
Citation: Potra Cicalău, G.I.; Ciavoi,
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Abstract: It is well recognized that oxidative stress contributes to chronic stress-induced cytotoxicity,
which is a major factor in the progression of many diseases, including periodontitis and diabetes.
Formulas based on natural extracts with antioxidant properties are alternative treatment perspectives
in the management of such diseases. The aim of our study was to assess how carvacrol and magnolol
influence periodontitis associated with diabetes in Wistar rats. Ninety Wistar rats were distributed in
nine groups: I—control group; II—diabetes group (D); III—periodontitis group (P); IV—periodontitis
and diabetes group (PD); V—periodontitis and diabetes with vehicle alone (PDV); VI—periodontitis
and diabetes treated with carvacrol (PDC); VII—periodontitis and diabetes treated with magnolol
(PDM); VIII—periodontitis and diabetes treated with carvacrol and magnolol (PDCM); IX—healthy
group with vehicle alone (CV). Blood malondialdehyde (MDA) levels and catalase activity levels
(CAT) were measured as indicators of oxidative stress and antioxidant capacity, respectively. Where
diabetes and periodontitis were induced, MDA was augmented and CAT was depleted significantly.
Whether given alone (PDM) or in combination with carvacrol (PDCM), magnolol significantly
decreased MDA. Between the PDM group and the PDCM group, there were no notable differences.
In Wistar rats with periodontitis related to diabetes, topical use of hydrogels containing magnolol,
either alone or in combination with carvacrol, may reduce oxidative stress.

Keywords: periodontitis; diabetes; oxidative stress; carvacrol; magnolol

1. Introduction

Several studies have shown the bidirectional relationship between periodontal disease
and diabetes [1–4]. Both pathologies are highly prevalent worldwide, but the mechanisms
linking them are not fully understood [5]. According to the studies of Sanz et al., elevations
in oxidative stress as well as in important cytokines implicated in inflammatory signaling
pathways, are among the mechanistic linkages between diabetes and periodontitis [1].
Mohamed et al. consider that chronic periodontitis is associated with disturbance of the
local expressions of biomarkers related to the onset of type 2 diabetes and its medical
complications in gingival crevicular fluid [2]. Casanova et al. highlights that diabetes
and periodontitis are chronic conditions that have a known reciprocal association, so that
patients with diabetes have shown improvements in glycaemic control after receiving
periodontal treatment, with HbA1c levels decreasing by about 0.4% [3,4].

Periodontal involvement in systemic conditions is also described. Relationship be-
tween cardiovascular pathology and periodontal illnesses due to systemic inflammation
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with increased circulating cytokines and mediators, direct infection, and cross-reactivity be-
tween bacterial antigens and self-antigens is stated by Seymour et al. [6] and by Pardo et. al.,
respectively [7].

Still, diabetes remains the most significant systemic disease found in the pathological
personal history of patients arriving at the dental office, according to research on the in-
cidence of diabetes mellitus and oral disorders [8]. Understanding the interrelationship
between these conditions could improve their screening and management, bringing im-
portant benefits to patients. Epidemiological studies highlight diabetes as a major risk
factor for periodontal disease, the risk of developing periodontal diseases being greater the
weaker the metabolic control [9,10]. In a review on the interrelation between diabetes and
periodontitis, Stohr et al. highlighted the importance of screening patients with diabetes or
periodontitis in regard to the risk of their association [11].

All aerobic cells are equipped with a protection system that generates reactive oxygen
species (ROS) (e.g., superoxide radical (O2

•−), hydrogen peroxide (H2O2), hydroxyl free
radical (OH•), peroxinitrite (ONOO−)) in order to cope with microorganisms and intra-
cellular cell signaling. The organism antioxidant capacity counteracts the accumulation of
ROS via proteasome and autophagy. When a disequilibrium between pro and antioxidants
appears, either by increased ROS production or decreased antioxidant capacity, oxidative
stress is installed and results in damage to lipids, nucleic acids, and proteins [12].

The accumulation of ROS is considered to be implicated in the pathogenesis of numer-
ous diseases since almost all inflammatory conditions are related to oxidative stress [13].
Oxidative stress may be involved in chronic stress-induced cytotoxicity, playing a critical
role in the aggravation of periodontitis and diabetes [14]. Diabetes induces a state of
oxidative stress that disrupts the balance between ROS production and inactivation [15]. In
diabetes, there can be activated biochemical pathways like glucose auto-oxidation, polyols
pathway, prostaglandins synthesis, and protein glycation. These mechanisms, strictly re-
lated to hyperglycemia, increase the production of circulatory ROS [16]. At the periodontal
level, evidence linking ROS to pathological connective tissue destruction during periodon-
titis is based on the presence of neutrophil infiltration as a major event in the host response
to bacterial invasion [17]. Stimulated by pathogens in the dental biofilm, neutrophils
become the most important source of ROS in periodontitis [18]. Several studies attested
increased oxidative stress activity in peripheral blood neutrophils of periodontitis patients
compared to controls [18]. Therefore, decreasing local periodontal oxidative stress by using
antibacterial, anti-inflammatory agents could improve both local and general status.

