, corrosion, and economic losses [2]. Particularly in the dairy
industry, many bacterial species adhere and form biofilms on surfaces and equipment and,
among them, Listeria monocytogenes and different species of Pseudomonas [3] are worthy of
attention.

Listeria monocytogenes is a ubiquitous pathogen, able to colonize and persist on com-
mon surfaces in the food processing environments, thanks to its biofilm formation capabil-
ity [4]. This psychrotrophic bacterial pathogen can contaminate a wide variety of foods.
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In particular, several dairy products such as Blue mold cheese, Camembert cheese, and
Ricotta have been implicated in listeriosis outbreaks [5]. An increasing trend for human
listeriosis cases has been observed from 2009 to 2018 with 2549 cases reported in Europe in
2018 [6]. Moreover, listeriosis has an important socio-economic impact, which can reach
approximately €6327 per case [7].

The microbiota of refrigerated foods is dominated by selected microorganisms, such
as Pseudomonas spp. In particular, P. fluorescens has been isolated from numerous food
products including dairy products, as it can colonize and form biofilms onto surfaces of
dairy processing plants [2]. Due to the production of hydrolytic enzymes and pigments
such as pyoverdine, pyocianin, and indigoidine [8], P. fluorescens is responsible for food
quality decay, food spoilage, reduced shelf-life [9,10], and defects, as in the case of dairy
product blue discoloration [11]. In fact, discoloration due to the microbial activity is not
an unusual phenomenon and affects several varieties of cheeses and dairy products made
from raw or pasteurized milk [12]. Specifically, P. fluorescens produces several pigments,
including pyoverdine and indigoidine [11,13]. Pyoverdines are fluorescent siderophores
of pseudomonads that play important roles for growth under iron-limiting conditions,
permitting their colonization of hosts, from humans to plants [13]. On the other hand,
indigoidine is a blue diazadiphenoquinone pigment that can play an important role in
tolerance to oxidative stress [14]. Recently, it was found that the pigmentation and the
biofilm-forming ability of P. fluorescens are promoted at low incubation temperatures,
suggesting their possible involvement in the spread and persistence of these strains in the
dairy environment [15,16].

L. monocytogenes and P. fluorescens are able to form biofilms on different surfaces
including polystyrene and stainless steel, which are materials commonly used in the food
industry [17–19]. Dairy plants’ surfaces can be colonized by various microbial species in
biofilms, also because of the increase in bacterial tolerance to common sanitizers. Biofilms
found in nature are generally formed by two or more microbial species. In fact, multi-
species biofilms are commonly encountered in food and food-related environments [20].
Multi-species interactions and the physiological conditions of microorganisms influence the
properties of the formed biofilms. Compared to mono-species, mixed-species biofilms are
known to provide advantages to microorganisms such as the increase in tolerance against
stressful conditions and the capability to degrade organic compounds [21]. However, in
multi-species biofilms, microbial cells can interact both positively and negatively [22]. In
particular, on the basis of the different bacterial counts and biofilm biomass, the interactions
between the two species are evaluated as synergistic (beneficial), neutralistic (no influence),
or competitive (deleterious). In fact, when the biomass or the bacterial counts of a dual-
species biofilm are greater than the sum of the two single-species biofilms under similar
incubation conditions, the interaction is considered synergistic. On the other side, the
interaction is evaluated as neutralistic if the biomass or the counts are equivalent, and
competitive if they are less than the sum of the two [23].

Although studies on multi-species biofilms are of relevant importance and closer
to natural conditions, most of the studies on biofilm formation analyze single-species
biofilms [24–26]. In fact, only a few studies on bacterial biofilms are based on food model
systems that mimic real environments [27–29]. Therefore, the objective of this study
was to evaluate dual-species biofilms formed by L. monocytogenes and P. fluorescens in a
system simulating real conditions encountered in dairy processing by using: (i) surfaces
of polystyrene and stainless steel; (ii) L. monocytogenes and blue pigmenting P. fluorescens
strains isolated from dairy products; (iii) Ricotta-based dairy model as the growth medium;
and (iv) 12 ◦C as the incubation temperature.

2. Materials and Methods
2.1. Bacterial Strains

Eight strains of Listeria monocytogenes were tested together with one strain of Pseu-
domonas fluorescens (pf5), isolated from Mozzarella cheese and chosen for its capability to
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form biofilm and to produce blue pigment on Potato Dextrose Agar, Agar Mascarpone,
and Mozzarella cheese [16]. Listeria monocytogenes strains previously isolated from dairy
products (LM 1-2-3-4) and dairy plants (LM 5-6-7-8) were characterized and typed in this
study. All of the strains were of Italian origin.

