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Abstract: This in vivo study reports the influence of minocycline-HCl administration on extra-skeletal
bone generation in a Guided Bone Augmentation model, utilizing titanium caps placed on the intact
as well as perforated calvaria of rats. The test group was administered 0.5 mg/mL minocycline-HCl
with the drinking water, and the amount of bone tissue in the caps was quantified at three time
points (4, 8 and 16 weeks). A continuously increased tissue fill was observed in all groups over time.
The administration of minocycline-HCl as well as perforation of the calvaria increased this effect,
especially with regard to mineralization. The strongest tissue augmentation, with 1.8 times that of
the untreated control group, and, at the same time, the most mineralized tissue (2.3× over untreated
control), was produced in the combination of both treatments, indicating that systemic administration
of minocycline-HCl has an accelerating and enhancing effect on vertical bone augmentation.

Keywords: cortical perforation; guided bone regeneration; minocycline; vertical bone augmentation

1. Introduction

The management and treatment of bone defects is a major clinical problem in periodon-
tology and oral implantology. While various established and predictable methods exist
for alveolar ridge augmentation, these procedures remain challenging, with a significant
incidence of complications and failures [1,2]. The guided bone regeneration procedure is
one of the most promising surgical techniques to increase limited alveolar bone for implant
placement. This principle can be applied to generate new bone formations on the adjoining
bone surface, beyond the skeletal boundaries [3,4]. Different kinds of barrier membranes
and resorbable or non-resorbable materials, such as titanium, are used to achieve this
guided bone augmentation (GBA) [5]. For severe three-dimensional reconstructions, how-
ever, non-resorbable membranes are the most effective [2,6]. The close spatial and temporal
correlation between angiogenesis and bone formation, as well as the importance of blood
supply in guided bone generation, have been demonstrated [3,7,8]. Some authors have
emphasised the opening of the marrow spaces to obtain a bleeding surface [3,9,10], whereas
others have demonstrated that bone regeneration from a non-injured cortical layer may
also be possible [11,12].

Dent. J. 2023, 11, 92. https://doi.org/10.3390/dj11040092 https://www.mdpi.com/journal/dentistry

https://doi.org/10.3390/dj11040092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/dentistry
https://www.mdpi.com
https://orcid.org/0000-0002-1689-8447
https://orcid.org/0000-0002-0696-5271
https://orcid.org/0000-0002-2998-052X
https://orcid.org/0000-0001-5689-6860
https://doi.org/10.3390/dj11040092
https://www.mdpi.com/journal/dentistry
https://www.mdpi.com/article/10.3390/dj11040092?type=check_update&version=1


Dent. J. 2023, 11, 92 2 of 16

Postoperative complications risk jeopardising the outcome. These can include tissue
necrosis with wound exposure and especially bacterial infections, arising from not only
the external environment but also adjacent structures such as the sinuses, nasopharynges
and oral cavity [13]. The inflammatory process activates the host defence system in an
overshooting manner, with increased production of cytokines progressing towards alveolar
bone resorption and irreversible bone loss [14].

Tetracyclines have a broad antibacterial spectrum, being effective against gram-
positive and gram-negative bacteria, spirochetes and rickettsia [15]. These antibiotics
have long been used as adjuncts in treating periodontal diseases [16,17]. Minocycline
hydrochloride is a semi-synthetic tetracycline derivative showing particularly high concen-
trations in the gingival crevicular fluid [18–20]. Its anti-inflammatory properties [19,21,22],
modulatory effects on the biology of periodontal fibroblasts [23,24] and efficiency against
plaque microorganisms [25] make minocycline useful in managing periodontal diseases.
In addition to its proven efficiency in periodontal therapy, minocycline has displayed
a high affinity towards mineralised tissues [15], with positive effects on bone regenera-
tion [20]. Tetracyclines have been regarded as one of the only antibacterial agent classes
with positive effects on bone tissue remodelling and healing [26]. Multiple studies have
demonstrated that by non-antimicrobial, anti-collagenolytic mechanisms, tetracyclines can
improve bone mass by inhibiting osteoclast-mediated bone resorption and enhance bone
formation through increased osteoblastic activation and upregulation of protein synthe-
sis [27]. They stimulate osteogenesis and apoptosis of osteoclasts and inhibit inflammatory
bone resorption and osteoclast genesis [28,29].

The direct action of tetracyclines on osteoclasts is a limitation of their resorption
activities by reducing the proton pump and the sealing zone delineated by the ruffed
border [23], as well as inhibition of cysteine proteinases and/or matrix metalloproteinases,
resulting in the inhibition of osteoclastic bone resorption [30].