ROS generate the process of lipid peroxidation [19], whereby oxidants attack lipids
containing carbon-carbon double bonds, especially polyunsaturated fatty acids [20]. Mal-
ondialdehyde (MDA) is one of the end products of the peroxidation of polyunsaturated
fatty acids, and the increase of free radicals causes the overproduction of MDA [5]. MDA
has a high capacity to react with multiple biomolecules, such as proteins or DNA, leading
to the formation of adducts and excessive production of MDA, which has been associated
with various pathological conditions [21]. The level of MDA is commonly assessed as a
marker of oxidative stress [19,21].

The antioxidant defense system includes both endogenous, enzymatic, and non-
enzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase,
and glutathione, as well as exogenous antioxidants, the food being their main source.
Regarding exogenous antioxidants, carotenoids (lycopene, lutein, zeaxanthin, α- and β-
carotene, β-cryptoxanthin), vitamin E (α- and γ-tocopherol), and polyphenols are known [22].

First-line defense antioxidants include catalase, a key detoxifying enzyme present
in the peroxisomes of all aerobic cells. Catalase is a powerful oxidative agent whose
primary function is to break down H2O2 into water and oxygen, which prevents cells from
developing oxidative stress [21,23].

Supplementation with natural antioxidants has been reported to enhance the perfor-
mance of the human body during exposure to stressors [24]. Among them, carvacrol has
strong antioxidant properties and a protective effect against free radicals and has been
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found effective in preventing and inhibiting cardiac, liver, and metabolic diseases [25–28].
Magnolol scavenges OH•, ONOO− [29] and H2O2 [30], suppressing ROS generation in the
same pathologies [25].

This experiment aimed to evaluate in vivo the antioxidant effect of carvacrol and
magnolol on experimental animals with periodontitis and diabetes by evaluating some
markers involved in oxidative stress (MDA) and antioxidant defense capacity (CAT).

The present research tested the hypothesis that topical periodontal application of
hydrogels containing carvacrol and magnolol may modulate the oxidative stress in peri-
odontitis associated with diabetes.

2. Materials and Methods
2.1. In Vitro Experiment Design
2.1.1. Materials and Drugs Used

All chemicals and reagents used have a high degree of purity. The 2,2′-azino-bis
(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-2-picryl-hydrazyl (DPPH)
and potassium persulfate used were purchased from Sigma-Aldrich® Chemie GmbH,
Taufkichen, Germany. Streptozotocin and the natural extracts, carvacrol and magnolol, were
purchased from Sigma-Aldrich®, Inc., St. Louis, MO, USA. PBS (phosphate buffered saline
(pH = 7.4)), etanol, polietilenglicol and carbopol 940 were obtained from S.C. VITAMAR
IMPORT EXPORT SRL, Bucharest, Romania. Double-distilled water was obtained using a
Milli-Q system (Millipore, Bedford, MA, USA).

2.1.2. In Vitro Determination of Antioxidant Activity of Carvacrol and Magnolol

To evaluate the free radical scavenging activity of different concentrations of magnolol
and carvacrol, both ABTS and DPPH tests were performed.

The method of testing the antiradical capacity with the application of ABTS is known
and used on a large scale to determine the antioxidant activity of substances regardless
of their nature. Thus, the antioxidant activity of both pure substances and antioxidant
complexes were determined [31].

The 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS◦+) radical cation
was obtained by reacting the stock solution of 7 mM ABTS with 2.45 mM potassium
persulfate for 16 h. Then, the ABTS solution was diluted with phosphate buffered saline
(PBS) (pH = 7.4) until an absorbance of 0.7± 0.02 was obtained, read using a PG Instruments
T70+ spectrophotometer at 734 nm. Then, 10 µL of the samples of different concentrations
were added to 3.0 mL of ABTS, shaken, and kept at room temperature and in the dark for 6
min, then their absorbances were read at 734 nm. The tests were performed in triplicate.
The total equivalent antioxidant capacity was calculated with the equation:

Scavenging e f f ect (%) =

(
1−

Asample

Acontrol

)
× 100

where Asample is the absorbance of the sample and Acontrol is the absorbance of the control.
Free radical scavenging activity was measured using 2,2-diphenyl-2-picryl-hydrazyl

(DPPH◦) [32]. For this method, there are studies that have shown that the solvent used in
the step of extracting the hydrogen atom from the phenolic O-H bond is important [33].
There are authors who state that the ionization of the phenolic hydroxyl, thus the extraction
of the hydrogen atom from the phenolic hydroxyl, is a slow process, which could take place
faster if one were to work with strong solvents (alcohol solvents) that form hydrogen bonds,
such as ethanol and methanol [34]. In the present work, the solvent used was ethanol.