The strains were maintained at −80 ◦C with an anti-freezing agent (glycerol, 20% v/v,
Sigma) to preserve the viability of the cells during storage.

2.2. Characterization and Typing of L. monocytogenes Strains

The strains of L. monocytogenes were characterized and typed according to two com-
monly used techniques: serotyping and Pulsed-Field Gel Electrophoresis (PFGE) [30,31].

Serotyping was carried out according to US Food and Drug Administration (FDA)
Bacteriological Analytical Manual [32] using commercial antisera for flagellar and so-
matic antigens (Denkan Seikem Co. Ltd., Tokyo, Japan), following the manufacturers’
instructions.

PFGE typing was carried out according to the Centers for Disease Control and Pre-
vention PulseNet protocol (CDC, PulseNet Methods PNL04), employing the restriction
enzymes ApaI and AscI (New England BioLabs Inc., Ipswich, MA, USA). Salmonella enterica
Braenderup H9812 digested with the restriction enzyme XbaI (New England BioLabs)
was used as the reference size standard. The separation of restricted DNA fragments
was performed for 20–22 h in 1.5% (w/v) Agarose gels in 0.5× Tris-Borate-EDTA buffer
(5× TBE diluted in MilliQ water) at 14 ◦C, 6 V cm−1 with switch times of 4–40 s through
CHEF Mapper® XA (Bio-Rad, Hercules, CA, USA). The images were acquired by using
ChemiDocTM MP Imaging System (Bio-Rad, CA, USA) and the pulsotypes were analyzed
with BioNumerics software version 7.5 (AppliedMaths, Sint-Latem, Belgium).

2.3. Inoculum

The strains were inoculated into Tryptic Soy Broth (TSB, Liofilchem, Roseto, Italy)
from fresh microbial cultures, followed by overnight incubation at 37 ◦C (L. monocytogenes)
and 30 ◦C (P. fluorescens). The bacterial cells were harvested by centrifugation (13,000 rpm
for 5 min), washed three times with PBS (Phosphate Buffer Saline) solution, and the Optical
Density (OD) of bacterial suspensions was measured by a spectrophotometer Lambda bio
20 (Perkin Elmer, Waltham, MA, USA) to obtain a cell count of about 105 CFU/mL in the
growth medium [33]. In order to maintain the same load for the mono- and multi-species
inocula, individual bacterial suspensions were diluted in a 1:1 ratio with the medium for
the mono-culture, and with the other microbial species for the multi-culture.

2.4. Ricotta-Based Medium Preparation

The Ricotta-based dairy model was prepared following the method described by de
Carvalho et al. [34] with some modifications. In detail, 160 g of Ricotta purchased from a
local market were diluted in 1 L of distilled water, heated at 42 ◦C for 50 min in a water
bath, and then autoclaved at 121 ◦C for 15 min. The broth was separated from the solid
part by a sterile gauze and stored at 4 ◦C until use.

2.5. Biofilm Formation on Polystyrene Microplates

To examine the biofilm-forming capability of the strains in mono- and dual-species
culture and to select one combination, biofilm formation was assessed on polystyrene
surface (PS microtitre plate, Corning incorporated, Kennebunk, ME, USA) for each strain.
Then, the eight L. monocytogenes strains were combined with the blue pigmenting P. fluo-
rescens strain. The bacterial suspensions, previously prepared in the Ricotta-based medium,
were aliquoted (200 µL) into the wells of PS plates and then incubated at 12 ◦C for 168 h.
Negative control wells contained non-inoculated Ricotta medium. Plates were incubated
for 0, 48, 72, 96, and 168 h to allow biofilm formation, and after the incubation period
planktonic cells were removed by aspiration and washing the wells with PBS. Thereafter,



Foods 2021, 10, 176 4 of 14

total biomass (cells plus matrix) was quantified at 590 nm by crystal violet assay, as reported
by Rossi et al. [16].

Means and standard deviations of absorbance values derived from five replicates were
calculated by subtracting the control value from each mean value.

The blue pigment color appearance during the assay was evaluated visually as pres-
ence/absence.