Tetracyclines also indirectly influence bone resorption processes by inhibiting the os-
teoblast collagenase synthesis necessary for non-calcified osteoid degradation [31], prevent-
ing direct access of osteoclasts to the underlying mineralised bone surface and its resorption.
Systemic tetracyclines also suppress osteoclast recruitment following surgery [32]. More-
over, it has been shown in vivo that tetracyclines could stimulate bone formation [33] and
directly influence mineralisation processes by increasing osteoblast alkaline phosphatase
synthesis [34,35]. Golub et al. reported that oral administration in a standard animal model
of postmenopausal osteoporosis, the ovariectomised aged rat, dramatically reduced the
severity of skeletal (tibial) bone density loss and reduced alveolar (periodontal) bone loss,
demonstrating that tetracyclines can inhibit both oral and systemic bone loss [36].

Despite the verified pro-anabolic and anti-catabolic properties of minocycline on bone
tissue, to the best of the authors’ knowledge, therapy has never been assayed within a GBA
approach using empty and occlusive regeneration chambers.

In this histomorphological work in the rat calvaria, we aimed to analyse the influence
of oral administration of minocycline in combination with cortical perforations on the
amount and structure of the expected new bone formations. We chose to investigate this
molecule to improve the outcome and predictability of GBA procedures.

2. Material and Methods
2.1. Animal Preparation and Surgical Procedures

This study used 20 adult male Wistar rats (8 weeks old with a bodyweight of 340 g ± 20 g).
All animal experimental procedures were conducted under ethical clearance, which was
reviewed by the Institutional Animal Care and Use Ethics Committee of the University of
Liège, Belgium (26112019). Animal Research Reporting of In Vivo Experiments (ARRIVE)
guidelines were carefully followed, as was national and European legislation [37]. The
rats were obtained from the animal centre of Liège University and kept in separate cages
in standard laboratory room conditions (average 24.8 ◦C, 55–70% humidity) on a 12 h
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light–dark cycle in the University Animal Facility. The animals were given free access to
water and a standard laboratory diet.

For the surgical procedure, rats were anesthetised by intramuscular injection of a
combination of atropine sulphate (Stella, Chênée, Liège, Belgium; 0.25 mg/kg), xylazine
2% (Rompun®, Bayer AG, Barmen, Germany; 0.5 mL/kg) and ketamine (Imalgène® 500,
Rhone Mérieux, Lyon, France; 50 mg/mL). The frontal–parietal region was shaved and
disinfected with denaturalised alcohol (70% ethylic alcohol, 30% ether). All surgery was
performed under aseptic conditions. A midsagittal incision was made through the skin
tissues and periosteum. A full-thickness flap was raised to completely expose the parietal
bone; the surgical area was kept moist by a saline-filled sterile gauze. Two titanium caps
(self-made from sheer titanium metal sheets, finished dimensions 6 × 4 × 3 mm) were
placed, one on each side of the sagittal median skull suture, and strongly anchored laterally
to the periosteum (Seraflex® 4.0; Serag-Wiessner, Naila, Germany) before being covered
with the periosteal cutaneous flap.

On the left side of the calvaria, the cap was placed on the intact periosteum-free
cranial bone. On the right side, the cortical bone plate of the calvaria was perforated
before placement. Nine cortical perforations were made with a round tungsten carbide
bur #8 under copious saline irrigation to create a surgically induced standardised calvaria
bone wound (Figure 1). Care was taken not to damage the dura or brain. Animals were
monitored continuously until they had completely recovered from anaesthesia. For the
first ten days after surgery and at least until wound healing was complete, animals were
monitored at least once daily by the animal care takers and experimentalists using a scoring-
checklist indicating weight, food and water consumption, wound healing, appearance
and activity.
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Figure 1. Surgical procedure: (A) Custom-made, smooth-surface, stiff caps of pure titanium were
used as a barrier. The space inside was left empty for the graft to achieve bone augmentation. (B) The
decortication procedure consisted of drilling nine holes into the outer layer of the cortical bone to
induce active bleeding from the marrow space at the experimental sites.

The surgical protocol being identical, the animals were randomly divided into two
groups: one without further treatment and the other with minocycline administered
systemically by adding 0.5 mg/mL to the drinking water. Three animals of each group
(n = 3 animals in 2 groups with two inserts each, resulting in a total of 12 surgical sites
per time-point) were euthanised 4- and 8-weeks post-surgery by injection of pentobarbital
after sedation with ketamine and xylazine. The remaining rats (n = 4) were sacrificed after
16 weeks, and tissue was collected for analysis.

Four series were available for comparative histomorphometrical and histological analyses:

• Control group (C): no calvaria manipulations; no drugs.
• Test group I (P): cortical perforations; no drugs.
• Test group II (MIN): no bone wounding; minocycline-fed.
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• Test group III (MIN + P): cortical perforations; minocycline-fed.