To begin, 2.9 mL of DPPH solution was added to 0.1 mL of the samples of different
concentrations. Then, after vortexing, they were kept in the dark at room temperature,
and then their absorbances were measured at 517 nm, using a spectrophotometer PG
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Instruments T70+. Double-distilled water was used as a control. The tests were performed
in triplicate. The inhibition percentage was calculated using the equation:

Inhibition (%) =
Acontrol − Asample

Acontrol
× 100

where: Acontrol is the absorbance of the control and Asample is the absorbance of the sample.

2.1.3. Preparation of Hydrogels

When preparing hydrophilic gels, the properties of all components were taken into
account, so the consistency agent (carbopol 940) was dispersed in the vehicle (water) and
left to hydrate for 24 h. The dispersing agent (propylene glycol) was then added and
stirred until homogeneous. Then the therapeutic agent or active ingredient (carvacrol
and magnolol respectively) was added, which was previously dispersed in alcohol. The
mixture was brought to a neutral pH by neutralization with triethanolamine, and it was
supplemented with double-distilled water, stirring continuously, until the formation of the
hydrogel (Figure 1). Magnolol hydrogels are also prepared in the same way. The prepara-
tion formulas are shown in Table 1, as we previously mentioned in another article [35].
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Table 1. The quantities of substances used for the preparation of hydrogels and their role [35].

Ingredient (Unit of Measure) The Role in the Formulation HG1 HG2 HG3 HG4

Carvacrol (g) Therapeutic agent 0.40 0.40 - -
Magnolol (mg) Therapeutic agent - - 0.25 0.25

Carbopol 940 (g) Viscosity increasing agent 1.50 1.00 1.50 1.00
Propylene glycol (g) Wetting agent 3.00 3.00 3.00 3.00

Ethyl alcohol (g) Dispersing agent 5.00 5.00 5.00 5.00
Triethanolamine (g) neutralize 1.00 1.50 1.00 1.50

Double-distilled water (g) Vehicle Ad 100.00 Ad 100.00 Ad 100.00 Ad 100.00

HG: hydrogel.

2.1.4. Release of Carvacrol and Magnolol from Hydrogels

To qualitatively and quantitatively evaluate the hydrogels, we measured the release of
carvacrol and magnolol, respectively, from the hydrogels [36]. A six cell Franz diffusion
system (Microette-Hanson system, model 57-6AS9, Copley Scientific Ltd., Nottingham,
UK) was used. Each receptor chamber has a diffusion surface of 1.767 cm2 and a volume of
6.5 mL and was filled with PBS (pH 7.4) or PBS mixed with freshly prepared 30% ethanol.
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Synthetic polysulfone membranes with a diameter of 25 mm and pores of 0.45 m were used
(Tuffryn®, PALL Life Sciences HT-450, lot T72556), which were hydrated for 30 min by
immersion in the receptor medium before use. The sample consists of 0.500 g of hydrogel
that is placed in the capsule of the diffusion cell. The system temperature was maintained
at 32± 1 ◦C, and the receptor medium was continuously stirred (600 rpm) using a magnetic
stirrer. For the determination, 0.5 mL of the receptor solution was taken at different time
intervals (from 15 min up to 120 min), and the amount of carvacrol or magnolol released
was determined using a UV-VIS spectrophotometer, PG Instruments T70+, the reading
being performed at 275 nm for carvacrol and 293 nm for magnolol.

2.2. In Vivo Experiment Design
2.2.1. The Motivation for Choosing the Experimental Model

Among the small laboratory animals, the rat is the most extensively studied in the
pathogenesis of periodontitis. The induction of periodontitis and diabetes requires com-
plete biological systems for simulation under conditions effectively comparable to human
subjects, so alternatives such as tissue or cell systems cannot be used in this study. Cell
cultures are used in preclinical research, but have limitations, not being characteristic of
ongoing physiological processes [37]. The experimental induction of inflammation in rats
has been shown to be the closest to the characteristics of human inflammation [38,39]. In
experimental research, the most widely used breeds of rats are the Wistar breed and the
Spraque-Dawley breed [40,41].

Previous studies have demonstrated that in vivo models are essential for reproducibil-
ity under experimental conditions of periodontitis and diabetes and also for studying
therapeutic efficacy at the biochemical level. Natural extracts’ effects can be, therefore,
tested at a clinical and paraclinical level in the mentioned pathologies [42,43].

2.2.2. Distribution of Animals Used in the Experimental Model

The experiment was carried out at the Biobase of the Physiology Department of
the “Iuliu Haţieganu” University of Medicine and Pharmacy in Cluj-Napoca. Following
the evaluation of the protocol, the experimental research was approved by the Ethics
Committee of the “Iuliu Hat, ieganu” University of Medicine and Pharmacy in Cluj-Napoca
and received favorable opinion no. 316 of 15 September 2021.