2.6. Biofilm Formation on Stainless Steel and Enumeration of Planktonic and Sessile Cells

To evaluate biofilm formation on stainless steel, AISI 304 coupons (SS coupons,
2 × 2 × 0.1 cm), previously cleaned according to the procedure described by Campana
et al. [35] and sterilized at 121 ◦C for 15 min, were used. L. monocytogenes LM5 strain was
chosen as representative of the whole set and combined with P. fluorescens pf5. Each coupon
was individually introduced into a sterile glass container, and then 5 mL of Ricotta medium
were inoculated with the mono- or dual-species inocula. Also, negative control samples
with non-inoculated Ricotta medium were included. The samples were then incubated at
12 ◦C for 168 h. The assay was performed in triplicate. At each sampling time (0, 48, 72, 96,
and 168 h), three sterile glass containers were used. One milliliter of the suspension was
taken from each sterile glass container, and serial dilutions were performed to enumerate
planktonic cells. The dilutions were distributed on selective media for Pseudomonas spp.
(Pseudomonas Agar Base; Oxoid-Thermofisher, Rodano, Italy) and for L. monocytogenes
(Agar Listeria according to Ottaviani and Agosti; Biolife, Milano, Italy). The plates were
incubated at 30 ◦C and 37 ◦C for 48 h, respectively for P. fluorescens and L. monocytogenes,
and the number of colonies was counted. The enumeration of cells in biofilms (sessile cells)
was performed by rinsing three times the SS coupons with saline solution (0.85% NaCl
w/v) in sterile tubes, followed by scraping with two cotton swabs to collect the cells [36].
The swabs were immersed in 10 mL of saline solution, vortexing for 10 s at 230 rpm. Then,
tenfold serial dilutions were prepared, and the colonies count was determined on the above
mentioned agar media.

The blue pigment color appearance during the assay was evaluated visually as pres-
ence/absence.

2.7. EPS Extraction from Biofilms and Total Carbohydrates Quantification

The determination of carbohydrates from biofilms formed on SS coupons was carried
out in triplicate for the samples and the incubation times reported in Section 2.6.

The EPSs were extracted as previously reported by Abdallah et al. [37], with some
modifications. Briefly, after rinsing, biofilm was scraped from the SS coupon by using
cotton swabs that were immersed in 10 mL of saline solution (0.85% NaCl w/v). After
that, the solution was sonicated for 5 min at 50 kHz (Starsonic 90 Digit, Liarre, Asti, Italy),
the cells were removed by centrifugation (5000× g for 15 min), and the supernatant was
collected.

Carbohydrates quantification was carried out following the anthrone method [38]
using 1 mL of the EPS extract. Then, 1 mL of the sample was transferred into a Pyrex test
tube and 1 mL of cold anthrone reagent (0.1% anthrone solution in 75% sulfuric acid (v/v))
was added. The tubes were placed in a water bath (100 ◦C, 14 min) and were then cooled
at 5 ◦C for 5 min. Glucose solution (100 mg/L) was used as a standard. The absorbance of
the samples at 625 nm was measured, and the results were presented in µg/cm2.

2.8. Confocal Laser Scanning Microscopy (CLSM) Analysis

Mono- and dual-species biofilm structures were observed by CLSM according to the
method described by Rossi et al. [39]. Briefly, cultures of mono- and dual-species of L.
monocytogenes LM5 and P. fluorescens were prepared in Ricotta-based medium as reported
in Section 2.3 and were inoculated in eight-well chamber slides (Nunc, Thermo Fisher
Scientific, Waltham, MA, USA) at 400 mL per well. A negative control with non-inoculated
medium was prepared. The plates were incubated at 12 ◦C, and the biofilms were allowed
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to grow for 48, 72, 96, and 168 h without agitation. At each time point, the pre-formed
biofilms in each well of the plate were rinsed with sterile water to remove the growth
medium and the unattached cells. The biofilms were stained with LIVE/DEAD BacLight
Bacterial Viability kit containing the dyes SYTO9 and propidium iodide (PI) according to
the manufacturer’s instructions (Molecular Probes, Thermo Fisher Scientific, Eugene, OR,
USA). Live bacterial cells appeared fluorescent green, while dead/damaged bacterial cells
appeared fluorescent red. The stained biofilms were observed with the Nikon A1R confocal
imaging system and controlled by the Nikon NIS Elements software ver. 4.40 (Nikon Corp.,
Tokyo, Japan), equipped with a Plan Apo 100× oil objective.

