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Abstract: Objectives: This study aimed to investigate the response of human gingival fibroblasts
(HGFB) and human gingival keratinocytes (HGKC) towards different dental implant abutment
materials. Methods: Five materials were investigated: (1) titanium (Ti), (2) titanium nitride (TiN),
(3) cobalt-chromium (CoCr), (4) zirconia (ZrO2), and (5) modified polyether ether ketone (m-PEEK).
Both cell lines were cultured, expanded, and seeded in accordance with the protocol of their supplier.
Cell proliferation and cytotoxicity were evaluated at days 1, 3, 5, and 10 using colourimetric viability
and cytotoxicity assays. Data were analysed via two-way ANOVA, one-way ANOVA, and Tukey’s
post hoc test (p < 0.05 for all tests). Results: There was a statistically significant difference in cell
proliferation of HGKC and HGFB cells in contact with different abutment materials at different
time points, with no significant interaction between different materials. There was a significant
effect on cell proliferation and cytotoxicity with different exposure times (p < 0.0001) for each
material. Cell proliferation rates were comparable for both cell lines at the beginning of the study,
however, HGFB showed higher proliferation rates for all materials at day 10 with better proliferation
activities with ZrO and m-PEEK (40.27%) and (48.38%) respectively. HGKC showed significant
interactions (p < 0.0001) in cytotoxicity between different materials. Conclusion: The present in vitro
assessment investigated the biocompatibility of different abutment materials with soft tissue cells
(HGFB and HGKC). The findings suggest that m-PEEK and TiN are biologically compatible materials
with human cells that represent the soft tissue and can be considered as alternative implant abutment
materials to Ti and ZrO2, especially when the aesthetic is of concern.

Keywords: implant abutment materials; human gingival fibroblasts; human gingival keratinocytes;
cell proliferation; cytotoxicity

1. Introduction

Over the last 60 years, the field of implant dentistry has markedly evolved to pro-
vide long-term successful and predictable treatment outcomes with many biological and
mechanical advantages over conventional prostheses [1]. It has also shifted from the surgi-
cal placement of implants according to bone availability to prosthetically driven implant
planning and placement. This shift has influenced the range of available dental implant
materials available to restore single crowns, in partially and fully edentulous jaws [2].

Dental implant therapy requires transmucosal suprastructures to act as a founda-
tion for the restorations [3]. Ti and metal alloys have been, for many decades, used as
transmucosal abutments, and the appearance of the grey metallic colour of the implant
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or its abutment through soft tissue have raised an aesthetic challenge, particularly in the
maxillary anterior segment [3,4]. The aesthetic improvement and colour modification of the
abutment can be achieved by different means including modifying the Ti material and/or
surface or the use of other materials [5].

Recently, ZrO2 has been widely used, particularly in the anterior region of the oral
cavity [6,7]. ZrO2-based implants and abutments are deemed to be biologically inert,
with no adverse and/or unfavourable reaction with host tissues after implant placement
and abutment insertion [8]. The more aesthetically pleasing colour and reduced bacterial
plaque adhesion and accumulation have given ZrO2 a wider range of applications in
restorative and prosthetic dentistry [9]. ZrO2 abutments demonstrate a lesser effect on
optical outcomes of peri-implant mucosal tissue, when compared with Ti abutments [10].

CoCr has been historically one of the most used alloys in dentistry owing to its high
strength, durability, biocompatibility, corrosion resistance, and bond strength to ceramics.
Yet, one of the biggest disadvantages of this material is the effect of the cumulative distor-
tion, porosity, and high labour and manufacturing costs related to the casting processes
and structural hardness, which complicates the finishing process of the restoration [2].

Due to Ti’s low strength and its ability to undergo physical abrasion when exposed to
the oral environment [11,12], as well as the grey colour that raises aesthetic concerns when
it is not adequately masked by soft tissue at the gingival area [13], TiN-coating has been
recently introduced to overcome these challenges. TiN-coated dental implants show higher
physicomechanical properties [14,15] and allow for better camouflage under the gingival
tissue than the conventional grey Ti implants.

Numerous medical devices including dental implants, abutments, healing caps, or-
thodontic braces, and most notably, and denture prosthetic frameworks have been de-
veloped via academic research and commercialization of biocompatible polymers and
polymer-based composite materials [16]. Consequently, polyether ether ketone (PEEK) and
similar composites have been improved to have a wide variety of physical, mechanical,
and surface characteristics that may be tailored to meet the needs of various oral implant
applications [17].