The present study is a parallel prospective placebo-controlled experimental analytical
study. The in vivo study was carried out on 90 white, male Wistar albino rats (Rattus
norvegicus) aged 8 weeks, with an average weight between 180 and 220 g. The animals
used come from the Biobase of the Department of Physiology of the University of Medicine
and Pharmacy “Iuliu Haţieganu” from Cluj-Napoca, Romania.

The animals were kept in separate polypropylene boxes, in a temperature-controlled
environment (21± 2 ◦C), exposed to a 12-h light-dark cycle, and 70± 4% humidity. Animals
were housed under normal laboratory conditions and provided with standardized food and
water ad libitum. The bed was represented by aseptic autoclaved wood fragments, enriched
with “environmental enrichment” products. The rats were acclimatized for one week
before starting the experiment. The health status of the animals was checked periodically
throughout the experiment. At the end of the project the animals were not relocated.

2.2.3. Experimental Induction of Diabetes Mellitus

Diabetes was induced by a single intraperitoneal dose of streptozotocin (60 mg/kg)
(Sigma-Aldrich®, St. Louis, MO, USA). Before the induction of diabetes, rats’ weights were
registered, and the blood glucose values were assayed from samples collected from the
caudal vein of the animals. In the final three days of the study, all rats, except the control
groups (C, CV), were given intraperitoneal injections of streptozotocin, separated by 72 h, in
order to develop diabetes mellitus [44]. Through beta cell destruction, streptozotocin causes
diabetes in three days [45,46]. Diabetes was confirmed three days after the streptozotocin
injection when the blood glucose value was recorded again, following the doubling of the
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initial values [46–48]. The average values of blood glucose in the groups of rats in which
diabetes was induced were between 326.8 ± 11.27 mg/dL and 331.4 ± 7.97 mg, while
in the case of the other groups (C, P, CV) average blood glucose values ranged between
117.3 ± 4.37 mg/dL and 118.4 ± 4.94 mg/dL.

2.2.4. Experimental Induction of Periodontitis

After the rats were anesthetized by an intramuscular injection of ketamine (90 mg/kg)
and xylazine (10 mg/kg), a surgical ligature was applied in the gingival sulcus of the left
mandibular first molar The 0.8 mm diameter stainless steel and chromium orthodontic
wire ligatures were kept in place for three consecutive months, favoring the adhesion of
dental plaque, gingival inflammation, and periodontitis. At the end of the three months,
an examination was conducted on all surfaces of the ligatured teeth by moving the dental
probe on all surfaces of the tooth and probing in six sites: three on the buccal side and three
on the oral side (mesial, central, and distal of the tooth). The deepest pocket found had
an average pocket depth of 3.6 mm. Before starting treatment with periodontal hydrogels,
orthodontic ligatures were removed [49–52].

2.2.5. Experimental Design

The animals were randomly distributed into nine groups (n = 10):
Group I—healthy group (C);
Group II—rats with induced diabetes (D);
Group III—rats with induced periodontitis (P);
Group IV—rats with induced periodontitis and diabetes (PD);
Group V—rats with induced periodontitis and diabetes, vehicle hydrogel treatment

(PDV);
Group VI—rats with induced periodontitis and diabetes treated with carvacrol (PDC);
Group VII—rats with induced periodontitis and diabetes treated with magnolol

(PDM);
Group VIII—rats with induced periodontitis and diabetes treated with carvacrol and

magnolol (PDCM);
Group IX—healthy group, treatment with vehicle gel (CV).
After diabetes and periodontitis were installed, 400 µg/mL of carvacrol and 25 µg/mL

of magnolol incorporated in bioadhesive hydrogels using carbopol 1% [35] were topically
applied in the gingival sulcus and the adjacent oral mucosa. A syringe with a blunt tip was
used at the level of the dental package of the molar with ligature, then dispersed evenly
with a spatula on the vestibular and lingual surfaces of the tooth [53,54]. The hydrogel was
applied two times a day; 1 g hydrogel was administered in the morning and 1 g hydrogel
in the evening for a period of 1 month, until the end of the experiment. In the case of
the PDCM group, the carvacrol hydrogel was applied in the morning and the magnolol
hydrogel in the evening. After applying the hydrogel, the animals were restrained from
food and water for 1 h for a better absorption at the gingival level.

Topical administration of carvacrol and magnolol hydrogels is not thought to cause
harm [55–59]. The reduction of possible adverse reactions as a result of the administration
of plant extracts was counteracted by continuous monitoring of the animals’ condition.

At the end of the periodontal treatment, blood samples were collected under general
anesthesia with ketamine and xylazine.

