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Abstract: While output and impact assessments were initially at the forefront of institutional research
evaluations, efficiency measurements have become popular in recent years. Research efficiency is
measured by indicators that relate research output to input. The additional consideration of research
input in research evaluation is obvious, since the output depends on the input. The present study
is based on a comprehensive dataset with input and output data for 50 US universities. As input,
we used research expenses, and as output the number of highly-cited papers. We employed Data
Efficiency Analysis (DEA), Free Disposal Hull (FDH) and two more robust models: the order-m
and order-α approaches. The results of the DEA and FDH analysis show that Harvard University
and Boston College can be called especially efficient compared to the other universities. While the
strength of Harvard University lies in its high output of highly-cited papers, the strength of Boston
College is its small input. In the order-α and order-m frameworks, Harvard University remains
efficient, but Boston College becomes super-efficient. We produced university rankings based on
adjusted efficiency scores (subsequent to regression analyses), in which single covariates (e.g., the
disciplinary profile) are held constant.

Keywords: university; efficiency analysis; partial frontier analysis; regression analysis; normalized
citation impact

1. Introduction

The science system has been characterised by the transition from academic science to
post-academic science for several years. “Bureaucratization” is the term used to describe most of the
processes connected with post-academic science: “The transition from academic to post-academic
science is signaled by the appearance of words such as management, contract, regulation, accountability,
training, employment, etc. which previously had no place in scientific life. This vocabulary did not
originate inside science, but was imported from the more ‘modern’ culture which emerged over several
centuries in Western societies—a culture characterized by Weber as essentially ‘bureaucratic’” ([1],
p. 82). As an important part of universities’ commitments to accountability (against the government),
research evaluation has assumed a steadily growing importance in the science system. While academic
science (since its beginnings) has been characterised by the use of the peer-review system to assess
single outcomes of science (e.g., manuscripts, [2]), post-academic science is characterised by the use
of quantitative methods of research evaluation. According to Wilsdon, et al. [3], there are currently
“three broad approaches to the assessment of research: a metrics-based model; peer review; and a
mixed model, combining these two approaches. Choosing between these remains contentious” (p. 59).
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Typical metrics are publications and citations [4]. For example, the government of Mexico follows a
metrics-based model by allocating funds to higher education institutions with several indicators [5].

A special characteristic of research evaluation in the area of post-academic science is the emergence
of university rankings. Here, metrics are used to rank the universities in a country or worldwide [6].
University rankings have some obvious advantages. They offer, for example, a quick, simple, and
easy way of comparing universities (worldwide). The most interested groups in the rankings are
students, the public and governments [3]. However, a lot of critiques have been published in recent
years (see e.g., Reference [7]) that focus on the methods and arbitrary weightings used to combine
different metrics. Daraio, et al. [8] cited four points summarizing the main criticisms aimed at rankings:
mono-dimensionality, statistical robustness, dependence on university size and subject mix, and lack
of consideration of the input–output structure.

In this scientometric study, we pick up the last point “lack of consideration of the input-output
structure” and set a possible approach for input–output consideration in institutional evaluation
to discuss (in scientometrics). Since positions in rankings depend on certain context factors [9,10],
rankings should not only offer information on the output, but also the relation of input to output.
Moed and Halevi [11] define input indicators as follows: “indicators that measure the human, physical,
and financial commitments devoted to research. Typical examples are the number of (academic) staff
employed or revenues such as competitive, project funding for research” (p. 1990).

If metrics are used that relate output to input (e.g., the number of papers per full time equivalent
researcher), research efficiency is measured. Thus, this study is intended to explore approaches of
measuring the efficiency of universities. The study follows on from a recent discussion in the Journal of
Informetrics, which started with Abramo’s and D’Angelo’s [12] doubts about the validity of established
bibliometric indicators and the comments that ensued. Instead, they plead in favor of measuring
scientific efficiency. For example, they proposed the Fractional Scientific Strength (FSS) indicator,
which is a composite indicator that considers the total salary of the research staff and the total number
of publications weighted with citation impact (when used on the university level).

2. Conceptual Framework

This study follows the call of Bornmann and Haunschild [13] and Waltman, et al. [14] who propose
in a comment on the paper by Abramo’s and D’Angelo’s [12] that scientometricians should try to
explore methods and available data to measure the efficiency of research. We do this both by using
a unique data set and applying approaches rarely used in academic efficiency analysis. The former
comprises information for the top 50 US American universities from the Times Higher Education
(THE) Ranking 2015. Input is defined by annual research expenses. The output concerns the 1%
most frequently cited publications in a specific field and given year (Ptop 1%). The focus on these top
publications is derived from the fact that we focus on elite universities represented by the 50 best
ranked universities in the THE. Whereas the input we used is standard in the literature, our output
variable has never been used before (to the best of our knowledge)—although it is very suitable to
study the efficiency of top institutions. Other output variables such as total number of publications,
number of graduates or third-party funding could have equally been considered. However, we had
three reasons to focus on highly-cited papers: (1) Reputable universities should be evaluated with
indicators which focus on excellent research. (2) Gralka, et al. [15] and other studies have shown that
conclusions are very similar if (top-cited) publications, third-party funding or other indicators are used
in the efficiency analysis. (3) We wanted to trace out the ‘pure’ research effect in efficiency analysis.
Including, for instance, teaching-oriented variables would divert from this goal.

