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Abstract: The research discipline of computer science (CS) has a well-publicized gender disparity.
Multiple studies estimate the ratio of women among publishing researchers to be around 15–30%.
Many explanatory factors have been studied in association with this gender gap, including differ-
ences in collaboration patterns. Here, we extend this body of knowledge by looking at differences
in collaboration patterns specific to various fields and subfields of CS. We curated a dataset of nearly
20,000 unique authors of some 7000 top conference papers from a single year. We manually assigned a
field and subfield to each conference and a gender to most researchers. We then measured the gender
gap in each subfield as well as five other collaboration metrics, which we compared to the gender gap.
Our main findings are that the gender gap varies greatly by field, ranging from 6% female authors
in theoretical CS to 42% in CS education; subfields with a higher gender gap also tend to exhibit
lower female productivity, larger coauthor groups, and higher gender homophily. Although women
published fewer single-author papers, we did not find an association between single-author papers
and the ratio of female researchers in a subfield.

Keywords: women in science; gender gap; collaboration patterns; computer science research; bibliometrics

1. Introduction

The gender gap in science, technology, engineering, and mathematics (STEM), and
in particular in computer science (CS), is a well-known and well-studied problem. It carries
significant societal effects, such as inequality in economic opportunities for women and
an undersupply of researchers and engineers in the rapidly growing discipline [1–4].
The gender gap among researchers is particularly noteworthy: the people who participate
in research, publish about it, and have their research acknowledged for its value are
predominantly men [5]. Numerous studies estimate that only about 15–30% of the CS
research community are women [6–10]. Although some recent indications show these
numbers could be growing, they remain low, and the rate of growth remains slow [11].

The gender gap, defined simply as the difference in participation between men and
women, is nevertheless a complex, multifaceted societal phenomenon [12]. Numerous ap-
proaches to understand and perhaps increase the representation of women have focused
on aspects such as resource availability, gender stereotypes, child care, structural barriers,
gender differences, discrimination, and other factors. This article focuses on one of these
factors: the collaboration patterns of paper coauthors across genders and CS fields.

Scientific collaborations are the backbone of a successful career in science [13]. For ex-
ample, researchers with more collaborators have been found to publish more articles,
publish in higher impact journals, and accrue citations more quickly [14]. Consequently,
many studies have investigated whether women and men collaborate at different rates
across disciplines, and have often found significant differences [15–18].

In CS, and in particular in its more experimental fields such as computer systems,
graphics, and artificial intelligence, collaboration is crucial because the large-scale imple-
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mentation efforts involved often require teams of researchers with various experience levels.
In this article, we focus on gender differences in collaboration patterns across the fields and
subfields of CS, both experimental and theoretical.

Our study design is descriptive and observational in nature. We did not start out
with any preset hypotheses to validate. Instead, our goal was to collect and analyze
up-to-date, accurate, and extensive data on CS authorship and collaboration patterns
across genders. These data and this analysis provide baseline statistics for comparison
across different time points and scientific disciplines. However, it also provides immediate
answers and comparisons to existing work, thereby offering new insights into the current
state of collaboration differences across genders and CS fields. Specifically, in this article
we address the following research questions:

• RQ1: What are the ratios of women and men among CS conference authors?
• RQ2: Do women publish less than men?
• RQ3: Are productivity differences affected by collaboration size?
• RQ4: Do women collaborate with fewer people than men?
• RQ5: Do women publish fewer single-author papers?
• RQ6: Are team sizes (coauthor groups) larger in more experimental subfields?
• RQ7: Do authors exhibit gender homophily in their choice of coauthors?

To bring these questions into historical context, we next briefly survey some of the pre-
vious work in the area.

1.1. Related Work

There exists rich literature on the gender gap in the sciences in general, and in computer
science research in particular. For a recent review of these works, refer to Avolio et al.’s re-
view from 2020 [12]. Instead, we limit our focus to the relevant literature on collaboration
patterns and differences.

For example, a recent study of differences in collaboration patterns across disciplines
found that female scientists have a lower probability of repeating previous coauthors
than males. It also found that female faculty have significantly fewer distinct coauthors
over their careers than males, but that this difference can be fully accounted for by females’
lower publication rate and shorter career lengths [19].

This productivity gap, which we observed in our dataset as well, has been thoroughly
explored in several other studies [17,20–23]. In the social sciences, one study has found
that women generally publish fewer papers than men and that two thirds of the single-
author papers were written by men [24]. In mathematics, women also publish less than
men, especially early in their careers, and leave academia at a higher rate than men [25].
Women are also underrepresented in the three top-ranked journals and publish fewer
single-author papers. In terms of the mean number of coauthors, women’s statistics are
similar to men’s. That being said, there is even a gap in recognition, as women are also less
likely to receive tenure the more that they coauthor [26].

CS researchers in particular tend to collaborate more than researchers in other fields,
regardless of gender, and there are no gender-specific differences in how collaborative
behavior impacts scientific success [27]. This study also found that gender homophily in CS
has been increasing over the past few years.

On a related note, another study of collaboration patterns across the sciences found
that CS papers average 2.84 coauthors, and electrical engineering papers average 3.04 [28],
which is somewhat lower than what we have found in this study. It also found that
generally, in engineering, female–female collaborations accounted for only 7% of all total
pairs. In CS, the percentage was even lower (5%). Since 1990, there have been even more
same-gender (gender homophily) coauthorships than expected [11]. However, this property
can vary across CS fields, necessitating more nuanced analysis. For example, in the field
of data visualization, women collaborated with substantially more women than men [29].