2.3. Blood Sample Collection and Analyses

Blood samples were collected from the retro-orbital sinus. To begin, 5 mL of blood
was collected from each rat to examine oxidative stress and antioxidant defense. The serum
was separated by centrifugation at 3000 rpm for 15 min. Samples were centrifuged at a low
temperature of 4 ◦C, and the supernatant was sealed and stored at −85 ◦C until analysis.
MDA (nmol/mL) was measured from serum as a parameter of oxidative stress and CAT
(U/mg protein) from erythrocyte lysate as a parameter of antioxidant defense.
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The biochemical markers were dosed in the Oxidative Stress Research Laboratory of
the Physiology Department of the “Iuliu Hat, ieganu” University of Medicine and Pharmacy
in Cluj-Napoca.

At the end of the experiment, all animals were euthanized under analgo-sedation con-
ditions. Euthanasia was performed with a triple dose of ketamine and xylazine, followed
by cervical dislocation. The methods used were in accordance with the provisions of art.
5 para. (5) lit. a) from Law no. 3/2014 on the protection of animals used for scientific
purposes, with subsequent amendments, and no exemptions were requested.

2.4. Determination of the Lipid Peroxidation Indicator—MDA

The indicator of lipid peroxidation, MDA, was determined by the spectrofluorimetric
method described by Conti et al. (1991) [60]. The method was based on the fact that
the MDA resulting in this process forms a fluorescent adduct with 2-thiobarbituric acid
(TBA). For MDA assay, the serum sample was boiled for 1 h with a solution of 10 mM
TBA in 75 mM K2HPO4 at pH 3. After quenching, the reaction product was extracted into
n-butanol. The concentration was determined in the organic phase after its separation
by centrifugation. Emission intensity measurement was performed at 534 nm with a
Perkin–Elmer spectrofluorometer, by a synchronous fluorescence technique, at an excitation-
emission wavelength difference of 14 nm. The concentration of MDA was established on
the basis of a calibration curve made with known concentrations of MDA processed in the
same way. Serum concentration values were expressed in nmol/mL [60].

2.5. Determination of the Indicator of Antioxidant Defense—CAT

The antioxidant defense indicator, CAT, was determined by the enzymatic method
described by Pippenger et al. (1998) [61]. CAT activity was measured in a reaction mixture
containing 10 mM hydrogen peroxide in 50 mM potassium phosphate buffer at pH 7.4.
The amount of enzyme that produced a decrease in absorbance of 0.43 at 25 ◦C per minute
at 240 nm in this system was defined as one unit of catalase activity. CAT activity was
expressed as U/mg protein [61].

2.6. Statistical Analysis

The statistical analysis was performed in the SPSS24 Software (version 24, Armonk,
New York, NY, USA) dedicated to statistical processing. To test whether there was a
significant impact on the groups of rats following the application of the gels, the ANOVA
test was applied, with the Scheffe test to test for significant differences between pairs of
groups. The impact of placebo treatment with vehicle gel administered to the PDV group
was tested using the paired Student’s t-test. The level of significance considered is p < 0.05.
If not, it is specified.

3. Results

We assayed the antioxidant capacity of carvacrol and magnolol using ABTS and DPPH
tests. At ABTS test application, different concentrations of carvacrol and magnolol resulted
different scavenging activities of the hydrogels (Table 2).

Table 2. Carvacrol and magnolol antioxidant activity using the ABTS method.

A
nt

io
xi

da
nt

ac
ti

vi
ty

ABTS Method

Concentration of
carvacrol (mg/mL) 18.75 37.5 75.0 150.0 225.0 300.0 375

Scavenging activity of
carvacrol (%) 23.89 ± 2.01 45.31 ± 2.87 47.89 ± 4.03 54.41 ± 5.41 61.05 ± 5.67 70.49 ± 6.34 80.31 ± 7.24

Concentration of
magnolol (mg/mL) 0.05 0.10 0.20 0.30 0.40 0.50 0.60

Scavenging activity of
magnolol (%) 25.44 ± 2.31 42.16 ± 3.56 70.29 ± 6.11 84.54 ± 7.67 88.41 ± 7.69 90.10 ± 8.74 91.27 ± 7.59

ABTS: 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid).
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DPPH, another method we applied, consists of a reaction mechanism of abstraction of
a hydrogen atom from a donor phenol and its coupling to the DPPH radical reagent with
the formation of a phenoxy radical and DPPH-H. The calculation formula was identical to
that of the ABTS test (Table 3).

Table 3. Carvacrol and magnolol antioxidant activity using the DPPH method.

A
nt

io
xi

da
nt

ac
ti

vi
ty

DPPH Method

Concentration of carvacrol
(mg/mL) 0.037 0.075 0.150 0.225 0.300 0.375

Inhibition percent of
carvacrol (%) 26.89 ± 1.82 35.41 ± 2.40 41.64 ± 3.14 48.88 ± 4.63 60.23 ± 6.11 71.77 ± 8.20

Concentration of
magnolol (mg/mL) 0.010 0.015 0.020 0.025 0.030 0.035

Inhibition percent of
magnolol (%) 39.12 ± 2.44 48.42 ± 4.08 63.38 ± 5.64 70.09 ± 7.01 82.41 ± 6.89 84.54 ± 7.84

DPPH: 2,2-diphenyl-2-picryl-hydrazyl.