University rankings identify top universities from around the world using various indicators.
We initially had the idea to undertake a global university analysis by including not only US universities,
but also top universities from other countries. This would require an international database with
comparable input and output data. Whereas these data are available on the publication output
side (with, e.g., the Scopus database from Elsevier), they are not available on the input side.
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We focus, therefore, in this study on US universities for which comparable data are available in
a national database.

The most frequently used tool in the academic efficiency literature is the Data Efficiency Analysis
(DEA) and variations of this non-parametric approach. The DEA yields an institutional efficiency
score between 0 and 1, where 1 means efficient. However, these non-parametric approaches have
several shortcomings. There is no well-defined data-generating process, and a deterministic approach
is assumed: “Any deviation from the frontier is associated with inefficiency, and it is not possible to
take into consideration casual elements or external noise which might have affected the results” [16].
The most serious drawback of the DEA in its simplest form is that it is extremely vulnerable to outliers
and measurement errors.1

Thus, we further employ the Free Disposal Hull (FDH), which is less prone to outliers, and apply
the partial frontier analysis (PFA), which nests FDH and DEA. Specifically, we employ the order-m [17]
and order-α [18] approaches. Here, the sensitivity to outliers and measurement errors is reduced by
allowing for super-efficient universities with efficiency scores larger than 1. To this end, sub-samples
of the data are used and resampling techniques are employed. The use of four different approaches
allows us to validate the robustness of our conclusions. Finally, we calculate efficiency scores adjusted
for institutional background and research focus.

There is plenty of literature examining the efficiency of (higher) education institutions. Early
examples are Lindsay [19] and Bessent, et al. [20]. Worthington [21] and more recently Rhaiem [22] as
well as De Witte and López-Torres [23] provide comprehensive surveys of the literature. In the efficiency
analyses of higher education institutions, PFA has rarely been used. Bonaccorsi, et al. [24,25] applied the
order-m approach to study 45 universities in Italy and 261 universities across four European countries,
respectively. De Witte, et al. [26] used DEA and PFA to study the performance of 155 professors working
at a Business & Administration department of a Brussels university college. Bruffaerts, et al. [27]
used FDH and PFA to study the efficiency of 124 US universities. The authors tried to explain which
factors drove the efficiency scores. However, they do not provide scores for each university. Gnewuch
and Wohlrabe Gnewuch and Wohlrabe [28] used partial frontier analysis to identify super-efficient
economics departments. There are several studies available in the literature which have investigated
efficiency aspects in the US higher education system [29–34].

The paper is organized as follows: It starts by explaining the four statistical approaches used in
this study for calculating the efficiency scores of the universities. The paper subsequently describes
the data set and provides some descriptive statistics. In the first step, we calculate efficiency scores for
the universities. In the second step, we calculate adjusted efficiency scores. These scores are adjusted
to the different profiles of the universities (e.g., their disciplinary profiles). After presenting our results,
we discuss the implications of our analysis.

3. Methods

3.1. (Partial) Academic Production Frontier Analysis

The main goal of efficiency measurement is to calculate an efficiency score for each unit (here:
each university). There are two main concepts: (1) input-orientated efficiency, where the output is set
constant and the inputs are adjusted accordingly; (2) output-orientated efficiency, where for a given
input the output is maximized. These concepts differ in terms of the direction in which the distance of
a university from the efficiency frontier is measured. In this paper, we resort to input-efficiency
and variable returns to scale (VSR). With respect to the former point, we could also consider
output-efficiency as US universities may have control over both the inputs (the acquired budget) and

1 There are also parametric approaches available (e.g., the stochastic frontier analysis, SFA), which have several disadvantages
too. One disadvantage is that they rely on distributional assumptions; a specific functional form is required. The potential
endogeneity of inputs cannot be accounted for.
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the outputs. In our estimation framework, we cannot test the nature of economies of scale. The partial
frontier approaches used in this paper assume constant returns to scale. Furthermore, the results do
not point to evidences of how the production process with respect to top-cited publications works.