2.2. Histological Preparation

The specimens were extracted, and the calvaria blocks were excised and fixed in a
Bouin solution (3 parts saturated picric acid and 1 part formaldehyde 35%) for 10 days.
After decalcification in an EDTA solution at 0.2 mM (pH 7.4), the samples were dehydrated
in ascending concentrations of ethanol series for 96 h and embedded with paraffin. The
paraffin blocks were archived for experimental use and retrieved for analysis at a later time
point (surgery 1995/96, retrieval 2018).

At four locations, 0.5 mm distant from each other, three vertical sections were cut
using a tungsten carbide microtome (Supercut 2065, Jung, Germany). One of each was
stained with solochrome cyanine, toluidine blue and alkaline phosphatase, respectively,
for observation of metal deposits, histomorphometric measurements and histological
analyses [38].

2.3. Microscopic Analysis

Images of the sections were captured with a 5-megapixel microscope camera (Axiocam
305 colour, Zeiss AG, Oberkochen, Germany) connected to a binocular optical laboratory
microscope (Axio Lab.A1, Zeiss AG, Germany). The microscopic analysis was performed
quantitatively and qualitatively.

Computer-assisted detailed measurements of the newly generated tissue (ImageJ 2.0,
America National Institutes of Health, Bethesda, MD, USA) were made on four solochrome-
stained serial sections at ×2.5 magnification to measure the cranial vault’s thickness under
the test caps. The results of this histomorphometric quantification were expressed as
percentage increases of the cranial vault, with 100% corresponding to a doubling.

Measurements for typing the different tissues and their relative quantification within
the newly generated tissue were made on four randomly chosen regions of interest at
×20 magnification. The following tissue components were measured for the total area of
the region of interest:

• Newly formed lamellar bone and osteoid tissue (%);
• Woven bone (%);
• Bone marrow (%);
• Connective tissue (%);
• Granulation tissue and blood clot (%);
• Number of osteocytes (Oc) per mm2:

The osteocyte density was scored for the mature native skull bone as well as for the
newly formed osseous tissue. Considering that osteocytes are the terminally differentiated
cells of the osteoblast lineage, this cell counting included all phases of development in
osteocyte biology through the different stages of ossification and mineralisation present at
the three observation times.

• Number of osteoblasts (Ob) per mm:

The evaluation was limited to those osteoblasts that were found to be lined up in cell
fronts (if present in the sample). Scoring the osteoblast density allowed identifying any
changes in their size, shape and arrangement over time.

• Number of blood vessels in the newly formed tissue (capillaries per mm2);

Detailed histological observations were done at ×40 microscopic magnification.

2.4. Statistical Analysis

All quantitative data are expressed as mean ± standard deviation (SD). The four
groups were compared by an analysis of variance (multivariable linear models, including
the weeks after the intervention, bone perforation, minocycline and their two-way inter-
action as explanatory variables) to show the variance among and between groups. All
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statistical analyses were performed by R statistical analysis software (R Project version 4.0.2,
Vienna, Austria) [39], and the level of significance was set to 5%.

3. Results

Anaesthesia was well-survived by all animals, and healing of the surgical areas was
uncomplicated, with no evidence on dissection of adverse reactions or infection. The
devices were clinically stable with intact sutures covered by strong fibrous connective
tissue and intimately integrated at their edges into the host skull bone. The removal of the
test chambers was difficult, especially for the later specimens, because of the new bone
formation along their outside. All caps could be manually removed after exposure by
dissection without evidence of damage to the tissue contained. New tissue formation was
observed in all control and test sites after removal of the covering capsules.

3.1. Four-Week Specimens

In most control and test sections, the tissue growth had mainly developed close to the
walls of the test devices, while the central parts of the chamber were often found empty. A
loose and unmineralised connective tissue layer rich in blood vessels covered the generated
tissue. Thin peaks mainly composed of a vascular axis with accompanying undifferentiated
connective tissue cells were observed pointing out with a height of around 1 to 2 mm from
the otherwise flat surface (Figure 2). These peaks were present in both groups at this time
point. A blood vessel count was used to determine the capillary density to evaluate the
extent of angiogenesis in the newly formed tissue (Table 1). The number of new capillaries,
varying between 124 and 140 per mm2, was slightly higher in the perforated groups.
The number of scored osteoblasts was constant (46–48 Ob per mm), with a size around
20–22 µm in all groups. The osteocyte density (number of osteocytes embedded per mm2)
in the newly formed lamellar bone was approximately the same in all groups (mean values
ranging from 1106 to 1203 per mm2, i.e., three times more osteocytes than in the native
skull bone, 334–342 Oc per mm2).
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Figure 2. Peaks at 4: (A) Spine pointing out of the newly generated tissue in test group I at 4 weeks
(cortical perforations). Toluidine blue staining (original magnification: 10×). (B) Similar peak
observed in test group II (minocycline-treated) at 4 weeks. Alkaline phosphatase (ALP) staining was
mainly localised to osteoblasts (original magnification: 20×).
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Table 1. Capillary, Osteoblast and Osteocyte Histomorphometric Data for Minocycline-HCI and No
Minocycline-HCI treated Perforated and Non Perforated Rats.