In vitro release profiles of formulations containing carvacrol or magnolol were investi-
gated with the Franz diffusion method. Samples were taken from the receiver every 15 min
for up to 2 h. The permeation profiles of the active ingredients showed dependence on the
concentration of viscosity-increasing agent (carbopol 940) (Table 4).

Table 4. The percentage of carvacrol and magnolol released from hydrogels.

Time/Type
of Hydrogel

Carvacrol Magnolol

HG1/PBS HG1/PBS-
Alcohol HG2/PBS HG2/PBS-

Alcohol HG3/PBS HG3/PBS-
Alcohol HG4/PBS HG4/PBS-

Alcohol

0 0 0 0 0 0 0 0 0

5 30.07 41.88 34.54 44.22 23.81 37.69 31.28 41.67

10 41.11 57.99 46.88 59.94 37.97 53.8 43.62 57.39

15 53.22 69.11 58.71 69.16 50.08 64.92 55.45 67.61

30 73.31 81.88 77.19 83.05 70.17 76.69 73.93 79.98

45 79.98 84.22 83.01 85.85 76.84 81.03 79.75 83.81

60 82.37 84.54 85.63 87.41 79.23 81.35 82.37 84.86

75 82.99 85.27 86.28 87.81 79.85 82.08 83.02 85.16

90 83.81 86.34 87.16 88.96 80.67 83.15 83.9 85.41

105 85.46 86.89 88.37 90.58 82.32 83.7 85.11 87.03

120 85.91 87.8 88.52 90.92 82.77 84.61 85.26 87.37

HG: hydrogel; PBS: phosphate tampon.

The in vitro permeation profiles of carvacrol and magnolol through the membrane
impregnated with the receptor solution was also assayed (Figures 2–5).

At the end of the experiment, based on the results recorded from the blood level, the
descriptive and comparative statistical analysis of the nine groups of rats was performed.

Regarding the values of the MDA and CAT markers, we compared the results in
C-D-P-PD, PD-PDV-PDC-PDM-PDCM, and C-CV groups (Figure 6).

The ANOVA test for MDA and CAT variables in C, D, P, and PD groups resulted
in significant differences in the mean values of MDA and CAT in the four groups of rats
(p = 0.000) (Table 5).
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Table 5. ANOVA for MDA and CAT for groups C, D, P and PD in blood.

Variable Total Sum of Squares F p

MDA 19.386 21.678 0.000
CAT 399,430.733 37.140 0.000

MDA: malondialdehyde; CAT: catalase; p-value.
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To identify pairs of lots that show significant differences, the Scheffe test is applied
(Table 6).

Table 6. Scheffe test for C-D-P-PD batch pairs for MDA and CAT in blood.

Variable MDA CAT

Group Mean Difference p Mean Difference p

C
D −1.50087 * 0.000 261.35514 * 0.000
P −1.00078 * 0.006 148.04857 * 0.000

PD −1.90150 * 0.000 266.05286 * 0.000

D
C 1.50087 * 0.000 −261.35514 * 0.000
P 0.50009 0.285 −113.30657 * 0.007

PD −0.40063 0.475 4.69771 0.999

P
C 1.00078 * 0.006 −148.04857 * 0.000
D −0.50009 0.285 113.30657 * 0.007

PD −0.90072 * 0.014 118.00429 * 0.005

PD
C 1.90150 * 0.000 −266.05286 * 0.000
D 0.40063 0.475 −4.69771 0.999
P 0.90072 * 0.014 −118.00429 * 0.005

MDA: malondialdehyde; CAT: catalase; C: control group; D: diabetes group; P: periodontitis group; PD: periodon-
titis associated with diabetes group; * significance mean difference values at the significant level of p < 0.05.

After the hydrogel application, when applying the ANOVA test for the MDA and CAT
in PD, PDV, PDC, PDM, and PDCM group, significant differences are observed in the MDA
values in the five groups of rats (p = 0.000), but there are no significant differences for the
CAT values (p = 0.052) (Table 7).
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Table 7. ANOVA for MDA and CAT for PD-PDV-PDC-PDM-PDCM groups in blood.

Variable Total Sum of Squares F p

MDA 7.069 10.582 0.000
CAT 89,016.947 2.66 0.052

MDA: malondialdehyde; CAT: catalase; p-value.

To identify pairs of lots that show significant differences, the Scheffe test was applied
(Table 8).

Table 8. Scheffe test for lot pairs PD-PDV-PDC-PDM-PDCM for MDA and CAT in blood.