Corroborating this result for biotech patent networks, women have been found to be
more likely to collaborate with women, and benefit from it, but both genders mostly
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collaborate with men [13]. There are also fewer women “stars“, which we also found
to hold specifically for the subfield of high-performance computing [30].

A surprising result came from a survey of 1714 scientists in 2011, finding that when
accounting for various confounding factors, women actually have more collaborators than
men [31]. The paper also reported that regression models that take into account different
collaboration strategies are better at predicting a researcher’s number of collaborators.

Some studies analyzed the researcher gender gap by aggregating the coauthors of each
paper into one “gender”. One study analyzed different aggregations based on the pro-
portion of female authors, gender of most senior authors, and single-author papers [32].
Looking at author position for aggregation, another study found that there are fewer
women in first and last author positions in science overall, as well as in single-author
papers [33]. Other ways to aggregate genders include counting all papers that have at least
one female author, and those where at least half the authors are female. In this study, we do
not aggregate papers by gender, except for the trivial cases when they have a single author.

Research in computer science, and in particular in its more applied and experimen-
tal fields, can sometimes require expensive resources. Several studies have found that
the gender gap in research tends to be higher in disciplines with expensive barriers to en-
try [22,34–36], which appears to agree with our findings for CS fields. A related question
to that of research expense is that of travel expense, since we are focusing on conference
publications, which require additional funds and could interfere with family life for people
in care roles. Both factors may lead us to speculate that women would be more likely
to publish in conferences in their home countries, but that is not what we found in our
dataset [37]. In the same study, we also attempted to look at conference attendance and
gender, for which we found almost no literature or published data. However, for one large
conference that has been publishing attendance demographics since 2016, SC, we found
that women’s attendance rates remained near constant around 13–14%, suggesting little
variation in time.

1.2. Organization

The rest of this paper is organized as follows. In the next section (Section 2), we
describe in detail our data collection methodology, including the manual assignment
of genders to authors to avoid the well-known issues of name-based gender inference.
In the results section (Section 3), we enumerate our findings, organized by research question,
and then summarize an answer to each of the questions. The discussion (Section 4) that
follows then elaborates on these answers in an attempt to synthesize insights. Finally, we
conclude in Section 5 and suggest directions for future research.

2. Materials and Methods

To answer our research questions, we needed to collect expansive data on CS pub-
lications and their authors. Such data collection involves many choices, such as which
publications to collect and how to assign gender to authors. The following list enumerates
our main data decisions. Each choice necessarily involves trade-offs, and we attempt
to justify our choices by explaining which aspects we prioritized.

Conference data instead of journal data. In CS, original scientific results are typically
first published in peer-reviewed conferences [38,39], and then possibly in archival journals,
sometimes years later [40]. To increase the coverage and relevance of our dataset, we only
looked at conference publications. The complete list of selected conferences can be found
in Table 1.

Choice of conferences. Our dataset evolved from our previous study of conferences
related to one major field, computer systems [41]. The conferences we selected include
some of the most prestigious systems conferences (based on indirect measurements such
as Google Scholar’s metrics), as well as several smaller or less-competitive conferences
for contrast. For this specific study, we decided to expand the analysis to include some
of the most influential conferences in most subfields of CS, based on the same measures,
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for a total of 6949 papers across CS. Obviously, not all subfields have equal numbers
of participants or conferences, and we had no set quota for either to be included in our
dataset. Instead, we tried to ensure that each subfield is represented by at least a few
hundred authors for statistical power.

Limit data to a single year. Many fields and researchers shift characteristics over time,
complicating collaboration analyses. To control for these effects, all of the conferences
in our dataset are from a single year, 2017.

Focus on manual gender assignment. Most studies of author gender at scale use auto-
mated approaches to assign gender to authors, typically inferred from given names [21,42].
These statistical approaches can be reasonably accurate for names of Western origin, and
especially for male names [6,43,44], but can fall short when inferring from Indian and East
Asian names. We opted instead to rely primarily on a manual approach that can over-
come the limitations of name-based inference. Using web lookup, we assigned the gender
of 14,001 of the unique researchers for whom we could identify an unambiguous web
page with a recognizable gendered pronoun, or absent that, a photo. (For example, many
Linkedin profiles may lack a photo, but include a gendered pronoun in the recommenda-
tions section.) For 8939 others, we used genderize.io’s automated gender designations if it
was at least 90% confident about them [44]. The remaining 576 persons were assigned “NA”
instead of a gender and were excluded from most analyses. This method provided more
gender data and higher accuracy than automated approaches based on forename and coun-
try, especially for women [11,22,42,43,45]. Consequently, we have very few NA genders
relative to comparable studies. We believe that high coverage is critical when analyzing
coauthorship networks, because omitting a large number of connected sub-networks (such
as people from Asia) may distort our results.

Assignment of field and subfield. We could find no standard definition and delin-
eation of fields and subfields of CS, so we had to come up with our own, which was
necessarily subjective (Table 2). Moreover, conferences do not always fall neatly into a sin-
gle subfield, and some papers may stray from the primary focus of the conference. We note,
however, that in most of our analyses, papers in subfields assigned to the same field often
exhibited similar characteristics to each other and were distinct from other subfields. This
affinity provides some evidence that these assignments are not entirely arbitrary. That said,
other researchers may choose different assignments of papers or conferences to subfields
and fields. Since our dataset and code are both open and available, we encourage such
reevaluations of the data.

Table 1. All conferences, ordered by subfield and acceptance rate.