No Minocycline-HCI Minocycline-HCI

Perforation (p) Minocycline
(p) Interaction (p)No

Perforation
Bone

Perforation
No

Perforation
Bone

Perforation

Capillary
density

(cap/mm2)

4 130.0 ± 60.0 138.6 ± 52.7 124.3 ± 55.5 140.1 ± 58.2 0.726 0.740 0.003

8 104.0 ± 52.4 88.6 ± 38.3 108.3 ± 49.8 139.1 ± 55.4

16 88.1 ± 33.7 90.0 ± 43.9 96.3 ± 51.9 136.2 ± 42.6

Capillary
density

(cap/mm2)

4 48.5 ± 5.8 46.8 ± 8 7 46.7 ± 7.7 48.7 ± 8.1 0.000 0.113 0.065

8 48.9 ± 6.3 42.6 ± 4.9 47.4 ± 4.5 48.0 ± 4.7

16 40.7 ± 5.5 38 9 ± 4.9 47.5 ± 4.7 43 0 ± 4 6

Capillary
density

(cap/mm2)

4 1106.9 ± 193.1 1166.8 ± 121.6 1203.7 ± 126.5 1154.1 ± 75.5 0.288 0.052 0.383

8 615.4 ± 35.6 596.4 ± 38.8 507.4 ± 29.6 491.9 ± 36.1

16 447.6 ± 103.9 363.5 ± 31.0 376.2 ± 19.5 338.7 ± 29.2

Notes: Values are means ± SD. The p values refer to significant main effects identified by a multivariable
linear regression.

The control sites presented an increase of the cranial vault with 65.59 ± 15.53% of
newly formed tissue, compared to a 99.29% ± 7.60% increase in test group II (minocy-
cline addition), where both groups had no surgical trauma except the cylinder placement
(Table 2). Test group I (cortical perforations) presented 73.48% ± 14.99% new tissue forma-
tion, which was not statistically different from the control (C). Significant tissue growth of
111.63% ± 9.55% (p < 0.001) was found in group III, where both techniques were combined
(cortical perforations with minocycline addition). The generated tissue in all samples was
mainly composed of three types of tissues: lamellar bone, woven bone and connective tis-
sues, as well as small blood clot and granulation tissue remnants. Cellular debris, artefacts,
hyaline structures and empty spaces were not scored and were excluded from calculations.

Table 2. Influence of Minocycline-HCI and of cortical perforations on de novo extra-skeletal
bone formation.

No Minocycline-HCI Minocycline-HCI

No Perforation (C) Perforation (P) No Perforation
(MIN) Perforation (MIN + P)

4 weeks

Newly generated
tissue rate 65.6 ± 15.5 73.5 ± 15.0 99.3 ± 7.6 ** 111.6 ± 9.6 *

Osseous tissues (Σ) 23.6 ± 4.0 40.2 ± 9.9 31.3 ± 6.4 ** 51.5 ± 9.1 *

Woven bone 10.2 ± 2.6 17.3 ± 3.9 12.8 ± 4.2 16.3 ± 5.2

Lamellar bone 13.0 ± 2.8 22.2 ± 7.5 17.4 ± 6.0 31.8 ± 9.6

Bone Marrow 0.4 ± 0.7 0.7 ± 11.2 1.2 ± 1.7 3.4 ± 3.3

Other

Connective tissue 66.3 ± 5.7 55.2 ± 9.9 63.1 ± 8.7 44.2 ± 9.4

Granulation
tissue/Blood clot 10.1 ± 6.3 4.6 ± 4.2 5.6 ± 4.5 4.3 ± 3.9

8 weeks

Newly generated
tissue rate 82.9 ± 21.9 120.7 ± 52.1 116.9 ± 17.4 * 253.6 ± 21.7 **

Osseous tissues (Σ) 46.5 ± 5.9 56.9 ± 7.3 56.4 ± 8.3 ** 70.1 ± 5.9 **

Woven bone 8.2 ± 1.9 12.7 ± 2.5 9.9 ± 2.7 12.1 ± 2.5

Lamellar bone 33.8 ± 5.4 39.0 ± 6.1 43.2 ± 7.1 50.9 ± 5.8

Bone Marrow 4.5 ± 3.4 5.2 ± 1.4 3.3 ± 2.7 7.2 ± 3.1
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Table 2. Cont.