We start this section by describing two full production frontier approaches for elicitation of
academic efficiency scores: The most commonly used DEA and the less known FDH approach.
We subsequently outline two PFA: order-m and order-α. Both techniques are generalizations of the
FDH approach, as they nest it. Both approaches allow for the existence of super-efficient universities,
i.e., universities with efficiency scores larger than 1. In Section 3.1.4, we illustrate the four approaches
with a simple example.

We denote the input and output of a university i with xi and yi, respectively. We consider N
universities. The corresponding efficiency score is given by ei.

3.1.1. Data Envelopment Analysis (DEA)

DEA was introduced by Charnes, et al. [35]. It is a linear programming approach which envelopes
the data by a piecewise-linear convex hull. The DEA efficiency score eDEA

i solves the following
optimization problem:

min
e,λ

e subject to

e·xmi −
N
∑

j=1
λjxmj ≥ 0 m = 1, . . . , M

N

∑
j=1

λjylj − yli ≥ 0 l = 1, . . . , L

λj ≥ 0 ∀j (1)

where λ is a weighting parameter that maximizes the productivity. In this paper, we focus on the basic
version of the DEA. With respect to outliers, sampling and measurement data issues we focus on the
later introduced partial frontier analysis. For (robust) extensions of the DEA, we refer to Bogetoft and
Otto [36] and Wilson and Clemson [37].

We compare each university i with every other university in the data set (j = 1 . . . N). The set of
peer universities that satisfy the condition ylj ≥ yli ∀l is denoted by Bi. Among the peer universities,
the one that exhibits the minimum input serves as a reference to i, and eFDH

i is calculated as the relative
input use

êFDH
i = min

j∈Bi

{
max

k=1,...,K

(xkj

xki

)}
(2)

Universities that exhibit the minimum input–output serve as references. For these universities,
the efficiency score eFDH

i is 1. The FDH approach was introduced by Deprins, et al. [38].

3.1.2. Order-m Efficiency

In case of order-m efficiency, the partial aspect comes in by departing from the assumption that the
universities are benchmarked on the basis of the best-performing universities in the sample. Instead,
the best performance of a sample including m peers is considered. Daraio and Simar [39] proposed the
following four-step procedure:

1. Draw from Bi a random sample of m peer universities with replacement.

2. A pseudo-FDH efficiency score (êF̃DHd
mi ) is calculated using the artificially drawn data.

3. Repeat steps 1 and 2 D times.
4. Order-m efficiency is calculated as the average of the pseudo-FDH scores

êOM
mi =

1
D

D

∑
d=1

êF̃DHd
mi (3)
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A potential result of this procedure is that the order-m efficiency scores exceed the value of 1.
This is due to the resampling: In each replication d, university i may or may not be used for its
own comparison. Therefore, this procedure allows for super-efficient universities (with êOM

mi > 1)
located beyond the estimated production-possibility frontier. There are two parameters that need to be
determined beforehand: m and D. D is just a matter of accuracy. The higher D is, the more accurate
are the results. It prolongs the computational time only. The choice of m is more critical. The smaller
m is, the larger is the share of super-efficient universities. For m→ ∞ the approach converges to the
FDH results.

3.1.3. Order-α Efficiency

The order-α approach generalizes the FDH otherwise. Instead of searching for the minimum
input–output relationship among the available peer universities (the benchmark), order-α uses the
(100− α)th percentile

êOA
αi = P(100−α)

j∈Bi

{
max

k=1,...,K

(xkj

xki

)}
(4)

When α = 100, the approach replicates the FDH results. In case of α < 100, some universities may
be classified as super-efficient. As m is the approach explained in Section 3.1.2, α can be considered as
a tuning parameter: the smaller α is, the larger is the share of the super-efficient universities.

3.1.4. A Simple Example for Explaining the Approaches

To illustrate the outlined full and PFA approaches, we sketched them out in Figure 1. We plotted
input–output combinations for various universities. The results of the DEA are given by the straight
line. Universities A, B and E define the academic production frontier. These universities have an
efficiency score of 1, i.e., an optimal input–output combination. The other universities on the right
of or below the frontier are considered as inefficient. In case of the FDH, the outer hull is spanned in
more explicitly by also considering universities that are not on the DEA curve. In Figure 1, universities
C and D are also efficient now. Since the frontier has shifted towards the right, the efficiency scores for
all other universities slightly increase. The distance to the frontier is smaller than for the DEA.
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Applying the partial frontier approaches, order-m or order-α, we get a different picture.
Only universities C and D are efficient with a corresponding score of 1; universities A, B and E
are considered as super-efficient with a score larger than 1. Of course, both approaches do not
necessarily yield the same results, as the figure might suggest.

3.1.5. Regression Analyses and Adjusted Efficiency Scores

We performed regression analyses to produce adjusted efficiency scores for the universities. Since
the universities have different profiles, the scores from the regression analyses are adjusted to these
differences. Thus, the focus of the regression analyses is not on explaining the variance of the scores
(as done, e.g., by Reference Agasisti and Wolszczak-Derlacz [40]). We used Stata [41] to compute the
regression analyses.