Conference Subfield Papers Authors Acceptance

TACAS Algorithms 52 189 0.31
SODA Algorithms 181 442 0.34
AAAI Artificial Intelligence 599 1760 0.23
ACL Computational Linguistics 195 610 0.26

SIGCSE Computer Science Education 87 259 0.23
ITICSE Computer Science Education 64 186 0.27
CVPR Computer Vision 532 1702 0.2
ICDM Data Science and Mining 72 269 0.09
KDD Data Science and Mining 64 237 0.09

WSDM Data Science and Mining 80 285 0.16
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Table 1. Cont.

Conference Subfield Papers Authors Acceptance

SIGGRAPH Graphics 166 560 0.38
CHI Human–Computer Interaction 599 2020 0.25

ICML Machine Learning 434 1314 0.26
MM Multimedia 225 821 0.33
NIPS Neural Networks 679 2038 0.21
POPL Programming Languages 64 190 0.23
ICSE Software Engineering 96 360 0.23
FSE Software Engineering 94 354 0.32

STOC Theoretical Computer Science 103 263 0.24
FOCS Theoretical Computer Science 90 219 0.28
WWW World-Wide Web 170 614 0.18
ISCA Architecture 54 295 0.17

ASPLOS Architecture 56 247 0.18
MICRO Architecture 61 306 0.19
HPCA Architecture 50 215 0.22
PACT Architecture 25 89 0.23

SIGMETRICS Benchmarking 27 101 0.13
IMC Benchmarking 28 124 0.16

MASCOTS Benchmarking 20 75 0.24
ISPASS Benchmarking 24 98 0.3
ICPE Benchmarking 29 102 0.35

IISWC Benchmarking 31 121 0.37
CCGrid Cloud Computing 72 296 0.25
CLOUD Cloud Computing 29 110 0.26

HotCloud Cloud Computing 19 64 0.33
SOCC Cloud Computing 45 195 Unknown
PLDI Compilers 47 173 0.15

OOPSLA Compilers 66 232 0.3
SLE Compilers 24 68 0.42

PPoPP Concurrency 29 122 0.22
EuroSys Concurrency 41 169 0.22

HiPC Concurrency 41 168 0.22
IPDPS Concurrency 116 447 0.23
SPAA Concurrency 31 84 0.24
PODC Concurrency 38 101 0.25

EuroPar Concurrency 50 179 0.28
ICPP Concurrency 60 234 0.29

SIGMOD Databases 96 335 0.2
PODS Databases 29 91 0.29
CIDR Databases 32 213 0.41
IGSC Energy 23 83 Unknown
HCW Heterogeneous Computing 7 27 0.47
HPDC High-Performance Computing 19 76 0.19

SC High-Performance Computing 61 325 0.19
Cluster High-Performance Computing 65 273 0.3

ISC High-Performance Computing 22 99 0.33
HPCC High-Performance Computing 77 287 0.44
SIGIR Information Retrieval 78 264 0.22

SIGCOMM Network 36 216 0.14
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Table 1. Cont.

Conference Subfield Papers Authors Acceptance

NSDI Network 42 203 0.16
MobiCom Network 35 164 0.19
CoNEXT Network 32 145 0.19

HotI Network 13 44 0.33
SOSP Operating Systems 39 217 0.17
ICAC Operating Systems 14 46 0.19
ATC Operating Systems 60 279 0.22

Middleware Operating Systems 20 91 0.26
HotOS Operating Systems 29 112 0.31

SP Security 60 287 0.14
NDSS Security 68 327 0.16
CCS Security 151 589 0.18
FAST Storage 27 119 0.23

SYSTOR Storage 16 64 0.34
HotStorage Storage 21 94 0.36

VEE Virtualization 18 85 0.42

Table 2. All CS subfields analyzed, arranged by fields.

Subfield Field

Artificial Intelligence Artificial Intelligence (AI)
Computational Linguistics Artificial Intelligence (AI)

Computer Vision Artificial Intelligence (AI)
Machine Learning Artificial Intelligence (AI)
Neural Networks Artificial Intelligence (AI)

Graphics Human–Computer Interaction (HCI)
Human–Computer Interaction Human–Computer Interaction (HCI)

Multimedia Human–Computer Interaction (HCI)
Programming Languages Software Engineering and Programming Languages

Software Engineering Software Engineering and Programming Languages
Data Science and Mining Knowledge

Information Retrieval Knowledge
World-Wide Web Knowledge

Computer Science Education CS Education
Computer Architecture Systems

Communications Systems
Operating Systems Systems

Benchmarking Systems
Cloud Computing Systems

Compilers Systems
Concurrency Systems

Databases Systems
High-Performance Computing Systems

Security Systems
Storage Systems

Algorithms Theory
Theoretical Computer Science Theory

2.1. Limitations

The decisions listed above also represent some compromises that limit the generaliza-
tion or applicability of our analysis. One such limitation is that the data reflects a snapshot
in time to avoid the complexities of gender differences in retention rates. However, this
choice precludes analyses of changes and trends in collaboration patterns over time.

Another limitation is our choice of which conferences to include out of the hundreds
or thousands of annual CS conferences. Moreover, CS is a diverse discipline with significant
multidisciplinary collaborations, and in some fields and subfields, journals are preferred
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to conferences. Consequently, our choice of conferences may not be not representative of all
of CS or even a proportional representation of subfields with CS. That said, the relative
metrics we measured comparing different subfields are nevertheless meaningful, but
metrics over the entire dataset should be taken with a grain of salt. We believe that the large
number of authors we included in our analysis provides some statistical robustness and
therefore does not significantly deviate from a representative sample of the field of CS
as a whole.

