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Abstract: Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance
in biology and medicine, especially as anticancer agents and applications in materials science as a
single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II)
and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are
most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either
monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state,
the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration
renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR)
spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X],
in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These
show a wide range of different structural motifs in the solid-state, varying with changes in anion
and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an
electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O.
Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinat-
ing ligands, especially phosphines, or form clusters with tetrahedral [Cu(µ3-S2CNR2)]4 being most
common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared
and structurally characterised with nuclearities of 3–28, especially exciting being those with intersti-
tial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III)
complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III)
species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale
copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and
thus giving access to materials with tuneable physical properties. The identification of copper in a
range of neurological diseases and the use of disulfiram as a drug for over 50 years makes under-
standing of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore,
the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them
to the fore in studies of metal-based biomedicines.
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1. Introduction

Copper is an intriguing element with interesting and useful properties and has been
widely used by mankind for ca. 6000 years. It is relatively abundant in the earth’s crust
(50–60 ppm), being found in both its elemental form and in a range of minerals. Especially
pertinent to this review, it is found in a range of copper sulfides including chalcopyrite,
digenite, covellite and chalcocite [1]. Copper is an essential element for all living organisms,
being a key constituent of the active site of respiratory enzymes cytochrome c oxidases, and
a human contains 1.4–2.1 mg of copper per kg of body mass. Balancing copper levels in the
body is extremely important, and recently major changes in copper concentrations and its
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localisation have been identified with Alzheimer’s disease [2]. Copper has an extensive and
rich coordination chemistry, forming complexes in oxidation states from 0 to +4, with the
+2 (cupric) state being by far the most prevalent, although +1 (cuprous) complexes are also
abundant. Its complexes find extensive applications, for example as catalysts, fungicides
and pesticides, pigments and solid-state materials with novel physical properties such as
high-temperature superconductors.

Dithiocarbamates are an important class of monoanionic dithiolate ligands. Easily
prepared from a wide range on secondary and primary amines, they coordinate to most of
the elements in the periodic table, including all the transition elements [3,4]. Copper forms
dithiocarbamate complexes in three oxidation states, +1, +2 and +3, the most common
being four-coordinate Cu(II) bis(dithiocarbamates), [Cu(S2CNR2)2], first documented by
Delépine at the beginning of the 20th century [5,6]. Over the past 100+ years, interest in
copper dithiocarbamate complexes has developed enormously, for example a SciFinder©
search for [Cu(S2CNEt2)2] alone gives ca. 900 hits with applications in areas as diverse as
medicine, materials science, agriculture, biochemistry, catalysis and water purification. In
this review, we give an overview of the coordination chemistry of copper dithiocarbamates,
together with recent developments of their applications, especially towards the synthesis
of nanoscale metal sulfides and in biological systems, for example as anti-cancer agents.

2. Copper(II) Bis(dithiocarbamate) Complexes

When Delépine first combined aqueous solutions of NaS2CNiBu2 and various Cu(II)
salts around 1907–8, he would have observed the immediate and high yielding forma-
tion of a dark brown precipitate of the bis(dithiocarbamate) complex, [Cu(S2CNiBu2)2]
[5,6]. This simple reaction works for an astounding variety of secondary amine-derived
dithiocarbamate salts. Work up is normally straightforward, involving simple separation
by filtration and drying in a standard lab oven [7,8]. Binding constants are of the order
107–108 for simple dialkylamines (in ethanol with CuCl2) [8] and this has led dithiocar-
bamates to be developed as reagents capable of removing copper to very low levels in
water [9,10], and from pharmaceutical processes where copper has been used as a cat-
alyst [11]. Oxidative addition of thiuram disulfides to copper metal is an alternative
synthetic route, giving good yields [12,13].