The excitation/emission for the dyes were 488/525–50 nm and 561.5/595–50 nm for
SYTO9 and PI, respectively. The fluorescence of pyoverdine, the siderophore produced by
P. fluorescens, was checked with the excitation/emission at 405/460 nm [40].

2.9. Statistical Analysis

Statistical analysis was performed using XLSTAT ver. 2017 (Addinsoft, Paris, France).
The data were subjected to analysis of variance (ANOVA), and a Dunnett’s test was
employed to compare single- and multi-species results. Statistical significance was achieved
at * p < 0.05.

3. Results
3.1. Serotype and Pulsotype of L. monocytogenes Strains

Four serotypes (1/2a, 1/2b, 1/2c, and 4b) were identified among the eight L. monocyto-
genes strains (Table 1). The most prevalent serotype was 1/2b (for strains isolated from both
food and environmental sources), then 1/2a (for food strains) and 1/2c (for environmental
strains), followed by 4b (for Mozzarella cheese isolate). A total of eight ApaI and eight AscI
PFGE types were distinguished, thus revealing that the strains isolated from food products
and environment were genetically different and heterogeneous.

Table 1. Listeria monocytogenes and Pseudomonas fluorescens strains used in the study.

Species Strain Name Source of
Isolation Serotype Pulsotype ApaI Pulsotype AscI

L. monocytogenes LM1 Gorgonzola cheese 1/2b GX6A12.0051 GX6A16.0071
L. monocytogenes LM2 Mozzarella cheese 4b GX6A12.0073 GX6A16.0010
L. monocytogenes LM3 Gorgonzola cheese 1/2a GX6A12.0032 GX6A16.0029
L. monocytogenes LM4 Caciotta cheese 1/2a GX6A12.0390 GX6A16.0271
L. monocytogenes LM5 Environmental 1/2b GX6A12.0349 GX6A16.0255
L. monocytogenes LM6 Environmental 1/2b GX6A12.0005 GX6A16.0009
L. monocytogenes LM7 Environmental 1/2c GX6A12.0373 GX6A16.0261
L. monocytogenes LM8 Environmental 1/2c GX6A12.0002 GX6A16.0007

P. fluorescens pf5 Mozzarella cheese

3.2. Biofilm Formation on Polystyrene Surface

The results of biofilm formation ability of P. fluorescens pf5 in mono- and dual-species
with L. monocytogenes strains on PS surface are shown in Figure 1. None of the eight L.
monocytogenes strains was able to form biofilms on PS (data not shown). On the other hand,
P. fluorescens exhibited good biofilm formation capacity. In fact, the biofilm biomass of P.
fluorescens pf5 in single-species increased during incubation time, reaching a maximum
value after 168 h of incubation (OD590 nm 1.072 ± 0.167). However, a different behavior
was observed for the species in combination, with biofilm biomass variability among the
strains. Although at the end of the incubation period biofilms in dual-species systems were
significantly lower than the single ones (* p < 0.05), a higher biofilm biomass for some strains
was noticed after 72 h, particularly for the combinations P. fluorescens–L. monocytogenes LM5
(Figure 1b). With respect to the blue discoloration, P. fluorescens blue pigment production
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was monitored during the whole incubation time, and after 72 h the color change of the
substrate was observed both in single- and mixed-culture (Supplementary Figure S1).
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Figure 1. Biofilm biomass (OD590 nm) of P. fluorescens pf5 in mono- and dual-species with L. monocyto-
genes strains on a polystyrene (PS) surface at 12 ◦C for 168 h. The results are expressed as an average
of five replicates and the bars represent the standard deviations. The asterisk (*) indicates statistically
significant difference between the mono- and dual-species samples for the same incubation time
(* p < 0.05). (a) 48 h, (b) 72 h, (c) 96 h, and (d) 168 h.
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Based on the obtained results, the combination L. monocytogenes LM5 and P. fluorescens
pf5 was selected for the subsequent analysis.

3.3. Biofilm Formation on Stainless Steel Surface and Enumeration of Planktonic and Sessile Cells

The results of L. monocytogenes LM5 and P. fluorescens pf5 planktonic and sessile cells
on SS coupons in both mono-culture and dual-culture conditions, are presented in Figure 2.