For this study, the most critical piece of information on these researchers is their
perceived gender. Gender is a complex, multifaceted identity, but most bibliometric studies
still rely on binary genders—either collected by the journal, or inferred from the first
name—because that is the only designator available to them [6–11,46]. In the absence
of self-identified gender information for our authors, we also necessarily compromised
on using binary gender designations. We therefore use the gender terms “women“ and
“men“ interchangeably with the sex terms “female“ and “male“. The conferences in our
dataset did not collect or share specific gender information, so we had to collect this
information from other public sources.

This labor-intensive approach does introduce the prospect of human bias and error.
For example, a gender assigned by an outdated biography paragraph with pronouns
may no longer agree with the self-identification of the researcher. To verify the validity
of our approach, we compared our manually assigned genders to self-assigned binary
genders in a separate survey we conducted among 918 of the authors [41]. We found
no disagreements for these authors, which suggests that the likelihood of disagreements
among the remaining authors is low. However, the main limitation that arises from this
manual process of data collection and gender assignment, is that it does not scale well to a
larger number of conferences or years.

Finally, the nature of the current analysis is more descriptive than prescriptive.
Rather than presenting preconceived hypotheses and testing them with the data, we ask
and answer open-ended research questions that fit in the scope of this paper. The answers
to these questions will surely instigate further hypotheses and questions requiring deeper
analysis, such as social network analysis, which is also important to understanding many
collaboration patterns [13]. The open dataset we provide with this article should enable
any interested researcher to perform such analyses.

2.2. Statistics

For statistical testing, group means were compared pairwise using Welch’s two-sample
t-test and group medians using the Wilcoxon signed-rank test; differences between distri-
butions of two categorical variables were tested with the χ2 test; correlations between two
numerical variables were evaluated with Pearson’s product-moment correlation coefficient.
All statistical tests are reported with their p-values.

3. Results

For each research question, we start with descriptive statistics across the entire sample
population, and then break the statistics down by field and subfield.

3.1. RQ1: What Are the Ratios of Women and Men among CS Conference Authors?

Before we can look at collaboration patterns, we need to establish a baseline for au-
thorship numbers across genders. For example, the question of how many women or men
an author collaborates with makes little sense without the context of how many women
and men are available to collaborate with overall. Consequently, the first question we ask
is what is the female author ratio (FAR) in our dataset.

Summarizing across all 27,743 authors (with repeats for multiple papers) and omitting
the 645 repeated authorships for which we could establish no gender, we find a total
of 3833 women, which represents an overall FAR of 14.1% across authors. This result is
on the low end of previously reported statistics in the range of 15–30% [6–10]. It is quite
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possible that our results are on the low end because our choice of conferences, with its
emphasis on computer systems, overrepresents fields with lower representation of women.
Keep in mind, however, the differences between previous studies and the current one, both
in data and in methodology. Our data includes only conferences and only from one year and
is by no means exhaustive or necessarily representative of the entire discipline. On the other
hand, the smaller sample size allowed us to apply a primarily manual approach to gender
assignment, which provides higher accuracy and coverage of researchers. In contrast, most
comparable studies use a gender inference approach based on given names, which can fail
for names with unclear or no gender association at all, as are many east Asian names, and
tend to misidentify women in particular [6,43,44].

Breaking down FAR values for each field and subfield (Figure 1), we find large
differences across CS. The highest FAR was exhibited in CS education conferences (42.2%)
and the lowest in theoretical CS (6.4%). Most conferences in the field of computer systems
hovered around 10% FAR, while the average across the entire field of AI was a little bit
larger at (11.8%).

Computer Architecture  n = 1312

Communications  n = 802

Operating Systems  n = 849

Benchmarking  n = 656
Cloud Computing  n = 676

Compilers  n = 494

Concurrency  n = 1540

Data Science & Mining  n = 829

Databases  n = 673

High−Performance Computing  n = 1076

Information Retrieval  n = 302

Security  n = 1309

Storage  n = 286

Algorithms  n = 707

Artificial Intelligence  n = 2048

Computational Linguistics  n = 714

Computer Science Education  n = 457

Computer Vision  n = 2097

Graphics  n = 682

Human−Computer Interaction  n = 2489

Machine Learning  n = 1577

Multimedia  n = 895

Neural Networks  n = 2472

Programming Languages  n = 199

Software Engineering  n = 762

Theoretical Computer Science  n = 534

World−Wide Web  n = 661
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Female author ratio
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HCI

Systems

Theory

SE/languages

Figure 1. Female author ratio by subfield.

3.2. RQ2: Do Women Publish Less Than Men?

Many papers across disciplines discuss the existence and potential reasons for a pro-
ductivity gap, that is, the observation that men generally publish more scholarly articles
than women. Here, we continue our exploration of the data by looking at the productivity
rates across genders and subfields of CS.

Figure 2 shows the overall distributions of paper productivity in CS across genders.
Aside from the now-obvious observation that men far outnumber women authors, we
can also observe a longer tail for the men’s distribution overall. The interpretation is that
the most prolific authors are especially skewed male. On the opposite tail, we find that
62.4% of female authors published only one paper in our dataset, compared to 53% of men.

Overall, men average 2.15 papers per author, compared to women’s 1.77 (t = −15.41,
p < 10−9). Looking at medians—to attempt to attenuate the large effect of the long tail
on means—does not help much. Both medians are naturally 1 but a Wilcoxon signed-rank
test still shows a significant difference (W = 39, 773, 088, p < 10−9).