Variable MDA CAT

Group Mean Difference p Mean Difference p

PD

PDV 0.31936 0.469 −12.06900 0.993
PDC 0.39339 0.263 −18.36429 0.968
PDM 0.80666 * 0.001 −8.54571 0.998

PDCM 0.95069 * 0.000 −72.52286 0.105

PDV

PD −0.31936 0.469 12.06900 0.993
PDC 0.07403 0.995 −6.29529 0.999
PDM 0.48730 0.102 3.52329 1.000

PDCM 0.63133 * 0.017 −60.45386 0.239

PDC

PD −0.39339 0.263 18.36429 0.968
PDV −0.07403 0.995 6.29529 0.999
PDM 0.41327 0.219 9.81857 0.997

PDCM 0.55730 * 0.045 −54.15857 0.343

PDM

PD −0.80666 * 0.001 8.54571 0.998
PDV −0.48730 0.102 −3.52329 1.000
PDC −0.41327 0.219 −9.81857 0.997

PDCM 0.14403 0.944 −63.97714 0.191

PDCM

PD −0.95069 * 0.000 72.52286 0.105
PDV −0.63133 * 0.017 60.45386 0.239
PDC −0.55730 * 0.045 54.15857 0.343
PDM −0.14403 0.944 63.97714 0.191

MDA: malondialdehyde; CAT: catalase; PD: periodontitis associated with diabetes group; PDV: periodontitis
associated with diabetes treated with vehicle alone; PDC: periodontitis associated with diabetes treated with
carvacrol; PDM: periodontitis associated with diabetes treated with magnolol; PDCM: periodontitis associated
with diabetes treated with carvacrol and magnolol. * significance mean difference values at the significant level of
p < 0.05.

We also studied whether the gel used as a vehicle is involved in lipid peroxidation
or antioxidant defense. A comparison was made between the C and CV groups to see if
there were significant differences in MDA and CAT markers. Baseline values (group C)
and values after hydrogel application (group CV) were compared. To determine whether
the gel base has a significant effect, the Paired t-Student test was used (Table 9).

Table 9. Paired t-Student’s test for C-CV lot pair for blood MDA and CAT variables.

Pair Variable Mean SD t p

C-CV MDA −0.18597 0.35157 −1.400 0.211
C-CV CAT 90.17714 100.01154 2.386 0.054

MDA: malondialdehyde; CAT: catalase; C: control group; CV: control group treated with vehicle alone; SD:
standard deviation; p-value.

4. Disscusion

In our research, the induction of periodontitis and the diabetes in Wistar rats resulted
in increased values of MDA, an indicator of oxidative stress, and decreased values of CAT,
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an indicator of the antioxidant capacity, measured in the blood of the experimental animals.
To counteract the oxidative stress, we used periodontal hydrogels in which we incorporated
carvacrol and magnolol.

For the induction of periodontitis, we used orthodontic wires placed around the
cervical region of the second lower molars of the rats to promote the accumulation of the
bacterial plaque and the instalation of periodontitis. Ligatures-induced periodontitis in
rats is a frequently used method. Molecular alteration in this experimental model are the
same with the ones that humans develop in periodontitis. Clinically, ligature-induced
periodontitis produces the distruction of the gingival atachement, the apical migration of
the jonctional epithelium, and bone resorbtion [62,63].

Diabetes was induced with streprozotocine. Streprozotocine administration in rats
results in structural, functional, and biochemical modifications similar to those present in
patients with diabetes [64]. The pathogenetic mechanism is based on the reduction of nicoti-
namide adenine dinucleotide in the pancreatic Langerhans beta cells by streprozotocine,
followed by histopatologic events that mediate diabetes instalation [46].

MDA values increased significantly in groups D, P, PD vs. C (p < 0.05), implicating
oxidative stress in the pathogenesis of these diseases [65]. Similar observations were made
in other studies [47,66–68]. Comparing periodontitis rats (P group) and periodontitis with
diabetes rats (PD group), we obtained MDA values significantly raised in PD group. The
accumulation of oxidative stress in the case of the association between the diseases could
explain our outcomes. Other researchers recently observed that simultaneous induction
of periodontitis and diabetes synergistic aggravated the local and general oxidative alter-
ations [39]. Their conclusion was supported by the fact that periodontitis was more severe
when associated with diabetes [39].

When evaluating the antioxidant defense, we determined significantly lower CAT
levels in the P, D, and DP groups compared with the control group (C) (p < 0.05). This result
could be explained by the depletion of the antioxidant capacity in the attempt to counteract
the oxidative stress [51,69].

In the case of diabetes (group D) and diabetes and periodontitis (PD), the antioxidant
capacity was more altered, with CAT levels being significantly lowered compared with
those registered in the periodontitis group (P) (p < 0.05). Our results support other studies
in which diabetes reduced the antioxidant defense [70]. Diabetes type 2 hyperglycemia
reduces the production and activity of many antioxidant enzymes, including CAT, probably
by glycation mediation. Moreover, in diabetes, the antioxidant nonenzymatic defense
(vitamin C, E, A) is also diminished, amplifying the oxidative stress [71].