No Minocycline-HCI Minocycline-HCI

No Perforation (C) Perforation (P) No Perforation
(MIN) Perforation (MIN + P)

8 weeks

Other

Connective tissue 48.7 ± 6.6 41.1 ± 7.6 40.9 ± 8.6 28.7 ± 6.4

Granulation
tissue/Blood clot 4.7 ± 3.1 2.0 ± 2.6 2.8 ± 2.8 1.3 ± 2.1

16 weeks

Newly generated
tissue rate 137.8 ± 25.8 172.6 ± 41.7 182.7 ± 47.3 253.9 ± 38.9 *

Osseous tissues (Σ) 68.4 ± 6.7 77.6 ± 9.5 77.9 ± 6.3 ** 87.2 ± 8.9 **

Woven bone 7.1 ± 1.9 9.7 ± 2.2 10.1 ± 2.3 11.5 ± 2.0

Lamellar bone 52.6 ± 5.6 58.9 ± 7.2 59.2 ± 5.5 66.1 ± 8.8

Bone Marrow 8.6 ± 2.2 9.0 ± 2.5 8.5 ± 2.8 9.6 ± 2.7

Other

Connective tissue 29.7 ± 7.5 22.0 ± 9.5 21.3 ± 12.8 12.4 ± 9.3

Granulation
tissue/Blood clot 1.9 ± 2.4 0.4 ± 1.0 0.8 ± 1.7 0.4 ± 1.2

Notes: Intervention Min vs. no-Min, values are means ± SD (%), * p < 0.05, ** p < 0.001.

Lamellar bone developed first at the basal area of the regeneration chambers, close to
and contacting the original calvaria bone plate. No enhanced bone-forming activity was
observable facing the surgical perforations of the external cortical bone plate in test groups
I or III. In some of the non-perforated specimens of group C and test group II, we observed
some spontaneous openings of the original cortical bone plate, probably due to widening
of some Volkmann’s channels damaged when lifting the periosteum (Figure 3).
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Figure 3. Spontaneous opening of a Volkmann’s canal, letting osteogenic cells migrate from the
medullary spaces towards the native skull bone into the regeneration chamber for extra-skeletal new
bone formation. Toluidine blue staining (original magnification: 20×).

The percentage of lamellar bone was lower in the two non-perforated groups
(C: 12.99 ± 2.81%; test group II: 17.36 ± 5.99%) than in the perforated groups (test group I:
22.16 ± 7.47%; test group III: 31.84 ± 9.55%). A similar distribution was found for woven
bone: non-perforated groups C 10.24 ± 2.58% and II 12.79 ± 4.20% vs. perforated test
groups I 17.31 ± 3.91% and III 16.27 ± 5.20%. The higher values of woven bone indicate
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more advanced maturity of bone formation. Early bone marrow structures were visible in
some specimens. At this point, these were more pronounced in the groups treated with
minocycline (test group II: 1.19 ± 1.72%; test group III: 3.41 ± 3.29%) and up to 400%
higher than in the two non-treated groups (C: 0.36 ± 0.65%; test group I: 0.69 ± 1.15%),
but remained marginal on the whole. The higher bone marrow values in the minocycline
groups also indicate more advanced organisation of the already formed bone. The detailed
histomorphometric quantifications of the different structures and tissues are summarised
in Table 2. Overall, the perforated groups showed a larger extent of mineralisation (test
group I: 40.16 ± 9.86%; test group III: 51.51 ± 9.06%) compared to the unperforated control
group (23.59 ± 4.04%) and test group II (31.33 ± 6.44%; Figure 4).
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Figure 4. Increase in bone thickness over time. Both the perforation procedure and minocycline
administration resulted in an increase in bone thickness, with the strongest effect in the combination
of both. This effect was observable at all time points. A large percentage of the newly generated bone
was mineralised (red colour; *** p < 0.001; **** p < 0.0001).

Connective tissue, including zones of woven bone, mainly grew in the most superficial
regions. These secondary centres of newly mineralised woven bone were covered by
osteoid formations and lining osteoblasts, indicating expanding and remodelling activities
of the primary woven bone scaffold into lamellar bone, with the proportions of woven
bone in the perforated groups significantly greater than in the non-perforated groups. A
few osteoclasts were encountered. New bone appositions had also formed to a varying
extent at the outer surface of the chambers, especially adjacent to their edges, where the
periosteum had been lifted to cover the devices.

3.2. Eight-Week Specimens

From 4 to 8 weeks, increases in the generated tissue were seen in all samples, with
82.91 ± 21.86% newly generated tissue under the control devices. The tissue filling in
the chambers of test groups I and II was similar: the regenerated tissue area increased
120.65 ± 52.12% and 116.94 ± 17.39%, respectively. A statistically highly significant amount
of new tissue formation occurred in test group III (253.6 ± 21.66%; cortical perforations
and minocycline-treated), representing more than double the augmentation rate in the
other groups.