At present, there have been some studies on PEEK as a restorative material for fixed
bridges, orthodontic brackets, and implant abutments [18,19]. However, when used as an
implant body, PEEK has insufficient biological activity and cannot form good osseointe-
gration with the surrounding bone. These defects severely limit the practical and clinical
application of PEEK in dental implantology. Therefore, different modification methods that
can enhance PEEK’s biological activities have recently become of interest [20].

Early research on PEEK has been controversial and inconclusive in terms of the mate-
rial’s biological behaviour and biocompatibility. Consequently, different strategies have
been introduced to improve the biologic properties of PEEK implants/implant compo-
nents [21–24].

A central issue in the long-term success of dental implant therapy is not only re-
lated to the integrity of osseointegration around the implant but also influenced by the
health of the epithelium and the quality of the connective tissue attachment to the implant
abutment [25,26].

HGFBs and HGKCs are the main cell populations in peri-implant soft tissue, and they
are crucial for both wound healing and regeneration processes. The number, the biological
integrity, and the bioactivity of these cells at the implant–gingival interface may impact the
formation and the quality of peri-implant soft-tissue seal [27]. It has been hypothesized
that the surface characteristics and the type of materials used in manufacturing implant
abutments may be important for determining the quality of the soft tissue seal around the
implant abutment [28].

Several in vitro studies with different cell types have been used to analyse cell response
towards various abutment materials and surfaces [29–31]. However, there are insufficient
data on HGKC behaviour and their response to different abutment materials.
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Using an in vitro model, this experiment examined how HGFB and HGKC cells’
proliferation and cytotoxicity were affected by different abutment materials with the same
surface roughness that represents the currently used abutment materials.

2. Materials and Methods
2.1. Discs’ Preparation

Five different materials were selected: Ti, TiN, CoCr, ZrO2, and m-PEEK. Twenty-two
discs of each material were used in this experimental work (Figure 1). All discs were
produced and received from Zimmer Biomet 3i (Palm Beach Gardens, FL, USA). All discs
were 14 mm in diameter and 1 mm in thickness.
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All discs were prepared, cleaned, sterilized, and packaged by Zimmer Biomet 3i (Palm
Beach Gardens, FL, USA).

The Ti and CoCr discs were machined on a Star SV-32 Swiss style lathe. TiN coating
was conducted via a standard physical vapour deposition (PVD) method, in accordance
with the specifications of the manufacturer. The ZrO2 discs were machined with an Zfx
inhouse 5 axis milling machine using CAM software (Hyperdent V8.2.3) at 14 min milling
time per part. The cutting tools used for milling were T20 (92 mm), T15 (1.5 mm), and
T10 (1 mm). Furthermore, the PEEK material used in this study was the modified version,
where the manufacturer used carbon and glass particles within the PEEK to improve
other properties.

All discs were placed in containers, immersed in heavy duty cleaning detergent
(Sonicor123, West Babylon, New York, NY, USA), and ultrasonically cleaned for 10 min at
65 ◦C. They were then rinsed under running tap water until all the detergent was removed.
Immediately after, they were ultrasonically cleaned in deionized water for 10 min as a final
rinse. Finally, they were dried in an oven for 30 min at 100–105 ◦C, except for the m-PEEK
discs, where the oven temperature was lowered to 60–70 ◦C, as their heat resistance is
lower than the other materials.

Dried samples were then Gamma-sterilized at Gamma dose range of 25–38 kGy and
validated to achieve the Sterility Assurance Level of 10-6, except for the ZrO2 discs, which
were sterilized by autoclaving.

Discs were allocated to different analysis as follows: 2 discs of each material used
for surface roughness measurements, 2 discs of each material were used for SEM analysis,
9 discs of each material were used for cell proliferation analysis, and 9 discs of each material
were used for cell cytotoxicity analysis (Figure 2).
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2.2. Surface Roughness Measurements

Two discs of each group were randomly selected and used for surface roughness
measurement. Three points on each side of the disc were measured using Sa value, and the
average was used.

The surface roughness of all discs was measured using a 3D, non-contact, high res-
olution contour GT-K optical surface profiler (Veeco ContourGT, Tuscon, AZ, USA). The
Contour GT-K uses white light interferometry to determine surface topography from
nanometre-scale roughness, through millimetre-scale steps with sub-nanometre resolution.
Its measurement accuracy is in the single-digit nanometre range and can measure changes
in surface height within a single field of view up to 10 millimetres in difference.

To perform the measurement, a vertical scanning interferometry (VSI) mode was
selected. A 50× objective lens that provides an area of 174.7 (x) and 132 (y) microns was
used. A Gaussian regression filter with a short wavelength cut-off of 25 µm (0.025 mm) was
applied before determining the surface roughness parameters. Mean surface roughness
(Sa) values were used to represent the surface roughness as recommended by the dental
implant research methodology and the scientific literature [32,33].