Regarding the planktonic phenotype (Figure 2a), under mono-species, starting from a
load of 5.67 ± 0.08 Log CFU/mL L. monocytogenes reached 8.16 ± 0.06 Log CFU/mL after
48 h, remaining almost stable until the end of the incubation time. However, the presence
of P. fluorescens determined a slight but significant (* p < 0.05) decrease of L. monocytogenes
counts of about 0.35 and 0.24 Log CFU/mL at 48 and 96 h, respectively. P. fluorescens
showed a greater increase in load over time compared to L. monocytogenes: 5.17 ± 0.14 Log
CFU/mL at time 0, 7.3 ± 0.06 after 48 h, and 9.15 ± 0.02 Log CFU/mL at 72 h, followed by
a load reduction of about 1 Log CFU/mL. P. fluorescens planktonic counts did not differ
significantly between mono- and dual-species conditions.
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Figure 2. Dynamics of planktonic (a) and sessile (b) cells of L. monocytogenes LM5 and P. fluorescens
pf5 in mono- and dual-species conditions on stainless steel (SS) coupons at 12 ◦C for 168 h. The
results represent average values of three replicates and the bars indicates the standard deviations.
The asterisk (*) means statistically significant difference between the mono- and dual-species of
each strains for the same incubation time (* p < 0.05). L: L. monocytogenes in single-species; L + P: L.
monocytogenes in dual-species; P: P. fluorescens in single-species; P + L: P. fluorescens in dual-species.

The results regarding the sessile populations (Figure 2b) showed that L. monocytogenes
was able to adhere on the SS surface. In fact, L. monocytogenes in mono-species starting from
a load of about 1.4 Log CFU/cm2 at time 0 increased up to 3.27 ± 0.07 at 72 h, maintaining
these values as almost stable over time. In multi-species conditions, the presence of P.
fluorescens statistically (* p < 0.05) increased the pathogen biofilm population after 48 h of
incubation, when it reached a sessile load of 3.39 ± 0.36 Log CFU/cm2. However, at the
end of the experimental time, L. monocytogenes sessile cells in mixed-culture dropped to
1.4 Log CFU/cm2.
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For the sessile population, the culture conditions (mono- or dual-species) did not
influence P. fluorescens population level. In fact, it reached a sessile load of 3.58 ± 0.34 Log
CFU/cm2 at time 48 h, which decreased during the time reaching 1.4 Log CFU/cm2 after
168 h, with no statistically significant differences among single- and mixed-culture.

Also, in this experiment, the blue pigment production of P. fluorescens pf5 was observed
both in single- and in mixed-culture starting from 72 h (Figure 3), when the highest load of
the spoilage bacteria was detected (9.15 ± 0.02 and 8.60 ± 0.21 Log CFU/mL, respectively
for pf5 in single- and multi-species conditions).
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Figure 3. Blue pigment color appearance during the assay of biofilm formation on SS coupons using
glass container (72 h, 12 ◦C). From the left: Control, P. fluorescens pf5, L. monocytogenes LM5, and
dual-species system.

3.4. EPS Analysis by Carbohydrates Quantification

Quantification (µg/cm2) of the carbohydrates extracted from the EPS of P. fluorescens
pf5 and L. monocytogenes LM5 biofilms is shown in Figure 4. The total amount of carbohy-
drates in the biofilms was affected by the time and the species involved in biofilm formation.
In single-species biofilms, the biofilm carbohydrates content increased over time with the
greatest increase occurring between 48 and 96 h. In fact, at 96 h, values of about 2.49 ± 0.08
and 1.99 ± 0.24 µg/cm2 were observed for P. fluorescens and L. monocytogenes, respectively.
Instead, no carbohydrates were revealed at 168 h for both single-species biofilms. The
dual-species interactions in biofilms did not have any additive effect on carbohydrate
matrix but a statistically significant (* p < 0.05) higher yield than those of the single-species
was detected at time 72 h (2.91 ± 0.23 µg/cm2). Remarkably, the carbohydrates of the
dual-species biofilms were revealed at high amount (about 2 µg/cm2) also at the end of the
experiment (168 h).
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time (* p < 0.05). P: P. fluorescens in single-species; L: L. monocytogenes in single-species; P + L: L.
monocytogenes and P. fluorescens in dual-species.
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3.5. Confocal Laser Scanning Microscopy Analysis

Figure 5 describes the dual-species biofilms at the end of the incubation period (168 h,
12 ◦C), on the basis of CLSM results. No three-dimensional biofilm architecture was
revealed but, as for the other incubation times (data not reported), some unexpected
evidences made it difficult to analyze the interactions between the two species on biofilm
structure. In fact, the figure shows particular green agglomerates with damaged or dead
cells (red cells according to PI staining) and detached P. fluorescens cells (blue color of
pyoverdine fluorescence). The fact that the agglomerates were not clearly identifiable as
cells and that they were present only in the samples with P. fluorescens pf5, suggests that
they could depend on blue pigment appearance. In addition, this particular behavior
was observed starting from 72 h in correspondence with the blue pigment formation by P.
fluorescens (Figure 6).