The efficiency scores from the four approaches (explained above) are the dependent variable in
the model. Four indicators are included as independent variables in the models, which reflect the
disciplinary profile of the university. We expect that the disciplinary profile is related to the efficiency
of a university. The results of Bornmann, et al. [42] show that the field-normalized citation impact
of universities depends on the disciplinary profile. For each university, we searched for the number
of publications in four broad disciplines and the multidisciplinary field in the SCImago Institutions
Ranking.2 For each institution, the percentages of publications that belong to the four disciplines
were calculated and included in the regression model (mean centered). As a further independent
variable, the binary information is considered for whether the institution is a public (0) or private (1)
university. Private universities tend to be elite research institutions. More than these two indicators
are not available in the SCImago Institutions Ranking, which was used in the regression analyses to
reflect the profiles of universities.

We used the cluster option in Stata to consider in the regression analysis that the universities are
in different US states. With 10 universities, the most universities are located in California. The different
regulations and financial opportunities in the states probably lead to related efficiency scores for
universities within one state. The cluster option corrects the standard errors for the fact that there are
up to 10 universities in each state. Although the point estimates of the coefficients are the same as in
the regression model without the option, the standard errors are typically larger [43].

3.2. Data

For our case study, we gathered input and output data for the 50 best performing US universities
as listed in the THE Ranking 2015. As input we used research expenses. The data source is the National
Center for Education Statistics (NCES).3 The NCES gathers data from universities by applying uniform
data definitions. This ensures the comparability of inputs across universities, which is an important
requirement of efficiency studies [44,45]. The expenses are self-reported data by the universities.
The category includes institutes and research centers, as well as individual and project research.
Information technology expenses related to research activities are also considered if the institution
separates budgets and expenses information technology resources. Universities are asked to report
actual or allocated costs for operation and maintenance of plant, interest and depreciation. The data
refer to the academic year, which starts on 1 July and ends on 30 June. As we needed information for
three calendar years (the output data refer to the calendar years 2011, 2012 and 2013), we transformed
the data. As an example, we obtained the input data for 2013 by taking the mean of the data from the

2 See http://www.scimagoir.com.
3 The data are from http://nces.ed.gov/ipeds/datacenter/InstitutionProfile.aspx?unitid=adafaeb2afaf. The database

provides also research staff figures, which could have been considered additionally in our study. However, the reported
figures do not seem to be consistent. In some cases, the reported research staff were far too low compared to the overall staff
of a university. For other universities, numbers varied substantially over time.

http://www.scimagoir.com
http://nces.ed.gov/ipeds/datacenter/InstitutionProfile.aspx?unitid=adafaeb2afaf
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academic year 2013/14 and 2012/2013.4 This approach might introduce some unknown biases as we
assume that the expenses are being spent evenly across the year. So, we cannot assure that the research
expenses represent correctly the production process of a university. Potential measurement errors are
further reasons to employ PFA. In the best case, biases cancel out across the sample.

As we focus on the best US universities, we use as output the number of papers that belong to the
1% (Ptop 1%) most frequently cited papers in the corresponding fields and publication years. The use of
this indicator ensures that the citation impact of all papers is standardized with respect to the year and
subject area of publication. The typical output variables in efficiency analysis are students, graduates
and funding; publications are used rather seldom [46,47]. The data were obtained from the SCImago
Institutions Ranking, which is based on Scopus data.5 The output data refer to the publication period
from 2011 to 2013 with a citation window from publication until the end of 2015. We did not use data
later than 2013 since it is standard to use a citation window of at least 3 years in bibliometrics [48].
In Section 4, we focus on the results for 2013. Both other publication years allowed us to look at the
stability of the results.

Table 1 shows the descriptive statistics both for the input and output from 2011 to 2013. The dataset
is fairly heterogeneous as the difference between minimum and maximum indicates. Furthermore,
the standard deviation is quite large compared to the mean. The distributions of the variables are
not significantly skewed as mean and median are very close together. The development over time
points out that research expenses increase whereas the average Ptop 1% peaked in 2012 and dropped
considerably in 2013. The correlation coefficients between research expenses and Ptop 1% are relatively
constant over time. All coefficients are about 0.6 implying a moderate positive relationship.

Table 1. Descriptive statistics over time.

2011 2012 2013

Research Expenses Ptop 1% Research Expenses Ptop 1% Research Expenses Ptop 1%

Mean 514 254 521 277 523 225
Median 482 213 483 228 477 197

Standard
Deviation 289 160 298 182 303 151

Minimum 38 35 37 19 36 24
Maximum 1265 1002 1321 1198 1372 977

Notes. Descriptive statistics for the input and output are reported. Research expenses in Million Dollars.