2.3. SEM Surface Morphology Analysis

The surface of (n = 2) discs of each group (randomly selected) were examined using
a scanning electron microscope (SEM) (Quanta FEG 250 SEM, Edificio I + D—Campus
Río Ebro C/Mariano Esquillor s/n 50018 Zaragoza—Spain) (Figure 2). The images were
obtained using the following parameters: 485 X magnification, accelerating voltage of 20 kV,
spot size of 3.0, and working distance (WD) of 7.6–7.9 mm.

2.4. HGFB and HGKC Cell Culture Preparation

Commercially available normal primary cell lines were purchased and cultured, in ac-
cordance with the recommendations of the manufacturer (ATCC and LifeLine Cell Technol-
ogy), for HGFB and HGKC, respectively. Standard protocols for cell culture, maintenance,
washing, freezing, and thawing were maintained throughout the whole experiment. Both



Dent. J. 2022, 10, 192 5 of 17

cell lines were grown in their relevant growth media with all the necessary supplements
and growth factors, as detailed below.

HGFB were cultured with fibroblast basal medium supplemented with fibroblast
growth kit. The final concentration of each component was as follows (HGF complete
growth media): L-glutamine: 7.5 mM; rh FGF-β: 5 ng/mL; rh insulin: 5 µg/mL; hydrocor-
tisone: 1 µg/mL; ascorbic acid: 50 µg/mL; foetal bovine serum: 2%.

HGKC were grown in their relevant growth media: DermaLife K Serum-Free Ker-
atinocyte Culture Medium and DermaLife K LifeFactor Kit. The final concentration of
each component in complete keratinocyte growth medium was as follows: rh Insulin
LifeFactor 5 µg/mL, L-Glutamine LifeFactor 6 mM, Epinephrine LifeFactor 1 µM, Apo-
Transferrin 0.5 µg/mL, rh TGF-α LifeFactor 0.5 ng/mL, Extract P LifeFactor 0.4%, and,
finally, Hydrocortisone Hemisuccinate LifeFactor 100 ng/mL.

Both cell lines were expanded and passaged at regular periods based on their growth
characteristics and in accordance with the protocol of the manufacturers. Incubation was
performed at 37 ◦C, and 5% CO2 (Panasonic CO2 Incubator, MCO-170AIC, Panasonic
Healthcare Co., Ltd., Tokyo, Japan). Discs were placed in 24-well plates in 500 µL GM
and incubated for 24 h before seeding the cells. Once confluent, cells were detached using
0.25% Trypsin-EDTA (Gibco, Life Technologies, Inc., Burlington, ON, Canada). Cells were
then counted using Millipore Scepter cell counter (Merck Millipore, Watford, UK) and
5 × 104 cells seeded on each disc in a 24-well culture plate (Corning Costar Ultra-Low
attachment multi-well plates, Corning Inc., Corning, NY, USA) in 500 µL of complete
growth medium. The ratio of the surface area of the sample to medium volume was
3 cm2/mL, which is within the ISO standard ratio of 0.5−6 cm2/mL, ISO10933 [34].

All cell culture experiments were performed using appropriate controls (growth
medium + cells only) with biological and instrumental triplicates (at least 9 discs of each
material for each assay) and replicated at least three times. All experiments were executed
by (MAO) at Blond McIndoe Laboratories, Stopford Building, Manchester, UK.

2.5. Cell Viability

Cellular viability of 100% was attributed to control wells, where cells were cultured
with no discs (low control (LC) or positive growth control). Cellular viability was quantified
via a colourimetric assay using invitrogen alamarBlue Cell Viability Reagent (Life Technolo-
gies Corporation, Thermo Fisher Scientific, Rockford, IL, USA). At each time point, both
cell lines were exposed to alamarBlue (1:9 reagent:GM) for 1 h in the incubator (Panasonic
CO2 Incubator, MCO-170AIC, Panasonic Healthcare Co., Ltd., Tokyo, Japan) at 37 ◦C and
5% CO2. Then, 100 µL of supernatant was transferred into a 96-well plate in triplicates for
analysis at each time point. Cell viability was measured at four-time points, day 1, 3, 5,
and 10 of cell growth. The 96-well plate (Corning Costar Ultra-Low attachment multi-well
plates Corning Inc., Corning, NY, USA) was then read with a UVM 340-microplate reader
at excitation wavelength of 570 nm and emission wavelength of 600 nm (ASYS, Scientific
laboratory supplies). Cell viability was calculated according to the following equation [35]:

Cell viability % =
A570 − (A600 × R0) for test well

A570 − (A600 × R0) positive growth control
× 100

where A570 and A600 are absorbance at 570 and 600 nm, respectively, and R0 is the
correction factor calculated from (A570/A600) of the positive growth control.