Figure 6a–d illustrates the color changes occurred in the CLSM plates during the
incubation. Also, in this case, the blue pigment discoloration was revealed starting from
72 h, after which the blue color turned progressively into green/grey, particularly at 168 h.
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Figure 5. Confocal Laser Scanning Microscopy (CLSM) analysis of L. monocytogenes LM5 and P.
fluorescens pf5 biofilms in dual-species conditions after 168 h at 12 ◦C.Foods 2021, 10, x FOR PEER REVIEW 10 of 14 
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4. Discussion

The biofilm forming capability of P. fluorescens and L. monocytogenes strains was evalu-
ated in conditions simulating those encountered in a dairy environment. The serotypes of
L. monocytogenes strains agree with previous observations, which showed that 1/2a, 1/2b,
1/2c, and 4b are the most common serotypes in foods and environmental sources [30], with
1/2a, 1/2b, and 4b being mainly responsible for listeriosis outbreaks [41].

The results obtained on the PS surface revealed that the L. monocytogenes strains used in
this study were not able to form biofilms. Although numerous studies have demonstrated
that this pathogen is able to form biofilms on various abiotic and biotic surfaces [42–44],
also a previous study on mono-species and mixed-species biofilms composed of these two
microbial species, reported very low OD values for mono-species L. monocytogenes biofilms,
with a maximum value of 0.11 after 96 h of incubation at 20 ◦C [45]. On the contrary, P.
fluorescens pf5 exhibited good biofilm formation capacity, which is an important feature for
a spoilage organism. Cells in biofilms are an important risk factor in food environments for
the potential contamination of foods and the possibility to become resistant to antimicro-
bials [20]. Pseudomonas spp., especially P. fluorescens, is a specific spoilage microorganism
of dairy products and is frequently isolated from dairy environments [2,46,47].

In general, the population densities of the biofilms on the SS surface observed in our
study were lower than those found by other studies [48–50], probably due to the conditions
adopted to mimic dairy processing environments. In fact, the physical–chemical properties
of substrates can affect surface bacterial adhesion and biofilm formation as highlighted by
Parkar et al. [51], who observed an attachment decrease of both vegetative cells and spores
of thermophilic bacteria on SS surfaces coated with milk proteins.

The fact that L. monocytogenes LM5 was able to adhere to SS and not to PS could be
attributable to the affinity established between the charge of the cell surface and the anchor-
ing site. In fact, at low temperatures, L. monocytogenes increases the cell wall hydrophilicity
and therefore the affinity to hydrophilic surfaces such as steel or glass [52].

In addition, the results revealed that dual biofilms were colonized to a greater extent
by L. monocytogenes LM5 and that dual-species conditions lead to an increase in L. mono-
cytogenes LM5 load compared to mono-species after 2 days of incubation. Stimulation of
L. monocytogenes adhesion in mixed-culture biofilms with P. fluorescens was also described
by Puga et al. [45], who linked the positive effects on L. monocytogenes to Pseudomonas pro-
duction of proteinases, able to mobilize essential amino acids. Interestingly, Teh et al. [53]
demonstrated that the proteolytic and lipolytic activities of bacterial cells in dairy envi-
ronments are higher within biofilms than in planktonic cells. Moreover, the exopolymeric
substances produced by P. fluorescens may facilitate L. monocytogenes anchorage, attachment,
and surface colonization [54,55], providing a thick matrix protection [45]. Our findings are
also consistent with the results of Hassan et al. [56], who observed a stronger attachment of
L. monocytogenes to surfaces with preexisting Pseudomonas biofilms than to Pseudomonas-free
surfaces. In contrast, in another study, the cell density of L. monocytogenes in dual-species
biofilms formed at 15 ◦C for 48 h was lower than that of the single-species [48].