Figure 3 shows the breakdown of productivity distribution by gender, field, and
subfield. The field of AI and its subfields show the highest average productivity (and
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highest outliers, for men), while software engineering, programming languages, and CS
education exhibit the lowest average papers per author. In terms of gender, the largest
differences in productivity exhibit in the subfield of theoretical CS (difference in means
∆ = 0.8; t = 4.72, p < 10−4), followed by machine learning (∆ = 0.62; t = 4.22, p < 10−4),
benchmarking (∆ = 0.59; t = 3.93, p < 10−3), HPC (∆ = 0.53; t = 4.51, p < 10−4),
AI (∆ = 0.48; t = 4.35, p < 10−4), and security (∆ = 0.42; t = 4.12, p < 10−4). A few
subfields show a small productivity advantage for women, such as programming languages
(∆ = −0.04; t = −0.11, p = 0.91), but none are statistically significant.

2000

4000

6000

8000

10,000

12,000

0 5 10 15
Papers in dataset

To
ta

l a
ut

ho
rs

gender Women Men

Figure 2. Distribution of number of distinct papers per author.

3.3. RQ3: Are Productivity Differences Affected by Collaboration Size?

Comparing raw productivity across subfields in this way can be misleading, because
the typical collaboration size is also related to productivity, but varies by subfield. For exam-
ple, if in some subfield the typical number of authors per papers is larger than another field,
we might also expect that each author’s name would show up in more papers under other-
wise equal assumptions. We therefore also look at the “fractional count“ of publications
instead, dividing each authorship event by the number of authors on the paper [14].

Overall, men average a total of 0.54 fractional papers per author, compared to women’s
0.44, which is statistically significant (t = −14.95, p < 10−9).

This normalized productivity metric exhibits on the one hand smaller differences
across fields, but on the other, larger differences across genders (Figure 4). The medians
for men’s fractional productivity appear noticeably higher in most subfields, and men
exhibit much larger and more numerous outliers on the prolific tail of the spectrum. How-
ever, fractional productivity does not appear to affect the relative rankings of subfields
very much. Of the fields that are more affected by this metric, the most notable perhaps is
theoretical CS, which now exhibits the highest mean fractional productivity.

The modified productivity metric also segues into the next three research questions
that examine in depth the differences in collaboration sizes in CS.



Publications 2022, 10, 10 10 of 21

Computer Science Education

Programming Languages

Software Engineering

Databases

World−Wide Web

Human−Computer Interaction

Compilers

Cloud Computing

Storage

Algorithms

Graphics

Communications

Security

High−Performance Computing
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Computer Vision
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Figure 3. Distribution of number of distinct papers per author by gender, field, and subfield. Each box-
plot shows the interquartile range (25–75th percentiles) in the filled box area, with veritcal notches
denoting medians. The horizontal lines to the right represent the 75–95th percentile range. Dots fur-
ther to the right denote outlier points above the 95th percentile. The top boxplot for each subfield
shows the distribution for women, followed by the distribution for men. Triangles represent median
values for both genders, which is used for sorting order.
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World−Wide Web

Security

Cloud Computing
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Figure 4. Distribution of fractional paper counts per author by gender, field, and subfield. Each box-
plot shows the interquartile range (25–75th percentiles) in the filled box area, eith vertical notches
denoting medians. The horizontal lines represent the 5–25th percentile range on the left and
the 75–95th percentile range to the right. Dots further to the right denote outlier points above
the 95th percentile. The top boxplot for each subfield shows the distribution for women, followed
by the distribution for women. Triangles represent median values for both genders, which is used
for sorting order.

3.4. RQ4: Do Women Collaborate with Fewer People than Men?

This question could be addressed by two distinct measures: the mean number of coau-
thors per paper and the size of the total coauthor network for each author.

Women in our dataset average 4.03 coauthors per paper, while men average 4.11
(t = −1.22, p = 0.22). This metric appears to show no significant differences in the
aggregate. Breaking it down by field (Figure 5) shows that the gender differences still
remain minimal throughout almost all of CS. The largest differences appear in the subfields
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of computer architecture (t = −0.54, p = 0.59) and operating systems (t = −1.36, p = 0.18).
In general, the field of computer systems stands out with an average gender gap of 0.09
fewer coauthors for women than for men (t = −0.41, p = 0.68).
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Figure 5. Mean number of coauthors per person by gender and subfield. Triangles denote overall
mean for subfield (for both genders), which is used for sorting order.

The second measure is how many distinct authors each person collaborates with across
all of their papers—in other words, the size of the network of all collaborators of a person.
This time, the difference is more pronounced, with women averaging 4.99 total cohort size,
while men average 5.49 (t = −4.82, p < 10−5). Unfortunately, this metric cannot be neatly
broken down by fields, because coauthor networks often include authors that span more
than one field.

Overall, men exhibit slightly higher collaboration metrics than women (more coauthors
per paper and more coauthors overall), but not dramatically so.

3.5. RQ5: Do Women Publish Fewer Single-Author Papers?

Next, we turn our attention to single-author papers (Table 3). In our dataset, there is a
total of 232 such papers, of which 18 were written by a woman, 209 by a man, and the rest
unknown. The ratio of women among single authors with known gender is 7.9%, which is
significantly lower than that of the overall 14.1% FAR (χ2 = 6.78, p < 0.01).
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Table 3. Number of papers by subfield and gender, sorted by the overall percentage of single-author
papers.