2.6. Cytotoxicity

Cytotoxicity of the tested materials was investigated using a CyQUANT LDH Cyto-
toxicity Assay kit (Thermo Fisher Scientific, IL, USA). Cytotoxicity in both cell lines was
measured at 4 time points, day 1, 3, 5, and 10. At each time point, in accordance with
the protocol of the manufacturer, 50 µL of lysis buffer (contain membranolytic particles)
were added to the specific time point wells (maximum LDH release, high control, HC),
50 µL of sterile-filtered, BioReagent water (SIGMA-ALDRICHR, Life Science, Watford,
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UK) were added to the low-control wells (spontaneous LDH release), and the plates were
incubated at 37 ◦C in 5% CO2 for 45 min. The cytotoxicity was then measured using 50 µL
of the supernatant, and 50 µL of LDH cell reaction solution was incubated for 30 min at
room temperature in a dark cabinet. The reaction was stopped using 50 µL of the LDH
kit stop solution. The 96-well plate (Corning Costar Ultra-Low attachment multi-well
plates Corning Inc., Corning, NY, USA) was read with a UVM 340-microplate reader at
490 nm subtracted from 680 nm (ASYS, Scientific laboratory supplies) and cytotoxicity was
calculated according to the following equation [36]:

Cytotoxicity % =
Specimen − treated LDH activity − Spontaneous LDH activity

Maximum LDH activity − Spontaneous LDH activity
× 100

where specimen-treated LDH activity is the LDH amount expressed by cells cultured with
the discs, maximum LDH activity is the LDH amount expressed by cells treated with lysis
buffer, and the spontaneous LDH activity is the LDH amount expressed by cells treated
with sterile water.

2.7. Statistical Analysis

Data were analysed using statistical software (GraphPad Prism version 9.1.2 (226) (San
Diego, CA, USA)) and found to be normally distributed (Shapiro-Wilk’s test). Two-way
ANOVA was performed for materials effect, time effect, and their interaction, followed by
one-way ANOVA and Tukey’s multiple comparisons, which were performed to compare cell
viability and cytotoxicity for different materials at each time point (p value = 0.05 for all tests).

3. Results
3.1. Surface Roughness

Sa values (mean—standard deviation (SD)) obtained for materials are presented in
(Table 1) below, as well as the maximum and minimum Sa values of the three randomly
selected points on each disc side.

Table 1. Sa mean values and SD for Ti, TiN, CoCr, ZrO2, and m-PEEK of the three randomly selected
pointes on each side of the discs.

Abutment Material Ti TiN CoCr ZrO2 m-PEEK

Sa value: mean µm
(SD)

0.233 µm
(0.018)

0.235 µm
(0.012)

0.349 µm
(0.014)

0.363 µm
(0.013)

0.232 µm
(0.021)

Minimum Sa value 0.212 µm 0.222 µm 0.340 µm 0.213 µm 0.212 µm

Maximum Sa value 0.247 µm 0.247 µm 0.366 µm 0.373 µm 0.255 µm

3.2. Surface Morphology Analysis

The qualitative surface topography analysis (images) of the different materials studied
in this experiment are illustrated in Figure 3. Figure 3A shows the machined surface of the
Ti material with concentric machining pattern providing different degrees of peaks and
troughs. Figure 3B shows a more regular pattern of machining as a TiN layer covering
the Ti disc; however, the peaks and troughs of the pattern appear to be less pronounced.
Figure 3C shows the CoCr disc surface with a regular pattern and pronounced peaks and
troughs. This pattern is not replicated in Figure 3D, where the surface of the ZrO2 disc
appears to be very granular and irregular, with no defined peaks and troughs. Figure 3E
shows the m-PEEK disc surface with the same regular concentric pattern as the other metal
discs, although with less pronounced peaks and troughs indicating a smoother surface.
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Figure 3. SEM images showing the surface of the investigated materials (A): Ti, (B): TiN, (C): CoCr,
(D): ZrO2, and (E): m-PEEK).

3.3. Cell Viability

There was a significant material and time difference in cell proliferation of both HGFB
and HGKC cells in contact with all the investigated materials with no significant interaction
between different groups.