Similar to the 4-week observations, the woven bone proportions were around 25%
higher in the perforated groups (I and III) than in the non-perforated groups (C and II).
Remodelling of the woven bone scaffold into lamellar bone was ubiquitous (Figure 5);
46.53 ± 8.86% (control group) to 70.08 ± 5.92% (test group III) of the newly generated
tissues were mineralised or in the process of mineralisation (Figure 6). As detailed in Table 1,
in the minocycline-treated groups, the number of osteocytes was significantly lower (MIN:
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507.37 ± 29.64%; MIN + P: 491.88 ± 36.14%) than in the control (C: 615.41 ± 35.61%) and
perforated groups (P: 596.38 ± 38.79%).
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Figure 5. Intense ossification activity observed in minocycline-treated series (test group II) at 8 weeks
with toluidine blue staining (original magnification: 20×).
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Figure 6. The ratio of mineralised tissues increased continuously in all control and test groups. After
4 months, the non-perforated specimens of the control group and test group MIN showed 68.4 ± 6.7%
and 77.6 ± 9.5% mineralisation, respectively. The perforated caps of group P (77.9 ± 6.3%) and group
MIN + P (87.2 ± 8.9%) produced the most new lamellar bone, indicating that the combination of
marrow opening and systemic minocycline addition had an accelerating and enhancing effect on
vertical bone augmentation in the rodent model.



Dent. J. 2023, 11, 92 10 of 16

A difference was still observed between the basal lamellar bone at the bottom of the
section and the secondary bone formation centres in the upper regions where the bone
growth was the most advanced. Some samples presented a thin layer of periosteum-like
tissue interposed between both ossification zones; the surrounding bony surfaces were
covered by facing osteoblastic fronts indicating their future fusion with the disappearance
of this interposed connective tissue layer.

The de novo lamellar bone appositions outside of the titanium chambers, as described
for the 4-week specimens, were still visible, but no additional mineralisation centres, such
as those inside the regeneration chambers, were observed.

3.3. Sixteen-Week Specimens

From 8 to 16 weeks, the bone formation increase was statistically significant in all
test sites. The control sites showed new tissue formation augmented by 137.84 ± 25.79%,
which was significantly higher than at 8 weeks. Compared to controls, the gain of newly
generated tissue was still significantly increased in test groups I (cortical perforations;
172.61 ± 41.65%; p = 0.01) and II (minocycline treated; 182.69 ± 47.27%; p < 0.05) and
statistically highly different in test group III (minocycline-treated with cortical perforations;
253.94 ± 38.88%; p = 0.0001).

Comparing between test groups found that combining cortical perforations with
minocycline addition was significantly (p < 0.05) more effective than each single technique
applied separately.

Non-mineralised tissue areas had regressed in all conditions. Parallel evolution was
found for the woven bone fractions in minocycline-untreated samples (woven bone <10%;
Table 2). Superior woven bone fractions were observed in the minocycline-treated groups,
with 10.13 ± 2.29 % and 11.52 ± 1.97% woven bone in test groups II and III, respectively.
Most of the newly generated bone in the control and test conditions was lamellar. The
lamellar bone trabeculae contained only a small core of densely stained woven bone
surrounded by thick layers of mineralised bone. When the amount of lamellar bone
formation was compared between groups, no statistically significant differences were
found between the control group (52.62 ± 5.60%) and test group II (minocycline-treated;
59.22 ± 5.47%). Lamellar bone was significantly higher in the perforated groups (test
group III: 66.08 ± 8.80%; test group I: 58.87 ± 7.20%). The overall mineralised fractions
included around 8–10% of marrow spaces according to the measurements on the original
skull bone (Table 2).

The osteocyte density (number of Oc per mm2) decreased in all groups to values almost
2% above those scored in the mature native skull bone (Figure 7). The bone surfaces were
still largely covered by cuboidal osteoblasts, indicating active ossification processes, with
the osteoblast size, shape and density hardly changed over time. The highly vascularised
connective tissue layer interposed at the base, between the newly formed bone at the
surface of the skull and the main core of generated bone inside the chambers, was still
present but reduced, and areas of fusion became very frequent. The bone formation outside
of the bone generation devices did not significantly vary at the 16-week observation.
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Figure 7. Density of osteocytes in native and newly generated bone. Woven bone contains many more
osteocytes than lamellar bone, and the osteocyte density in the newly generated bone (cell number per
unit section area of bone—expressed as Oc per mm2) fell with its maturation. Notably, minocycline-
treated specimens showed fewer osteocytes at 8 weeks than the control and perforated groups.