4. Results

Following the methods as outlined in Section 3.1, we estimated four efficiency scores for each
university and year in our data set and obtained the corresponding efficiency rankings for 2011 to 2013.

In contrast, PFA requires the specification of parameters, which eventually influence the amount
of super-efficient universities. The order-α approach requires α, the percentile of the set of peer
universities used as the benchmark. Order-m requires m, the number of peer universities randomly
drawn from the initial set of universities. Unless we set m = 50 or α = 100, where the partial frontier
approaches converge to FDH, we find super-efficient universities by construction. Figure 2 shows
the number of super-efficient universities for different values of m and α. We used data for the year
2013. It is clearly visible that with higher m or α values, respectively, the number of super-efficient
universities becomes lower. Concerning m, the figure is quite stable beyond 35. We opted to set m = 40
and α = 95%, which yield 10 and 7 super-efficient universities, respectively.

4 There are a few exceptions (n = 7) where the academic year differs slightly across years. We adjusted the figures accordingly.
5 See http://www.scimagoir.com. We preferred Scopus over Web of Science data as the coverage of the Scopus database is

much broader.

http://www.scimagoir.com
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side. Similar to our results, the authors found Harvard University at the top but Boston College is not
among their 20 best universities.

Table 2. Efficiency scores and the corresponding rankings based on different approaches for measuring
efficiency in 2013 (sorted by THE Ranking).

DEA FDH Order-α Order-m

THE University Score Rank Score Rank Score Rank Score Rank

1 California Institute of Technology 0.680 6 1.000 1 1.264 6 1.059 5
2 Harvard University 1.000 1 1.000 1 1.000 8 1.000 11
3 Stanford University 0.382 28 0.765 20 0.765 30 0.765 23
4 Massachusetts Institute of Technology 0.268 43 0.619 31 0.619 38 0.619 35
5 Princeton University 0.473 15 0.614 32 0.866 24 0.704 29
6 University of California, Berkeley 0.414 23 1.000 1 1.000 8 1.000 9
7 Yale University 0.444 18 0.720 25 0.720 34 0.732 27
8 University of Chicago 0.577 11 1.000 1 1.077 7 1.023 6
9 University of California, Los Angeles 0.409 24 0.897 14 0.897 20 0.897 16
10 Columbia University 0.475 14 1.000 1 1.000 8 1.000 10
11 Johns Hopkins University 0.249 45 0.584 34 0.584 41 0.584 37
12 University of Pennsylvania 0.460 17 1.000 1 1.000 8 1.000 11
13 University of Michigan, Ann Arbor 0.359 32 0.794 17 0.794 27 0.794 19
14 Duke University 0.309 35 0.766 19 0.766 29 0.766 22
15 Cornell University 0.656 7 1.000 1 1.000 8 1.014 8
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Table 2. Cont.

DEA FDH Order-α Order-m

THE University Score Rank Score Rank Score Rank Score Rank

16 North-western University, Evanston 0.545 13 1.000 1 1.000 8 1.019 7
17 Carnegie Mellon University 0.381 29 0.486 40 0.892 21 0.639 34
18 University of Washington 0.354 33 0.749 23 0.749 33 0.749 25
19 Georgia Institute of Technology 0.208 49 0.361 48 0.456 47 0.389 49
20 University of Texas, Austin 0.313 34 0.476 42 0.602 39 0.507 42
21 University of Illinois at Urbana-Champaign 0.261 44 0.349 49 0.492 45 0.406 48
22 University of Wisconsin, Madison 0.225 48 0.402 46 0.402 50 0.413 47
23 University of California, Santa Barbara 0.618 8 0.902 13 1.000 8 0.974 14
24 New York University 0.273 41 0.472 43 0.472 46 0.484 43
25 University of California, San Diego 0.306 36 0.761 21 0.761 31 0.762 24
26 Washington University in Saint Louis 0.439 19 0.760 22 0.760 32 0.779 20
27 University of Minnesota, Twin Cities 0.240 46 0.416 44 0.448 48 0.425 46
28 University of North Carolina, Chapel Hill 0.364 31 0.594 33 0.594 40 0.605 36
29 Brown University 0.799 4 1.000 1 1.834 2 1.329 2
30 University of California, Davis 0.276 40 0.512 38 0.551 42 0.524 40
31 Boston University 0.782 5 1.000 1 1.410 3 1.156 3
32 Pennsylvania State University 0.192 50 0.329 50 0.416 49 0.354 50
33 Ohio State University, Columbus 0.386 26 0.713 26 0.879 22 0.738 26
34 Rice University 0.805 3 1.000 1 1.383 4 1.125 4
35 University of Southern California 0.468 16 0.742 24 0.939 18 0.799 18
36 Michigan State University 0.299 37 0.477 41 0.672 36 0.521 41
37 University of Arizona 0.283 39 0.388 47 0.547 43 0.450 44
38 University of Notre Dame 0.603 10 0.856 15 1.000 8 0.937 15
39 Tufts University 0.554 12 0.689 27 0.953 17 0.776 21
40 University of California, Irvine 0.414 22 0.578 35 0.815 25 0.680 30
41 University of Pittsburgh 0.289 38 0.534 37 0.658 37 0.554 38
42 Emory University 0.399 25 0.625 29 0.790 28 0.667 32
43 Vanderbilt University 0.431 21 0.793 18 0.977 16 0.818 17
44 University of Colorado, Boulder 0.432 20 0.572 36 0.806 26 0.657 33
45 Purdue University 0.383 27 0.661 28 0.932 19 0.721 28
46 University of California, Santa Cruz 0.618 9 0.826 16 1.368 5 0.982 13
47 Case Western Reserve University 0.272 42 0.495 39 0.698 35 0.544 39
48 University of Rochester 0.368 30 0.620 30 0.874 23 0.677 31
49 Boston College 1.000 1 1.000 1 3.018 1 1.856 1
50 University of Florida 0.237 47 0.405 45 0.511 44 0.435 45