To counteract the oxidative stress implicated in the pathogenesis of periodontitis and
diabetes, we used periodontal gels in which we incorporated carvacrol and magnolol.

In establishing the composition of the hydrogels and testing the performance of
hydrogels, the concentration of carbopol in the formula influenced the release of the
active ingredient.

Thus, the higher the amount of carbopol used in the formulation of hydrogels, the
slower was the release of the active ingredient from the hydrogels.

Another factor influencing the release of the active ingredient from the hydrogel was
the alcohol concentration. The presence of alcohol in the release medium stimulated the
faster release of the active ingredient from the hydrogel.

The IC50 was obtained for a concentration of 0.214 mg/mL for carvacrol and 0.014 mg/mL
for magnolol [72–75].

The antioxidant capacity of carvacrol was demonstrated in other in vivo and in vitro
studies as well. Carvacrol was found to inhibit the oxidation due to its –OH group bonded to
the aromatic ring [28,76], to eliminate free radicals and ROS [27,77,78], enhance the produc-
tion of CAT thereby preventing the tissue alterations resulted from chronic stress [79–81].
A previous study also supports our findings that carvacrol could reduce MDA and increase
CAT, therefore sustaining carvacrol reducing oxidative stress [82].
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In exclusive administration of carvacrol (PDC group), the present research revealed a
non-significant decrease in MDA values and a non-significant increase in circulating CAT
values when compared to the PD group. We consider that a higher animal number in a
future study, or increased carvacrol concentration in the gels, could result in statistically
significant results.

Magnolol was less studied than carvacrol and more studied in relation with diabetes
and its complications than periodontitis. Magnolol was found to have antioxidant and
anti-inflammatory properties via inhibition of AGE, glycation end products that upregulate
the synthesis of proinflammatory mediators as TNF-a and IL-6. AGE generates ROS
that seem to contribute to the vascular lesions implicated in different complications of
diabetes [83–85]. CAT was also augmented by oral administration of magnolol in an in vivo
diabetes experiment [86]. Recently, magnolol was reported to reduce ROS production in an
in vitro diabetic periodontitis model [87].

In our study, the single application of magnolol hydrogel in rats with diabetes and
periodontitis (PDM group) demonstrated a significant decrease in MDA values (p < 0.05).
and a non-significant increase in circulating CAT values when compared to the PD group.

By comparing the mean values of the MDA marker in the PDC and PDM groups, we
found a greater decrease in this marker after magnolol administration. Regarding the mean
values of the CAT marker, the comparison between the same groups identified a better
increase of this marker after the administration of carvacrol. To decide whether to accept or
reject the insignificant changes found, they must be investigated in larger groups of rats.
The fact that magnolol is more effective on MDA and carvacrol on CAT might determine a
better antioxidant effect in the case of combined treatment.

In the situation where we applied both extracts (PDCM group), we obtained signifi-
cantly better results compared to the independent administration of carvacrol (PDC group).
This may be due to the better efficacy of carvacrol on CAT and magnolol on MDA, thus
demonstrating a synergistic relationship.

The association of carvacrol with magnolol (PDCM group) demonstrated a significant
decrease in MDA values (p < 0.05) and a non-significant increase in CAT values in the
blood of rats with periodontitis associated with diabetes mellitus when compared to the
PD group. It is possible that significantly improved general antioxidant defense would be
evident after a longer period of local gels application.

In the pair of groups C-CV, there are no significant differences in the level of the
MDA marker (p = 0.211) and in the level of the CAT marker (p = 0.054), which means
that the placebo-administered vehicle gel was not involved in the production of oxidative
stress and could be used as a vehicle for the incorporation of various natural extracts. Our
results show that the association of the two extracts has a potentiated effect in reducing
lipid peroxidation.

We have not identified, in the specialized literature, studies comparing the associated
therapeutic effect of carvacrol with magnolol. To our knowledge, the present research
studies the antioxidant effect of the combined treatment of the two extracts on periodontitis
associated with diabetes mellitus for the first time.

Since both carvacrol and magnolol have antibacterial activity on the periodontal
biofilm by exerting their action on microorganism like Aggregatibacter actinomycetem-
comitan, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, or
Micrococcus luteus [25,56,58,88]. Carvacrol works on microbial cells, damaging bacte-
rial membranes both structurally and functionally, while magnolol suppresses important
bacteria that cause periodontal disease to start [25]. Therefore, reduced oxidative stress
following carvacrol and magnolol treatment could be a result, in part, of their antibacterial
activity [89] and represents a possible future research direction.

5. Conclusions

By significantly lowering blood lipid peroxidation (low MDA values), periodontal gels
containing both magnolol and carvacrol showed an antioxidant effect in diabetes-related
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periodontitis. While statistically not as significant, the combined administration of the two
extracts—carvacrol and magnolol—was more effective than magnolol given alone.
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