A wide range of Cu(II) bis(dithiocarbamate) complexes have been reported
(Figure 1). They fall into three main types. Most common are dialkyl complexes, which can
be symmetrically or unsymmetrically substituted or encompassed into a cyclic system, and
a large number of these have been prepared [7,8,14–21]. Over the past decade, an increasing
number of alkyl–aryl complexes (Figure 1d) have been documented, also being prepared
by the same simple method as described above [22–24]. Until recently, diaryl-substituted
[Cu(S2CNAr2)2] (Figure 1e) were not well-documented, but they can be made in a similar
way starting from the lithium dithiocarbamate salts [25]. Complexes from primary amines,
[Cu(S2CNHR)2], appear not to be stable, and as far as we are aware, none have been fully
characterised [26–29].
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Many variants have been prepared, examples of which are shown in Figure 2. The
addition of substituents to the end of alkyl chains (Figure 2a) allows tuning of the water
solubility (e.g., X = OH) [16,30,31] and acid-base properties (e.g., X = CO2H or NEt2) [30,31].
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Beer and co-workers have synthesised a series of macrocyclic complexes containing two
(Figure 2b) or three Cu(II) bis(dithiocarbamate) centres [32–34], some of which serve as
selective anion receptors [32,33]. Due to the lability of the dithiocarbamate ligands (see
later), complexes with two different dithiocarbamates will be in equilibrium with the
homoleptic species. However, by binding a piperazine onto a gold surface through a thiol
linkage, Cao and co-workers have anchored the unsymmetrical copper centre (Figure 2c)
to a gold surface [35]. Recently, Omondi and co-workers have extended the number of
aryl–alkyl complexes, preparing a small library (Figure 2d) in which the alkyl group has
an imine linkage, which can potentially be further derivatised. The complex shown in
Figure 2e is representative of those prepared by Fregona and co-workers to probe their
anti-cancer activity, with water (ideally or DMSO) solubility being a pre-requisite [36,37].
Appending a crown ether ring onto the backbone (Figure 2f) allows the redox-active Cu(II)
centre to act as a sensor for cation binding [26]. Blower and co-workers have prepared
bis(phosphonate) derivatives (Figure 2f), incorporating 64Cu for imaging applications [38]
and Wilton-Ely has linked together ruthenium (Figure 2h) and other metal centres through
a Cu(II) dithiocarbamate motif [39].
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There are reports of Cu(II) complexes containing two different dithiocarbamates [40,41],
but no well-characterised examples, and due to the lability of the dithiocarbamate at the Cu(II)
centre, it seems likely these are mixtures with the homoleptic dithiocarbamate complexes (see
later). Thus a literature report of [Cu(S2CNMe2)(S2CNEt2)], formed upon the addition of
tetramethyl thiuram disulfide to the Cu(I) cluster, [Cu(µ3-S2CNEt2)]4 [40], is likely a mixture
with [Cu(S2CNMe2)2] and [Cu(S2CNEt2)2]. In contrast, isomeric [Cu(S2CNMeEt)2] is well-
characterised [42].

Almost a century passed between the initial synthesis of [Cu(S2CNiBu2)2] and the
elucidation of its structure by single-crystal X-ray diffraction (Figure 3a) [7]. As in all
Cu(II) dithiocarbamate complexes, a square-planar structure is adopted and many, like
[Cu(S2CNiBu2)2], are centrosymmetric in the solid-state, with Cu–S bond lengths [2.268(1)
and 2.302(1) Å] and a S–Cu–S bond angle [77.6(1)◦] being typical. In the gas phase,
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the monomeric structure is maintained as shown by an electron diffraction study of
[Cu(S2CNMe2)2] [43]. In the solid state, the latter adopts an unusual polymeric struc-
ture in which four-coordinate subunits are linked via long-range intermolecular Cu···S
interactions, with each copper centre being pseudo-octahedral [44]. This arrangement ap-
pears to be unique to the dimethyl-derivative, and all other solid-state structures (broadly)
fall into two types, isolated monomers and weakly bound dimers [3,7,8,14,16,21,30,45–47].
In the latter, the secondary intermolecular Cu···S interactions are of the order ca. 2.7–
2.9 Å and this brings the two copper centres within ca. 3.4–3.8 Å, as highlighted by the
solid-state structure of [Cu(S2CNBu2)2] (Figure 3b) [7]. In dimers, the copper centre is
five-coordinate and the CuS4 moiety is significantly deviated from planarity, suggesting
that it contains quite soft Cu–S interactions as supported by theoretical calculations [48].
As recently discussed and illustrated by Tiekink [49], secondary C–H···π(chelate ring)
interactions are common in the solid-state structures of copper (and structurally similar
nickel) dithiocarbamate complexes. Thus, 28 of 59 crystal structures of [Cu(S2CNR2)2]
in the Cambridge Crystallographic Data Base have C–H···π (chelate) interactions with
individual units tending to self-associate into one- or two-dimensional architectures.
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Figure 3. (a) Molecular structure of [Cu(S2CNiBu2)2] as an example of a centrosymmetric monomeric
complex, (b) molecular structure of [Cu(S2CNiBu2)2] as an example of a dimeric complex in the solid
state. Reproduced with permission from [7]. Copyright 2003 Elsevier.

Some structurally interesting solid-state structures have been generated that contain
fullerenes and Cu(II) bis(dithiocarbamates). In the first approach, Konarev and co-workers
have shown that co-crystallisation of [Cu(S2CNEt2)2] and C60 from benzene gives a layered
structure (Figure 4) that shows some interesting physical properties [50]. Thus, while
in the dark this solid has a conductivity of only 10−11 S cm−1, illumination by white
light increases this by ca. 20–50 times. Further, the photoconductivity spectrum shows
a maximum at 470 nm, suggesting that both intermolecular charge transfer between
neighbouring C60 molecules and photoexcitation of the Cu(II) centre contributes to the
photogeneration of free charge carriers. Related clathrate structures are formed from C60
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and C70 with a range of [Cu(S2CNR2)2] and the copper centres can be monomeric, dimeric
or tetrameric [50,51].

Inorganics 2021, 9, x FOR PEER REVIEW 5 of 47 
 

 

increases this by ca. 20–50 times. Further, the photoconductivity spectrum shows a maxi-

mum at 470 nm, suggesting that both intermolecular charge transfer between neighbour-

ing C60 molecules and photoexcitation of the Cu(II) centre contributes to the photogener-

ation of free charge carriers. Related clathrate structures are formed from C60 and C70 

with a range of [Cu(S2CNR2)2] and the copper centres can be monomeric, dimeric or te-

trameric [50,51]. 