4. Discussion

Research aiming to optimise bone augmentation techniques is essential. The results
of this study demonstrate that predictably augmenting mineralised bone is possible in
spaces beyond the skeletal envelope by using a titanium cap. We used this kind of device
to provide a defined space for blood clot and new tissue formation. The calvaria provides a
site with a considerable area of cortical and medullar bone, easy surgical access and low
muscular contraction. The reduced mechanical loads minimise the risk of fracture and
make the skull bone an ideal candidate for GBA research [40–42].

The conditions must be ideal to allow bone formation beyond the skeletal boundaries.
Critical factors for a successful outcome include occlusiveness against cellular invasion,
barrier stability, peripheral sealing between barrier and bone, bone blood supply and access
to bone-forming cells [3,11,43]. Experimental evidence suggests that fibrous connective
tissue proliferation may be a limiting factor for osteogenesis [44]. The titanium caps shield
the site of bone generation from this influence and thus allow for bone growth to occur. In
the present study, newly generated tissue and mineralised bone were noted in all specimens,
regardless of the treatment and even within a month.

Mineralised bone tended to climb along the inner wall of the cap directly on the
titanium surface, which is in line with the literature on calvaria [3,45,46], supporting the
biocompatibility of titanium and facilitation of bone formation by a solid base. However,
the newly generated tissue in our model consisted of evenly distributed mineralised
intramembranous bone trabeculae, large fat marrow spaces with numerous blood vessels
and areas of woven bone after 16 weeks.

Multiple investigations have reported that perforations of the cortical bone to al-
low bleeding from the marrow spaces enhances GBA, but research on this topic remains
controversial [3,47].
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The diameter at which defects are considered to be of critical-size is reported differently
in the literature [40]; generally, the perforation created should have a diameter sufficient to
allow adequate bleeding and opening of the marrow space with spontaneous repair during
the lifetime of the animal. We regularly observed spontaneous and complete repair in both
perforated groups, indicating that the diameter of 0.8 mm used in this current study did not
create defects to be considered critical-sized [42]. The number and chosen diameter of the
holes allowed for bone regrowth to occur and for good histological observations while also
preserving the structural integrity of the bone. In the groups C and MIN, the cortical bone
was left intact, without surgical opening of the marrow spaces, and no attempt was made
to actively fill the completely occlusive bone generation chambers. This procedure yielded
a 2.4- to 2.8-times thicker calvaria after 16 weeks, confirming that maintaining a secluded
space over the calvaria may be a sufficient condition for substantial bone formation and
that marrow opening is not mandatory for new bone formation in a GBA model [11]. The
interval of assessment time may also affect the perforation efficacy because the early and
late bone healing process may be affected in different ways [48]. Intra-marrow penetrations
increased new bone formation at 4 weeks but not at 8 weeks. At 16 weeks, our results show
a continuing and improved process of bone formation. This might be explained by the
relatively high rate of woven bone observed in the perforated groups up to 8 weeks after
surgery. While the approach of cortical perforation to enhance GBA is described differently,
there is consensus that intra-marrow penetration is useful to accelerate bone healing [49,50].
This is consistent with our findings that new bone formation is happening at a higher rate
in the perforated study groups than in the control group at the fourth month.

A crucial factor in the process of wound healing in general as well as in bone tissue is
blood supply, which transports the nutrients and the components, such as osteoprogenitor
cells, growth factors and cytokines that mediate the formation of new bone. Angiogenesis
occurs during the first phase of ossification. This is a multistep process, with its origins
in existing vessels in the bone. Factors released after wounding are responsible for the
initiation of blood vessel formation. Therefore, the cortical bone perforations made in the
experimental groups I and III improved bleeding and clot formation in the wound area.
The subsequent migration of angiogenic and osteogenic progenitor cells into the space may
have provided the therapeutic advantage since the proliferation of new capillaries together
with the accompanying loose connective tissue represent the source of osteoprogenitor cells
and condition for any new bone formation. The detailed histological observations in this
study show that new capillaries, together with their perivascular loose connective tissue,
were particularly abundant close to the perforations, confirming the quantitative results of
the perforated groups. To the best of our knowledge, the number of capillaries and, thus,
the capillary network of the newly generated tissues has never been evaluated in a GBA
model. Without claim to have focused our research on a specific identification of blood
vessels, our results seem in line with other estimates about the capillary density for this
type of tissue [51,52].

Our observations of osteocytes fit well with the emerging concept that their number
may influence the remodelling activity, formation rate and tissue volume [53,54]. Notably,
the number of osteocytes described for the samples at 4 weeks continuously fell over
time, reaching values close to those identified in native cranial bone. This suggests that
their number decreases as the bone matures, and the rate of matrix synthesis weakens.
Great differences in osteocyte number between woven and lamellar bone tissues have been
reported in the literature. The osteocyte population in woven bone has been estimated at
four to eight times higher than in lamellar bone [55]. A relationship has been described
between the cell size of osteoblasts and the rate of matrix synthesis [56]. The size and shape
of the osteoblasts in our study were fairly unchanged at the three observation times. An
increase in cell size could have indicated a rapid rate of matrix synthesis in woven bone.