HGKC showed the highest cell proliferation when cultured with Ti at day 1 with
69.96%; however, it was not significantly different from the rest of the other investigated
materials (Table 2). At day 3, HGKC showed lower proliferation than day 1, with the
following order from low to high: m-PEEK < ZrO2 < CoCr < Ti < TiN (Figure 4). Notably,
HGKC exhibited the lowest proliferation rates with all materials at day 10, with the fol-
lowing order from lowest to highest, which was almost the same order throughout the
whole experiment: m-PEEK < ZrO2 < CoCr < Ti < TiN (Table 2). In general, TiN showed
the highest proliferation rates of HGKC at days 3, 5, and 10 (Table 2).

Table 2. The mean and standard deviation values of cell proliferation percentage at days 1, 3, 5,
and 10 (HGKC). Values with the same superscript letters represents a non-significant difference
(Tukey’s post hoc (p > 0.05)) between the investigated materials at each time point.

Materials
Ti TiN CoCr ZrO2 m-PEEK

Time

Day 1 69.96 (20.17) A 63.80 (13.69) A 59.81 (12.13) A 53.50 (14.15) A 53.9 (21.55) A

Day 3 30.69 (11.3) A 35.42 (6.57) A 25.39 (12.53) A,B 20.48 (4.19) B 20.15 (3.29) B

Day 5 20.24 (5.18) A 21.79 (10.12) A 8.43 (2.99) B 10.99 (3.25) B 8.27 (2.28) B

Day 10 6.53 (4.03) A 16.01 (5.70) B 4.69 (2.35) A 3.81 (2.03) A 3.3 (0.87) A

HGFB showed the highest proliferation rate when cultured with m-PEEK at day 3,
with a proliferation of 61.81%, and it exhibited the highest proliferation with all the other
materials at day 1, with the following order from lowest to highest: CoCr < TiN < Ti < ZrO2
(Figure 5). HGFB exhibited the lowest proliferation with CoCr, TiN, and Ti at day 3, with
proliferation rates of 13.77% < 14.49% < 15.84, respectively. These results were significantly
lower than those of ZrO2 and m-PEEK at the same time point (Table 3). In general, there
was a pattern of high proliferation rates at day 1 for all materials, then the proliferation
rates decreased at day 3, especially significantly for Ti, CoCr, and TiN, and reduced further
at day 5 for all materials. At day 10, the pattern changed to an increase in the proliferation
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rate of HGFB in contact with all investigated materials, with m-PEEK showing the highest
rate of 48.38% (Figure 5).
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Two-way ANOVA for both cell types showed a significant material and time effect
(p < 0.0001) and nonsignificant interaction.
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Table 3. The mean and standard deviation values of cell proliferation percentage at days 1, 3, 5, and 10
(HGFB). Values with the same superscript letters represents a non-significant difference (Tukey’s post
hoc (p > 0.05)) between the investigated materials at each time point.

Materials
Ti TiN CoCr ZrO2 m-PEEK

Time

Day 1 35.78 (20.99) A,C 31.16 (16.79) A 29.00 (16.18) A 58.18 (15.2) B,C 60.01 (15.06) B

Day 3 17.65 (5.37) A 20.65 (7.04) A 18.18 (5.7) A 56.09 (12.6) B 61.81 (11.96) B

Day 5 15.84 (3.52) A 14.49 (4.22) A 13.77 (5.12) A 33.40 (6.82) C 44.38 (6.80) B

Day 10 19.09 (3.27) A 21.87 (6.06) A 21.05 (6.92) A 40.27 (9.30) B 48.38 (9.40) B

3.4. Cytotoxicity

The results illustrated significant time and material difference as well as a significant
interaction between different materials when discs were in contact with HGKC (Table 4).
However, there was only significant time difference for HGFB when cultured on different
materials. With nonsignificant material difference and no significant interaction between
the different investigated groups (Table 4).

Table 4. The mean and standard deviation values of HGKC cell cytotoxicity percentage at days 1, 3,
5, and 10. Values with the same superscript letters represents a non-significant difference (Tukey’s
post hoc (p > 0.05)) between the investigated materials at each time point.

Materials
Ti TiN CoCr ZrO2 m-PEEK

Time

Day 1 16.34 (3.45) A 25.62 (2.47) B,D 30.33 (6.57) B,C 35.36 (2.49) C 22.85 (6.06) D