Table 3 shows the coefficients for the correlation between the ranking positions of the universities
in the THE Ranking 2015 and the results of the efficiency analyses. The results point out that the
ranking positions from the efficiency analysis are correlated at a (very) low level compared to the
correlations among the different results of the efficiency analyses. The results of the four efficiency
approaches are highly correlated, implying that one can derive similar conclusions.

Table 3. Spearman rank correlation coefficients for 2013.

THE DEA FDH order-α order-m

THE 1.000
DEA 0.073 1.000
FDH 0.299 0.840 1.000

order-α 0.035 0.927 0.890 1.000
order-m 0.205 0.899 0.980 0.942 1.000

4.1.2. Stability of the Results over Time

Table 4 reports the rank correlations across time (2011, 2012 and 2013) for each approach of the
efficiency analysis. They are all above 0.8, suggesting that the results are quite stable over the observed
time period.
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Table 4. Spearman rank correlations for each approach of efficiency analysis across time.

DEA FDH

2011 2012 2013 2011 2012 2013
2011 1.00 2011 1.00
2012 0.95 1.00 2012 0.84 1.00
2013 0.93 0.96 1.00 2013 0.85 0.84 1.00

order-α order-m
2011 1.00 2011 1.00
2012 0.91 1.00 2012 0.86 1.00
2013 0.88 0.91 1.00 2013 0.87 0.89 1.00

4.2. Adjusted Scores and Ranking Positions

4.2.1. Results for 2013

The results of the regression analyses are shown in Table 5. As dependent variables, the efficiency
scores from Table 2 are used (results from the DEA, FDH, order-α approach, and order-m approaches).
We estimated linear regressions because the residuals were approximately normally distributed (as
tested with the sktest in Stata). The coefficients for all disciplines point out that a decrease in the
share of publications is associated with higher efficiency scores. If expensive research is done by the
university, its efficiency is decreasing. Thus, a high share of paper output especially in physical and
health sciences—having the largest coefficients—is related to lower efficiency scores. Furthermore,
the results in Table 5 demonstrate that private universities are more efficient than public universities.
Many coefficients in the models are statistically not significant (which might be the result of the low
numbers of universities in the study).

Table 5. Beta coefficients and t statistics of the regression models with the efficiency scores as dependent
variable for 2013.

DEA FDH order-α order-m

Life sciences −0.45 −01.20 * −00.46 −00.99
(−01.90) (−02.41) (−00.65) (−01.83)

Physical sciences −01.43 * −03.65 * −01.39 −02.99
(−02.26) (−02.52) (−00.67) (−01.91)

Social sciences −00.35 −01.02 * −00.17 −00.74
(−01.90) (−02.36) (−00.27) (−01.54)

Health sciences −01.08 * −02.60 * −01.08 −02.16
(−02.51) (−02.53) (−00.73) (−01.95)

Private state 0.18 *** 0.14 0.33 ** 0.21 *
(3.94) (1.77) (2.89) (2.48)

Constant 0.34 *** 0.63 *** 0.69 *** 0.65 ***
(10.36) (10.38) (7.65) (8.82)

Universities 50 50 50 50

Notes. t statistics in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

Subsequent to the regression models, we calculated efficiency scores for every university, which
are adjusted by the influence of the independent variables. Thus, the scores are adjusted to the different
institutional and field-specific profiles of the universities. It is worth noting that the adjusted scores
are not predicted values, but institutional values for which the residuals from the regression analyses
were added to the mean initial efficiency scores.