Subfield Number of Papers Percent Single All Single Author Women Men Unknown

Computer Science Education 151 12.58% 19 3 14 2
Theoretical Computer Science 193 12.44% 24 0 24 0

Programming Languages 64 9.38% 6 0 6 0
Algorithms 233 9.01% 21 0 20 1

World-Wide Web 170 8.82% 15 4 10 1
Artificial Intelligence 599 4.34% 26 1 24 1

Multimedia 225 4% 9 2 7 0
Machine Learning 434 3.92% 17 1 16 0

Compilers 137 3.65% 5 0 5 0
Concurrency 406 3.45% 14 1 13 0

Neural Networks 679 3.24% 22 0 22 0
Benchmarking 159 3.14% 5 0 5 0

Graphics 166 2.41% 4 0 4 0
Data Science and Mining 216 2.31% 5 1 4 0

Operating Systems 180 2.22% 4 0 4 0
Human–Computer Interaction 599 2.17% 13 4 9 0

Communications 158 1.9% 3 0 3 0
High-Performance Computing 244 1.64% 4 0 4 0

Storage 64 1.56% 1 1 0 0
Computer Architecture 276 1.45% 4 0 4 0
Information Retrieval 78 1.28% 1 0 1 0

Computational Linguistics 195 1.03% 2 0 2 0
Computer Vision 532 0.75% 4 0 4 0

Security 279 0.72% 2 0 2 0
Databases 157 0.64% 1 0 1 0

Software Engineering 190 0.53% 1 0 1 0
Cloud Computing 165 0% 0 0 0 0

Total 6949 3.34% 232 18 209 5

Another way to look at the same data is from the perspective of papers instead
of authors. As the data in Table 3 shows, in most CS subfields fewer than 5% of papers
were written by a single author, adding up to only 232 papers. (Contrast this, for example,
with astronomy, physics, and biology, where the rates of single-author papers average over
10% [47]).

Breaking down the data by gender offers little information because the numbers
of single-author papers per subfield are too small for statistical significance. In fact, the num-
bers of single-author papers are so low, as is the number of women authors overall, that
their intersection is actually empty for most subfields. That said, women published rela-
tively fewer single-author papers than men (by percentage) in all but three of the subfields:
WWW, data science, and storage. In all three, the numbers are simply too small to draw
any conclusive inferences.

It is also worth noting that in much of the systems field the percentage of single-author
papers is extremely low. This observation may be another indication that the systems field
in particular depends on larger collaboration teams for published research. We suspect
that the field’s emphasis on complex implementations and experimental platforms requires
larger teams to pull off, which we address in the next research question.

3.6. RQ6: Are Team Sizes Larger in More Experimental Subfields?

The data we collected on coauthorship size and single-authorship shows that author-
ship norms vary significantly by field, if not by gender. The largest coauthorship groups
appear in computer systems papers, averaging 6.09 coauthors per paper, followed by HCI
(5.06), knowledge systems (4.89), software engineering and programming languages (4.65),
AI (4.42), CS education (4.12), and finally theory (3.59).
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These data do appear to confirm the hypothesis that experimental fields generally
require larger teams to design, engineer, implement, and measure research results. For ex-
ample, research in computer architecture, the most collaborative of our subfields, often
requires large investments in effort (and often, in capital as well). This characterization
extends to most computer systems subfields that occupy the top spots in terms of collabo-
ration sizes. It appears indeed that the larger effort and resource requirement is associated
with larger collaborations, as expressed in mean number of coauthors.

On the opposite end, research in computer theory requires virtually no equipment
and is often carried out by individuals, as we have previously observed. The characteristics
of theory research are naturally very similar to those of mathematicians as a whole, so it is
perhaps not surprising that the mean number of coauthors we found for theory is nearly
identical to the one found for mathematics [25].

3.7. RQ7: Do Authors Exhibit Gender Homphily?

For our last research question, we follow the approach of Wang et al. to estimate
whether authors collaborate with coauthors of the same gender at rates higher than ex-
pected [11]. For this computation, we look at every pairing of coauthors as one coauthor-
ing event (omitting single-author papers), and ask whether same-gender pairings occur
at a higher frequency than we would observe from a random pairing. A random pairing
is expected to follow the same overall statistics for gender distribution, i.e., the expected
probability of any (co)author to be a woman should be the same as the overall FAR.

As Wang’s study has also found, our data suggest that for CS, authors—especially
women—are actually more likely to collaborate with coauthors of the same gender. Over-
all, the probability of a woman’s coauthor to be a woman in our dataset is 21.2%, nearly
ten percentage points above the overall FAR. For men, the probability to collaborate with
a woman is 12.3%, slightly below the overall FAR.

We can also break down these probabilities by subfield (Figure 6). As a generalization,
most subfields exhibit gender homophily, especially in the two subfields with the highest
FAR (CS education and HCI). A few subfields exhibit gender heterophily, but typically
very little. A curious exception is the subfield of programming languages, where women
only have a probability of 3.8% to collaborate with a woman, less than half the overall FAR
for the field. Together with the subfield of software engineering, this field appears to show
consistent heterophily among its female authors.

All other fields show fairly consistent gender homophily to varying degrees. For exam-
ple, in the large field of computer systems, women have a probability of 12.3% to collaborate
with a woman, above the ≈ 10% FAR. In all cases, the more pronounced deviations from
the expected probability are for women, suggesting that perhaps collaborating with same-
gender authors is more important to women. Note, however, that since most authors are
men and therefore overall FAR is mostly determined by men, we would expect men’s
deviations from FAR to be smaller than women’s.
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Figure 6. Probability of an author to coauthor with a woman (triangles denote overall probability
for subfield, which is similar to FAR but excludes single authors). Women (top bars) show gender
homophily when their probability to coauthor with a woman is higher than the overall probability,
and men exhibit homophily when their probability is lower than the overall’s.

4. Discussion

In this section, we dive deeper into the data by exploring the relationships between
the different measurements and metrics across subfields, summarized in Table 4. Our goal
is to see whether the variations in any of the separate metrics we collected can help explain
higher—or lower—values of FAR in the field, possibly providing hints to causal relationships.