Day 3 20.71 (3.47) A,B,D 23.80 (4.06) A,D 14.33 (5.17) B,C,E 9.56 (7.69) C 18.86 (2.82) D,E

Day 5 10.34 (4.13) A,D 6.75 (2.66) A,D 4.66 (2.04) B 2.91 (1.01) C 8.72 (2.93) D

Day 10 17.86 (3.32) A,C 17.23 (2.97) A,C,E 5.68 (1.15) B,E 1.96 (0.48) B 14.77 (2.93) C

For HGKC, all material exhibited the highest percentage of cytotoxicity at day 1, apart
from Ti when its highest toxicity was at day 3 (Table 4). There was a significant materials
and time difference as well as a significant interaction between all the investigated groups
throughout the whole experiment, when HGKC was cultured on the discs (Table 4). With
time, the cytotoxicity dramatically dropped for all materials at day 3, apart from Ti, which
increased by ~4% (Figure 6). Cytotoxicity of the tested materials reached its lowest point
at day 5, with the following order from lowest to highest: ZrO2 < CoCr < TiN < m-PEEK
< Ti with 2.91% < 4.66% < 6.75% < 8.72% < 10.34%, respectively. At day 10, there was an
increase in the cytotoxic activity for all materials, except for ZrO2, where it further reduced
to 1.96% (Table 4).

Two-way ANOVA test showed a significant time and material difference and a signifi-
cant interaction between different materials (p < 0.0001).

On the other hand, HGFB showed the lowest cytotoxicity effect for all materials at
day 1, in the following order from lowest to highest: Ti < TiN < ZrO2 < m-PEEK < CoCr
(Table 5). For the following days, the cytotoxic effect of the tested materials on HGFB
gradually increased to reach its highest level at day 10 (Figure 7), with the following order
from lowest to highest: m-PEEK < Ti < TiN < CoCr < ZrO2, with the lowest percentage
(15.99%) exhibited by m-PEEK, and the highest (28.46%) exhibited by ZrO2 (Table 5).
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Materials
Ti TiN CoCr ZrO2 m-PEEK

Time

Day 1 −1.02 (2.03) A −0.84 (2.70) A −0.51 (2.92) A −0.55 (3.33) A −0.52 (2.16) A

Day 3 3.79 (2.90) A 7.22 (4.03) A,C 8.51 (2.89) B,C 6.80 (2.01) A,B 14.75 (4.01) D

Day 5 11.61 (2.15) A 8.36 (2.51) A 8.07 (2.24) A 11.72 (4.12) A 11.01 (2.27) A

Day 10 26.25 (6.17) A 27.29 (10.77) A 27.51 (4.82) A 28.46 (7.35) A 15.99 (5.27) B
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Two-way ANOVA showed a significant time difference (p < 0.0001), nonetheless, there
were a nonsignificant material effect and no significant interactions.

Both assays were compared for each material over each time point for both cell lines
(Figures 8 and 9). In HGKC, a nonsignificant positive correlation for Ti, TiN, and m-PEEK
and a significant positive correlation for CoCr (p = 0.004) and ZrO2 (p = 0.008) were found
between viability and cytotoxicity. While in HGFB, a nonsignificant negative correlation
between viability and cytotoxicity was found for all tested materials.
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HGKC cell proliferation was higher than that of HGFB at days 1, 3, and 5 for Ti,
TiN, and CoCr. Conversely, cell proliferation of HGFB was higher than that of HGKC
throughout the whole experiment for ZrO2 and m-PEEK, with m-PEEK exhibiting the
highest cell proliferation percentage for HGFB, while TiN exhibited the highest percentage
for HGKC at day 10 (Tables 2 and 3).

These results were generally reversed for cytotoxicity, with HGFB showing an initial
very low cytotoxicity that then increased gradually throughout the experiment to reach
the end of 20 s for all materials, except m-PEEK (Table 5). On the other hand, HGKC
showed initially high cytotoxicity to all materials, which decreased from days 3 to 5 and
then increased at day 10 for all materials, except for ZrO2, which exhibited the lowest
cytotoxicity level at day 10 (Table 4).
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4. Discussion

In the present study, five implant abutment materials (Ti, TiN, CoCr, ZrO2, and m-PEEK)
with similar manufacturing techniques, supplier, and degrees of surface roughness were
investigated in terms of their influence on HGKC and HGFB proliferation and cytotoxicity.

Previous experiments have investigated the biocompatibility of PEEK for human
osteoblast-like cells (MG-63) and concluded that the cell metabolic activity of MG-63 on
PEEK was similar to Ti and Zr [37,38]. Ti dental implants are currently regarded as the gold
standard in the field of implant dentistry. As with Ti alloy, Zr and PEEK are considered as
bioinert materials [38]—when used as a dental implant—and their osseointegration ability
is no different. However, the focal point of the current study is the application of m-PEEK
as an implant abutment.

It has been reported that the type of the material used, its surface roughness, me-
chanical properties, wettability, and surface energy all can affect cellular adhesion [39]. In
general, PEEK has higher hydrophobicity and lower surface energy than metallic or ceramic
materials, due to the presence of fewer polar functional groups on PEEK surfaces, and the
results from this study are consistent with this [40]; however, our focus was only on the
biological effect of the type and the roughness of the materials used as an implant abutment.