The adjusted ranking positions (based on the adjusted scores) are listed in Table 6 besides the
initial ranking positions. Although both ranking positions are (highly) correlated (DEA: rs = 0.71,
FDH: rs = 0.82, order-α: rs = 0.64, order-m: rs = 0.79), there are significant rank changes for some
universities. For example, Harvard University shows a perfect rank position in the FDH; but if the
score is adjusted by the independent variables in the regression model, its score decreases, leading to
the 17th ranking position.
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Table 6. Initial efficiency rank positions and adjusted rank positions in 2013 (sorted by adjusted DEA
scores).

University DEA DEA
Adjust. FDH FDH

Adjust. order-α order-α
Adjust. order-m order-m

Adjust.

Harvard University 1 1 1 17 8 17 11 16
Brown University 4 2 1 6 2 1 2 1
Rice University 3 3 1 5 4 5 4 6
Boston University 5 4 1 9 3 6 3 8
University of California, Santa Barbara 8 5 13 3 8 11 14 7
University of California, Santa Cruz 9 6 16 14 5 3 13 3
California Institute of Technology 6 7 1 7 6 4 5 4
Tufts University 12 8 27 23 17 8 21 18
Boston College 1 9 1 19 1 2 1 2
Cornell University 7 10 1 8 8 22 8 14
University of California, Los Angeles 24 11 14 1 20 7 16 5
Ohio State University, Columbus 26 12 26 13 22 9 26 12
University of California, Irvine 22 13 35 31 25 14 30 21
University of Michigan, Ann Arbor 32 14 17 12 27 10 19 10
Northwestern University, Evanston 13 15 1 4 8 21 7 11
University of North Carolina, Chapel Hill 31 16 33 28 40 33 36 30
University of Pittsburgh 38 17 37 24 37 15 38 20
Purdue University 27 18 28 15 19 13 28 15
University of Notre Dame 10 19 15 11 8 47 15 23
University of Colorado, Boulder 20 20 36 35 26 26 33 34
University of Chicago 11 21 1 20 7 32 6 24
University of Pennsylvania 17 22 1 10 8 19 11 13
University of Southern California 16 23 24 22 18 30 18 27
Washington University in Saint Louis 19 24 22 29 32 28 20 25
Vanderbilt University 21 25 18 18 16 18 17 19
University of California, Davis 40 26 38 26 42 20 40 22
Emory University 25 27 29 34 28 25 32 33
University of Arizona 39 28 47 40 43 36 44 38
University of California, Berkeley 23 29 1 2 8 16 9 9
Georgia Institute of Technology 49 30 48 32 47 29 49 32
University of Florida 47 31 45 30 44 27 45 29
University of California, San Diego 36 32 21 21 31 12 24 17
University of Minnesota, Twin Cities 46 33 44 41 48 40 46 41
University of Texas, Austin 34 34 42 38 39 43 42 44
University of Rochester 30 35 30 36 23 23 31 35
Columbia University 14 36 1 16 8 37 10 28
University of Washington 33 37 23 25 33 31 25 26
University of Wisconsin, Madison 48 38 46 42 50 41 47 40
Case Western Reserve University 42 39 39 44 35 24 39 36
Michigan State University 37 40 41 33 36 42 41 43
Yale University 18 41 25 43 34 46 27 45
University of Illinois at
Urbana-Champaign 44 42 49 46 45 45 48 46

Carnegie Mellon University 29 43 40 45 21 38 34 42
Johns Hopkins University 45 44 34 39 41 35 37 37
Duke University 35 45 19 27 29 34 22 31
Stanford University 28 46 20 37 30 39 23 39
Princeton University 15 47 32 48 24 48 29 48
Pennsylvania State University 50 48 50 47 49 49 50 49
New York University 41 49 43 50 46 50 43 50
Massachusetts Institute of Technology 43 50 31 49 38 44 35 47

4.2.2. Stability of the Results over Time

Table 7 shows the Spearman rank correlation coefficients across time (2011, 2012 and 2013) for
each approach of the efficiency analysis (adjusted scores). The coefficients are above or around 0.8,
which demonstrate that the results are (more or less) stable over the publication years considered.
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Table 7. Spearman rank correlations for the adjusted scores from each approach across time.