The first relationship we investigate is between productivity and FAR. In other words,
can the higher observed productivity of men explain why we observe so many more male
authors than female authors?

The answer appears to be “mostly not.“ Obviously, the observation that men publish
more than women implies that we would find more names of men on papers than we
would of women, leading to lower FAR. When aggregating the data on a subfield basis we
do indeed find a moderate negative correlation between a subfield’s FAR and the mean
productivity of its practitioners (r = −0.46, p = 0.02). This correlation weakens when
using fractional paper counts, (r = −0.34, p = 0.09), since the slightly larger team sizes
for men attenuate their productivity advantage. Some subfields show no apparent rela-
tionship between FAR and productivity, like storage and machine learning, which have
very similar FARs but very dissimilar productivity gaps. Other subfields exhibit a stronger
opposite relationship, like HCI and compilers, with similar productivity metrics but very
dissimilar FARs.
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Overall, the relatively modest advantage in productivity for men (21.81% more papers
per author) does not translate directly to the nearly 9:1 ratio of male-to-female authorship.
In fact, if we ignore repeated publications altogether and look simply at the ratio of unique
women among all unique authors, we still observe a ratio of 15.3% women overall. While
this ratio represents a slight improvement of one percentage point over the non-unique
FAR, it is still far from parity, suggesting that higher productivity alone cannot fully explain
the gender gap.

Table 4. Comparison of subfields by different gender metrics, ordered by FAR. Metrics include mean
productivity (papers per author), fractional paper total, mean total coauthors (with repeats), ratio
of papers written by a single author, and the ratio between a woman’s probability to coauthor with
a woman and FAR.

Subfield FAR Mean Productivity Fractional Productivity Mean Coauthors Single-Author Ratio Women’s Homophily

CS Education 0.422 1.228 0.393 3.125 0.114 0.511
HCI 0.336 1.721 0.405 4.131 0.022 0.418

World-Wide Web 0.218 1.696 0.419 4.292 0.083 0.217
Multimedia 0.188 2.436 0.563 3.966 0.040 0.198

CL 0.182 2.090 0.552 3.244 0.010 0.194
SE 0.148 1.650 0.402 3.751 0.005 0.130
AI 0.139 2.420 0.657 3.068 0.042 0.155

DS and Mining 0.136 2.130 0.523 3.618 0.023 0.199
Benchmarking 0.127 2.194 0.498 3.960 0.031 0.156

Cloud Computing 0.124 1.817 0.430 3.932 0.000 0.180
Computer Vision 0.122 2.366 0.582 3.654 0.008 0.141

Security 0.117 1.976 0.424 4.639 0.007 0.159
Databases 0.116 1.684 0.411 5.019 0.006 0.143

IR 0.106 2.772 0.671 3.632 0.013 0.121
Neural Networks 0.104 2.428 0.649 3.513 0.032 0.128

Architecture 0.098 2.101 0.459 8.585 0.014 0.083
Algorithms 0.098 1.847 0.596 2.767 0.086 0.177

HPC 0.096 2.033 0.439 5.204 0.017 0.132
Communications 0.095 1.901 0.398 5.870 0.019 0.112

Compilers 0.095 1.755 0.485 3.437 0.036 0.124
Graphics 0.095 1.861 0.441 3.928 0.024 0.096

PL 0.095 1.593 0.466 2.975 0.094 0.038
Concurrency 0.092 2.058 0.518 3.634 0.034 0.119

Storage 0.091 1.846 0.408 4.696 0.016 0.055
OS 0.085 2.068 0.444 4.972 0.022 0.075

Machine Learning 0.081 2.599 0.705 3.471 0.039 0.098
Theoretical CS 0.064 2.303 0.812 2.375 0.124 0.068

Overall mean 0.141 2.078 0.519 5.109 0.036 0.156
FAR correlation 1.000 −0.463 −0.336 −0.139 0.263 0.956

We can extend this analysis of correlation with FAR to three other research questions
we asked: collaboration size, single-author counts, and gender homophily.

A hypothetical relationship between FAR and the typical collaboration size in a sub-
field can also be easily refuted with counterexamples. Consider the subfields of algorithms
and architecture. Although their FAR values are nearly identical, they are on extreme
ends of the average team sizes. The overall correlation between the two metrics is indeed
negative, but too close to zero for significance. (r = −0.14, p = 0.49).

From the related perspective of single-author papers, a similar hypothesis would be
that subfields with more single-author papers would have lower FAR because single-author
papers have an even lower FAR than the overall sample population. However, the small
number of single-author papers and their minuscule weight in computing FAR present
a statistical obstacle to testing this hypothesis. As a matter of fact, our data shows a positive
but nonsignificant correlation between the two (r = 0.26, p = 0.19), so we must reject this
hypothesis as well.

Our last metric for comparison is gender homophily. The method we previously used
to measure homophily, deviation from the expectation (FAR), produces two measures
per field, one for men and one for women. We focus on the latter because the deviation
from FAR for men is nearly negligible, owing to the high ratio of men in the data. We there-
fore look at “women’s homophily”, defined as the ratio between a subfield’s probability
for a woman to coauthor with a woman and its FAR. This variable too appears uncorrelated
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with FAR (r = 0.07, p = 0.73). This finding is explained by the already low statistical
probability of a woman (or anyone) to collaborate with a woman.