In our study, the interactions between the two microbial species led to a polysaccha-
rides matrix over-production that persisted until the end of the experimental time (168 h).
With this respect, Puga et al. [45] also reported that the inclusion of L. monocytogenes in
the already established P. fluorescens biofilm increased matrix production. Although L.
monocytogenes is considered “a cheater” with a poor matrix production capability, finding
shelter inside the matrix of Pseudomonas spp., we observed good amounts of carbohydrates
also in single-species L. monocytogenes biofilm.

The fast cellular dispersal observed in our study for multi-species biofilms could have
been stimulated from the early achievement of high biofilm level (cellular density/matrix
threshold) with no extra nutrient supplementation [19,45,50]. As highlighted by the results
of L. monocytogenes sessile cells on an SS surface (Figure 2b, Figure 4), the greater detachment
rate of the cells in dual-species biofilms compared to the single ones was not associated
with a poor EPS production. While Combrouse et al. [57] also did not observe any clear
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relationship between EPS content and CFU count, in contrast previous works reported a
positive correlation between the ability to form biofilms and EPS production [58,59]. EPSs
have a key role in maintaining the stability and integrity of biofilm structure via cellular
adhesion and cohesion [60] but also other variables related to starvation and nutrient flow
cessation [61] influence biofilms detachment.

With respect to the blue pigment production, as previously observed for Mozzarella
cheese inoculated with P. fluorescens [16], Ricotta medium blue discoloration was observed
at a high load of P. fluorescens pf5 after 72 h of incubation. In agreement with our findings,
Andreani et al. [14] observed an evident blue pigment in broth when Pseudomonas counts
reached about 7 × 108 CFU/mL, concluding that the blue pigment production took place in
the late logarithmic phase. Quintieri et al. [15] reported that in Pseudomonas spp. pigments
modulate the transition from planktonic to biofilm state, show antimicrobial effects against
other microorganisms, protect cells from oxidative stress, and can act as signaling molecules
and virulence factors. Furthermore, Cude et al. [62], in a study conducted on marine
Roseobacter Phaeobacter cells, found that indigoidine biosynthesis may provide a significant
advantage in the colonization of environmental niches. In addition, the authors suggested
that when a surface niche is colonized and quorum is reached, indigoidine biosynthesis is
up-regulated to suppress the colonization of competing organisms. However, from our
study it is not possible to state that the blue pigment produced by P. fluorescens pf5 possesses
antimicrobial activity. In fact, during the blue pigment discoloration in mixed-culture, a
strong reduction of L. monocytogenes load was observed only for the sessile cells at 168 h.

The color change from blue to green/grey highlights the possible reduction of in-
digoidine to leucoindigoidine [16], which is considered a chemical marker of blue discol-
oration [12]. Although the CLSM analysis did not allow for the detection of the architecture
of single- and dual-species biofilms during the incubation time, the agglomerates formation
and their interference with samples staining revealed some connection with P. fluorescens
indigoidine production. In fact, the indigoidine and leucoindigoidine fluorescence was
recorded using a 415 nm excitation and 520 nm emission wavelengths [63], which is near
to the range of SYTO 9 used to observe live cells.

5. Conclusions

This study underlines the influence of microbial interactions on biofilms formed under
simulated dairy processing conditions. The results showed that L. monocytogenes exhibited
the capability to form biofilm only on SS coupons, while P. fluorescens formed biofilm
on both PS and SS surfaces. The behavior of planktonic and sessile populations on SS
coupons was dependent on the culture conditions. Particularly, the presence of P. fluorescens
increased L. monocytogenes sessile population and total EPS carbohydrates amount on
SS coupons. Green agglomerates, probably linked to the P. fluorescens blue pigment,
were noticed during CLSM analysis and probably interfered with biofilm visualization.
Nevertheless, further research is needed to better clarify this point and more studies would
be useful to provide more information on the inter-species consortium. In fact, dual-species
biofilms are more common than single-species ones in real conditions, show characteristics
that could favor L. monocytogenes persistence in food production environments, and for this
reason deserve thorough investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-8
158/10/1/176/s1, Figure S1: Blue pigment production appearance during the assay of biofilm
formation of L. monocytogenes strains and P. fluorescens pf5 in mono- and dual-species conditions on
PS microtitre plates. (a) 0 h; (b) 24 h; (c) 48 h; (d) 72 h; (e) 96 h; (f) 168 h.
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