DEA FDH

2011 2012 2013 2011 2012 2013
2011 1.00 2011 1.00
2012 0.92 1.00 2012 0.65 1.00
2013 0.91 0.93 1.000 2013 0.75 0.72 1.00

order-α order-m
2011 1.00 2011 1.00
2012 0.86 1.00 2012 0.76 1.00
2013 0.88 0.89 1.00 2013 0.82 0.82 1.00

5. Discussion

Research evaluation is the backbone of modern science. The emergence of the modern science
system is closely related to the introduction of the peer review process in assessments of research
results [2]. Whereas output and impact assessments were initially at the forefront of assessments,
efficiency measurements have become popular in recent years [22]. According to Moed and Halevi [11],
research efficiency or productivity is measured by indicators that relate research output to input.
The consideration of research input in research evaluation is obvious, since the output should be directly
related to the input. The output is determined by the context in which research is undertaken [22,49].
In this study, we went one step further. We not only related input to output for universities, but also
calculated adjusted efficiency scores, which consider the different institutional and field-specific
profiles of the universities. For example, it is easily comprehensible that the input–output relations are
determined by the disciplinary profiles of the universities.

The present study is based on a comprehensive dataset with input and output data for 50 US
universities. As input, we used research expenses, and as output the number of (highly-cited) papers.
The results of the DEA and FDH analysis show that Harvard University and Boston College can
be called especially efficient—compared with many other universities. Similar results can be found
in other efficiency studies including US institutions. Whereas the strength of Harvard University
is its high output of (highly-cited) papers, the strength of Boston College is its small input. In the
order-α and order-m frameworks, Harvard University remains efficient, but Boston College becomes
super-efficient. Although Harvard University is well-known as belonging to the best universities in
the world, the correlations between the ranking positions of the universities in the THE Ranking 2015
and the results of our efficiency analyses are at a relatively low level. Thus, the consideration of inputs
puts a different complexion on institutional performance.

Besides the university rankings based on the different statistical approaches for efficiency analyses,
we produced rankings using adjusted efficiency scores (subsequent to regression analyses). Here, for
example, Harvard University’s ranking position fell. Although regression analyses have been used in
many other efficiency studies, they have been commonly used to explain the differences in efficiency
scores [22], but not to generate adjusted scores (for rankings). The adjusted rankings open up new
possibilities for institutional performance measurements, as demonstrated by Bornmann, et al. [9].
They produced a covariate-adjusted ranking of research institutions worldwide in which single
covariates are held constant. For example, the user of the ranking produced by Bornmann, et al. [9] is
able to identify institutions with a very good performance (in terms of highly cited papers), despite a
bad financial situation in the corresponding countries.

What are the limitations of the current study? Although we tried to realize an advanced design
of efficiency analyses, the study is affected by several limitations that should be considered in
future studies.

The first limitation is related to the numbers of indicators used. We included only one input
and output indicator, respectively. One important reason for this restriction is the focus of this study
on efficiency in research. However, many more indicators could be included in future studies (if
the focus is broader and not limited to excellent research as in this study). The efficiency study of
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Bruffaerts, et al. [27], which also focuses on US universities, additionally included the number of
PhD degrees as input indicators, as well as several environmental variables (e.g., university size
and teaching load). In an overview of efficiency studies, Rhaiem [22] categorized possible research
output indicators for efficiency analyses as follows: research outputs, research productivity indices
and quality of research indicators. The categorizations for possible input indicators are: “Firstly,
human capital category refers to academic staff and non-academic staff; secondly, physical capital
category refers to productive capital (building spaces, laboratories, etc.); thirdly, research funds
category encompasses budget funds and research income; fourthly, operating budget refers to income
and current expenditures; fifthly, stock of cumulative knowledge regroups three sub-categories:
knowledge embedded in human resources, knowledge embedded in machinery and equipment,
and public involvement in R&D; sixthly, agglomeration effects category refers to regional effect and
entrepreneurial environment” (p. 595).

The second limitation concerns the quality of the input data [14]. “Salary and investment
financial structures differ hugely between countries, and salary levels differ hugely between functions,
organizations and countries. To paraphrase Belgian surrealism: a salary is not a salary, while a research
investment is not a research investment. Comparability (and hence validity) of the underlying data
themselves not only is a challenge, it is a problem” [50]. We tried to tackle the problem in this study
by using the data for all universities from one source: NCES. However, the comparability of the
data for the different universities may remain a problem. Thus, Waltman, et al. [14] recommend that
“scientometricians should investigate more deeply what types of input data are needed to construct
meaningful productivity indicators, and they should explore possible ways of obtaining this data”
(p. 673) in future studies.

The third limitation questions the general implementation of efficiency studies in the practice
of research evaluation. The results of the study by Aagaard and Schneider [51] highlight many
difficulties in explaining research performance (output and impact) as a linear function of input
indicators. Bornmann and Haunschild [13] see efficiency in research as diametric to creativity and
faulty incrementalism, which are basic elements of each (successful) research process. According to
Ziman [1], “the post-academic drive to ‘rationalize’ the research process may damp down its creativity.
Bureaucratic ‘modernism’ presumes that research can be directed by policy. But policy prejudice
against ‘thinking the unthinkable’ aborts the emergence of the unimaginable” (p. 330).
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