In terms of cell proliferation, the findings of this study showed that HGFB exhib-
ited a better proliferation rate when seeded on m-PEEK and ZrO2 discs from day 1 to
day 10. Similar results were reported in previous studies, when PEEK was modified with
plasma spraying and compared with coated and non-coated Ti, Zr, and other materials
and surfaces [28,41]. On the other hand, both materials (m-PEEK and ZrO2) exhibited the
smallest proliferation percentage at day 10 compared to Ti, TiN, and CoCr, when cultured
with HGKC.

Ramenzoni et al. and Paulami et al. [42,43] assessed the consequence of m-PEEK
implant abutments on epithelial keratinocyte migration, and they found that all the tested
groups were biocompatible, which is the same as the final results we had in this study;
however, they both reported that the m-PEEK surface had better cell proliferation and
biocompatibility than Ti, TiN-coated, and zirconia, and this was different from our findings
which could be due to the saturation of the surface with HGKC and there was no more
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space on the surface where the cells could proliferate more. The reason for having different
results as mentioned by Ramenzoni et al. [42] could be due to “variations in cell culture times
and types of cells and assays used”, as they checked the viability only at one time point after
24 h [42], and two times in 24, and 48 h [43]. Another reason is that HGKC are very delicate,
and their culturing procedure can be challenging. Nonetheless, the cytotoxicity results in
this experiment confirms the biocompatibility of m-PEEK (Table 3).

In terms of cytotoxicity, m-PEEK showed the least cytotoxic effect on HGFB (Table 4).
However, none of the investigated materials have reached the cytotoxic level set by ISO
(30%) throughout the experiment [44]. When cultured with HGKC, m-PEEK exhibited
less and slightly better cytotoxic effect than Ti and TiN which is in accordance with results
reported in previous studies [43,45].

TiN exhibited comparable to better viability and proliferation rates than Ti and CoCr
when cultured with both cell lines. TiN seemed to not alter the original texture of the Ti
surface. Previous in vitro studies found that TiN on a Ti alloy showed a higher proliferation
rate of fibroblast cells compared with machined uncoated Ti [46,47].

The present study shows that under the same culture conditions for HGFB, m-PEEK
and TiN displayed comparable (and at some points better) cell metabolic activity to tra-
ditional implant abutment materials. However, when it comes to HGKC proliferation,
the results illustrated that TiN exhibited the best proliferation percentage at day 10, while
m-PEEK showed the smallest proliferation percentage from day 1 to day 10.

Adhesion is the basic requirement for any living cell(s) to survive on a material. Only
then other cellular phenomena, such as cell maturation, migration, proliferation, and
differentiation, can occur. This can help with collagen/protein secretion, wound healing,
and tissue regeneration, and the same criteria applies to HGBF and HGKC and all cells that
come in contact with any implanted device.

The current results showed no significant cytotoxicity when both cells were seeded
on all the investigated materials, which suggests that m-PEEK and TiN are materials with
similar cytotoxicity to Ti, ZrO2, and CoCr. The use of antibiotics is effective in treating
bacterial infection; however, they are not routinely prescribed following implant placement
for a variety of reasons [46]. Consequently, in the current study, antibiotics were not used
during the cell culture process.

The present study indicates that m-PEEK and TiN represent suitable alternative mate-
rials to Ti alloy and ZrO2 as implant abutments. However, after insertion, many factors can
influence the long-term success, such as cell interaction with materials, biofilm formation
around abutments, and the stability of materials in an aqueous environment. The current
study has only considered HGFB and HGKC; however, other oral cells involved in this
process need to be considered in the future.

Fibroblasts were generally found to exhibit significantly higher proliferation rates on
comparable surface topographies of ZrO2 and Ti, with cells spreading more on polished
and machined surfaces than on air-borne-particle abraded surfaces [32], despite the view
that R surfaces are believed to provide favourable properties in terms of cellular adhesion
for fibroblasts [48]. Studies looking into the same properties with HGKC are lacking,
which was one of the reasons why this study was conducted. Surface roughness was not
considered as a variable in this experiment, in terms of affecting cellular properties, as it
was standardized for all the examined materials.

The long-term success and survival of dental implants may depend not only on the
ability of an abutment material to have an appropriate host response and not to cause
any biological disturbances but also—in part—on the control of bacterial invasion of the
peri-implant and abutment area [49]. The microorganism reservoirs found around dental
implants—which are known to contribute to dental implant failure—seem to be inter-
changeable to the ones identified around natural teeth [49]. Thus, it is equally important
to consider the antimicrobial properties of the abutment material, in order to reduce or
prevent bacterial adhesion and further accumulation and surface colonization. It has been
reported that both surface roughness and wettability (not the focus of this study) have a
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direct influence on bacterial adhesion and colonization [50,51]. In this study, we have used
a similar range of surface roughness for all the investigated materials as a step to eliminate
one of the possible confounding factors [52].