Minocycline is a structural isomer of tetracycline and has largely been investigated in
bone repair and bone engineering research, mainly due to its ability to inhibit osteoclast
genesis and collagenolytic enzymes (responsible for connective tissue degradation and bone
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resorption) and induce apoptosis of osteoclasts [57]. The inhibition of osteoclastogenesis
is undoubtedly a very advantageous feature of this drug since bone manipulation alone
during surgical procedures can trigger osteoclast activity [49,50,57].

The minocycline-treated groups showed better tissue fill in short- and long-term
specimens when compared to control. The specimens in the minocycline-untreated groups
(137 ± 25.79% and 172.61 ± 41.65% at 16 weeks, respectively) had a lower percentage of
tissue formation than the minocycline-treated groups (182.69 ± 47.27% and 253.94 ± 38.88%
at 16 weeks, respectively).

From 4 to 16 weeks, the non-perforated minocycline group (test group II) presented
statistically insignificantly different increasing rates compared to the perforated group
(test group I), with around 10% less generated lamellar bone. The combined experimental
conditions of group III (minocycline-treated and cortical perforations) showed 2.5-times
thicker cranial bone after 8 weeks, remaining unchanged at 16 weeks. This increasing
rate was higher than for each technique taken separately, indicating that creating surgical
openings by perforating the external cortical bone plate in addition to systemic tetracycline
may constitute a favourable environment for substantial bone formation. Significantly
higher increasing rates at 8 weeks were also detectable in test group II (minocycline-treated)
compared to the control group, confirming findings described by other authors who have
suggested that this drug could have stimulated osteogenesis [58,59].

Notably, test groups I and II showed around 57% mineralisation (sum of lamellar
bone, marrow and woven bone) of the generated tissue, and test group III 70%, while the
control was only 46% mineralised. This is because the samples treated with minocycline
had formed the most lamellar bone at 8 weeks (test group II: 43.24 ± 7.06%; test group
III: 50.85 ± 5.76%) and the perforated groups had more bone marrow portions (test group
I: 5.22 ± 1.42%; test group III: 7.18 ± 3.05%). Our results at 8 weeks also showed that
fewer osteocytes were counted in the minocycline-treated groups. Considering that woven
bone is a relatively cell-rich tissue, the regression of osteocytes might be due to either
differentiation of osteoblasts into lining cells or their death by apoptosis; only some former
osteoblasts transition into mature osteocytes completely embedded in the mineralised bone
matrix and undergo remodelling processes [60,61]. Bone remodelling includes removal of
not only mineralised bone but also residual cells, disappearing thus not from the bone but
with the bone.

Our observations were static, and the scope of this work was not to illustrate a dynamic
procedure requiring a living model with longitudinal observations. Nevertheless, we can
presume that minocycline might have influenced the ossification process by accelerating
the maturation of the newly generated osteoid tissues. A possible effect on bone maturation
might be of some interest in oral and orthopaedic surgery, but further investigations are
required to clarify this.

Minocycline addition resulted in increased density of the newly generated tissue
(ratio: mineralised/non-mineralised), with 3.52 and 6.82 times more osseous tissue than
non-osseous tissue for test groups II and III, respectively, compared to the minocycline-
untreated groups (control: 2.16 times; test group I: 3.45 times). In particular, test group
III was the most advanced at 8 weeks, presenting a 3.5-times thicker calvaria plate with
a 70% mineralised tissue infill. This group was not only the most active of all the test
and control groups, but also kept a great potential for further mineralisation processes,
considering the high percentage (11.52 ± 1.97%) of woven bone at 16 weeks. This topic
needs further investigation.

5. Conclusions

Cortical perforations, by intentionally opening the vessel-rich spongious layer, consid-
erably enhance access for new vessel formation in the regeneration chamber and therefore,
favourably affect the outcome of GBA procedures. Minocycline addition results in more
complete soft tissue formation in the short-term observations, allowing earlier capillary
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proliferation and osteoprogenitor cell immigration into the wound area. This remarkably
enhances mineralisation, which occurs earlier and results in increased bone density.

These findings highlight the pro-anabolic and anti-catabolic activity of minocycline
and may help to explain the statistically highly significant differences in new bone formation
in the minocycline series compared to the control series.

It appears clear that cortical perforations involving bone and vessel wounding induce
a biologic cascade with activation of some inductive or regulatory factors and new blood
vessel formation that leads to new bone formation.
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