This high skew towards men also means we cannot use standardized metrics for ho-
mophily such as Krackhardt’s Index [48], defined simply as EI = External−Internal

External+Internal
(where Internal represents all the same-gender pairings in our dataset and External all
other pairings). In our data, this metric is strongly correlated with a subfield’s FAR
(r = 0.95, p < 10−9), to the point of adding no valuable information. This finding also
makes sense: if there are very few women in a field, most coauthor pairings will be internal
male–male, all other things being equal. The upshot here is that homophily measures
appear to be much more the result of a skewed FAR than its cause. In other words, gender
homophily appears to have little role in explaining variations in FAR, at least when it
deviates significantly from 50% as it does in our dataset.

In summary, none of the collaboration metrics we collected in the various research
questions can produce a satisfactory explanation for FAR in a given subfield. For produc-
tivity (RQ2, RQ3), the correlation we found can only explain a small fraction of the large
gender gap. For team sizes (RQ4, RQ5, RQ6) we found no correlation with FAR. For gender
homophily (RQ7), the strong correlation suggests, if anything, an opposite-direction causal
relationship, i.e., low FAR causing high homophily, and not the other way around.

Despite these negative results, we can still draw some interesting general observations
on specific CS fields. One such example is theoretical computer science, which shows
extreme values in many of the metrics we collected. Not only does it exhibit the lowest
FAR, but also the lowest average team size, the highest single-author ratio, and the highest
fractional productivity. In these metrics it matches the observations of Mihaljevic for math-
ematicians, which is not surprising, given the thematic similarity of the two fields [25].
Theoretical CS is an extreme point by almost all metrics and resembles closely what has
been found for mathematics. It is a broad and foundational subfield of CS but also exhibits
different characteristics from the rest of CS in some of its aspects, including the collaboration
aspects discussed in this paper.

Another example is the field of systems, which also generally exhibits very low FAR.
Systems is a large and influential field, with many industrial and technological applica-
tions [41]. It is therefore particularly of interest to try to explain and reduce the gender
gap, as this could have far-reaching societal impact [2]. As discussed in RQ6, one possible
explanation for the magnitude of the gender gap is the high cost in participation in experi-
mental fields such as systems, which has been associated with higher gender disparity [34].
It is also possible that the combination of larger team sizes, fewer single-author papers,
and stronger gender homophily makes systems a particularly unwelcoming field because
of self-reinforcing network effects [49]. Teams are large but mostly male, which discour-
ages women seeking female collaborators from participating, which in turn could drive
more women away from the field, further exacerbating the challenge of finding female
collaborators for the next woman to join the field.

It has also been suggested that women are more likely to work in human-centered
fields [50–52]. We can certainly observe corroboration of this hypothesis in our data, with
CS education and HCI as the two fields with the highest FAR, followed by WWW and
multimedia, which also put the human in the center of the research. Our FAR figure
for CS education is in fact remarkably similar to the one found by West et al. for the field
of education as a whole [33].

5. Conclusions and Future Work

Computer science is a collaborative discipline. Many papers exhibit larger team sizes
than is typical in most other scientific disciplines, and very few papers are written by single
authors. Understanding collaboration patterns in CS authorship is therefore imperative
to understanding related bibliometric and societal phenomena, such as the gender gap
in CS. However, research in CS is also highly heterogeneous across fields and subfields.
Although a number of papers have studied collaboration patterns in CS and the sciences,
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and even more have studied the gender gap, this study may be the first to examine the two
at a finer resolution of CS subfields, and with highly accurate gender data.

Because subfields vary so much by their representation of female researchers—varying
from 6% to 42%—we can examine how these variations relate to different collaboration
metrics, especially in the extremes. Our findings do confirm that some collaboration
patterns appear indeed to be associated with the gender gap in each subfield. Fields
that exhibit lower FAR than average also tend to exhibit larger team sizes, smaller cohort
sizes for women, higher gender homophily, and higher author productivity. Additionally,
although we found a significant productivity gap across genders, as has been measured
in many other fields, it is too small to explain most of the overall gender gap across fields.

All of these associations have exceptions, and perhaps the most notable is the subfield
of theoretical CS, which stands alone in the extreme of most metrics, perhaps because of the
foundational, mathematical nature of theoretical CS, in contrast to many applied subfields
of CS. On the opposite end, CS subfields that have increased focus on people rather than
computers, such as CS education and HCI, show better overall representation of women
and less extreme gaps across most metrics. On the other hand, many of the subfields
of computer systems, which focuses on building, measuring, and improving the concrete
implementation of computers and their tools, show larger gender gaps across most metrics.

This last field of computer systems is of particular interest to us and the focus of our
future work, because of its large size, its impact on technology and the economy, and its
very low representation of women, at about 10%. We will therefore turn our attention next
not just to statistical association with low FAR, but to causal association. We plan to collect
and analyze additional data to try to address the question: why is the representation
of women in computer systems lower than in most other CS fields? We have already
presented a few hypotheses for this question in this article: the low representation could be
partially explained by the higher cost of research in the field and the network effects that
perpetuate the lack of female peers and mentors. These hypotheses require additional data
before we can accept or reject them.

This dataset currently exposes facts and factors from a single year, 2017. It could also
be instructive to follow up on this study with data collected from later years to observe
any trends and changes in collaboration patterns and representation of women. Additional
future work can leverage the dataset we collected to dive deeper into the analysis of col-
laboration patterns, using tools such as social network analysis, degree centrality, citation
networks, and information diffusion.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CL Computational Linguistics
CS Computer Science
DS Data Science
FAR Female Author Ratio
HCI Human–Computer Interface
HPC High-Performance Computing
IR Information Retrieval
OS Operating Systems
SE Software Engineering
STEM Science, Technology, Engineering, and Mathematics
WWW World-Wide Web
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