To improve the surface response of HGFB and HGKC, special Ti coatings, such as
nitride and anatase or oxidation modelling, can also be manufactured around the implant
abutment surface and may have additional antibacterial properties [49,53,54]. Thus, future
work should focus on understanding the bacterial and tissue interactions to different
material surface topography/chemistry, which play an important role in the long-term
stability of the peri-implant tissue.

The materials investigated in this work were selected either as they are currently in use
as abutments (Ti, ZrO2, and CoCr) [55–57] or were materials currently under investigation
(TiN, and m-PEEK) [42,58] for providing better aesthetic alternatives, but with (potentially)
comparable biological influence on the peri-implant hard and soft tissues.

To the best of the authors’ knowledge, this is the first in vitro study to investigate
the biocompatibility of five different materials (metal and non-metal) using alamarBlue
(proliferation) and LDH (cytotoxicity) assays for a period of 10 days with four-time-point
assessment. Thus, we were not able to make any direct comparison with other studies’ results.

The initial cell proliferation percentage for HGKC was comparable between all investi-
gated materials. As the experiment continued, TiN discs illustrated the highest P% among
all other tested materials, which was almost comparable throughout the whole experiment.

It has been reported that; TiN surfaces promote surface roughness and hydrophilicity
of the Ti surface. Consequently, these surfaces are capable of influencing the gingival cells
response. These reports agree with our results, where the biological response of both cell
lines used in this study showed the highest P% with HGKC and comparable proliferation
rate with Ti and CoCr when cultured with HGFB. TiN also illustrated a low and comparable
cytotoxic effect to all the other investigated materials.

In this study, all samples were polished/smooth in order to mimic the trans-gingival
surfaces of commercially available abutments. All discs were incubated at 37 ◦C—after
seeding the cells—to simulate intra-oral conditions [59]. Furthermore, the ratio of the
surface area of the sample to medium volume was 3 cm2/mL, which is within the ISO
standard ratio of 0.5−6 cm2/mL, for such investigations, ISO 10933, 12 [60].

Another point to highlight is that both HGFB and HGKC cell lines were used in these
investigations, as they represent the major cellular component of the soft tissue located
within the oral environment [61,62], in direct/indirect contact with the implant abutment,
which was considered the most clinically comparable and sensitive method to measure
cells viability and low cytotoxicity levels. Finally, in addition to tooth brushing, there is
a continuous wash-away of leached-out components from restorative materials by saliva
and other consumable fluids in the patient’s mouth; hence, changing the medium could
have had a slight washing-out effect.

Preclinica in vitro research is essential for the development of new dental materials and
techniques. It can deliver vital data for future tests of therapeutic methodologies in clinical
trials [63]. In vitro studies are relatively simple to perform; however, lack of methodologic
rigor makes the comparison of results between studies difficult or impossible [64].

The results of the current study should be interpreted in the light of the study’s
limitations, including the static in vitro conditions, which lack the dynamics of a living
body environment and also the duration of the experiment. In addition, the tested surface
roughness of the specimens should be investigated clinically in the oral environment.
Whilst both cell lines have been cultured to closely mimic the clinical situation, the current
findings should be investigated in vivo.

Another limitation of the current study may be the lack of consideration of inflam-
mation and bacterial endotoxins over the abutment surfaces, as it was done under static
conditions. Inflammation and bacterial endotoxins are considered part of the normal oral
response, and their presence may indicate limited response due to an acute inflammatory
cytokine production. Thus, future cell culture studies should be conducted to comprehen-
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sively determine the effect of inflammatory conditions on the relationship between soft
tissue cells and biomaterials. In addition, although various reports reinforce the importance
of m-PEEK and TiN surfaces on increased osteoblast response, in vitro studies investigating
the effect of implant abutment materials on gingival cells, especially HGKCs, are still
necessary [42].

5. Conclusions

m-PEEK and TiN were observed to have comparable biocompatibility in terms of
cell viability, proliferation, and cytotoxicity on both HGKC and HGFB, as compared to
uncoated Ti, ZrO2, and CoCr.

m-PEEK and TiN surfaces may augment biocompatibility by having a positive impact
on the viability and proliferation of HGFB and HGKC as well as a low cytotoxic effect
compared to titanium, zirconia, and cobalt-chromium.

Further in vivo evaluations of these materials are necessary to confirm this conclusion.
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