 
Figure 4. Molecular structure of [Cu(S2CNEt2)2]·C60. Reproduced with permission from [50]. Copy-

right 2005 The Royal Society of Chemistry. 

In a different approach, Beer and co-workers have prepared a range of nanosized 

polymetallic resorcinarene complexes, containing eight Cu(II) centres (Figure 5), the cen-

tral cage of which is in the order of 0.4–0.7 nm in diameter [52]. While this cavity is large 

enough to include C60, access is blocked as the portals are too small to allow entry. Never-

theless, in organic solvents and the presence of NOBF4, slow incorporation of the fullerene 

into the cavity was shown by mass spectrometry. This is consistent with the reversible 

binding of the dithiocarbamate to the copper centre. 

 
Figure 5. Formation of nanoscale resorcinarene complexes containing Cu(II) bis(dithiocarbamate) 

centres. Reproduced with permission from [52]. Copyright 2006 American Chemical Society. 

As d9-centres, all Cu(II) bis(dithiocarbamate) complexes are paramagnetic, exhibiting 

magnetic susceptibilities of 1.6–1.9 BM, consistent with a single unpaired electron. The 

latter makes them amenable to study by EPR spectroscopy [53,54], with the spectrum of 

[Cu(S2CNEt2)2] recorded in heptane being shown (Figure 6) [55]. Spectra are somewhat 

Figure 4. Molecular structure of [Cu(S2CNEt2)2]·C60. Reproduced with permission from [50].
Copyright 2005 The Royal Society of Chemistry.

In a different approach, Beer and co-workers have prepared a range of nanosized
polymetallic resorcinarene complexes, containing eight Cu(II) centres (Figure 5), the central
cage of which is in the order of 0.4–0.7 nm in diameter [52]. While this cavity is large enough
to include C60, access is blocked as the portals are too small to allow entry. Nevertheless, in
organic solvents and the presence of NOBF4, slow incorporation of the fullerene into the
cavity was shown by mass spectrometry. This is consistent with the reversible binding of
the dithiocarbamate to the copper centre.
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Figure 5. Formation of nanoscale resorcinarene complexes containing Cu(II) bis(dithiocarbamate) centres. Reproduced with
permission from [52]. Copyright 2006 American Chemical Society.

As d9-centres, all Cu(II) bis(dithiocarbamate) complexes are paramagnetic, exhibiting
magnetic susceptibilities of 1.6–1.9 BM, consistent with a single unpaired electron. The
latter makes them amenable to study by EPR spectroscopy [53,54], with the spectrum of
[Cu(S2CNEt2)2] recorded in heptane being shown (Figure 6) [55]. Spectra are somewhat
solvent dependent but vary a little in non-coordinating solvents. However, in coordinating
solvents such as DMSO, large variation is observed suggesting the formation of an adduct [56].
The spectra are consistent with the delocalisation of the odd electron over the CuS4 moiety,
which is supported by theoretical calculations [57]. The EPR signal is useful for probing the
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nature of dithiocarbamates in biological systems [58], especially the fate of the widely used
alcohol-abuse drug disulfiram, (Et2NCS2)2, as [Cu(S2CNEt2)2] is readily formed following
its reduction [59–62]. Given their paramagnetism, NMR spectra are not very informative. In
some cases, resonances distant from the Cu(II) centre can be observed [36], but frustratingly
the distinctive high-field resonance of the backbone carbon in the 13C NMR spectrum cannot
be observed. A second key feature of Cu(II) bis(dithiocarbamate) complexes is their brown
coloration. This results from an intense absorption at ca. 435 nm (ε = 13,000 dm3 mol−1 cm−1)
for [Cu(S2CNEt2)2] in CCl4, being attributed to a solvent-independent equatorial ligand-
metal charge transfer, proving extremely useful for characterisation and also for following
subsequent chemical transformations.
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Their thermal stability has been extensively explored. Melting points are substituent
dependent, [Cu(S2CNEt2)2] melting at ca. 200 ◦C and (modest) increases in volatility are
seen for longer alkyl-chain derivatives [7,63,64]. Most of them degrade at 230–300 ◦C to
generate a range of copper sulfides, and this makes them excellent single-source precursors
(SSPs) (as will be discussed later). Another key feature is their redox behaviour [65]. They
undergo a fully reversible one-electron oxidation to give analogous Cu(III) complexes,
[Cu(S2CNR2)2]+, while reduction is a quasi-reversible one-electron process (Figure 7). Re-
duction generates Cu(I) species, [Cu(S2CNR2)2]−, which as d10 complexes should undergo
a structural rearrangement from square planar to tetrahedral, accounting for the quasi-
reversibility. Attempts to isolate the reduced products lead to loss of a dithiocarbamate
with the formation of Cu(I) clusters [Cu(S2CNR2)]n. Redox potentials vary significantly
with the nature of the substituents. Thus, [Cu(S2CNCy2)2] oxidises at 0.57 V, while oxi-
dation of [Cu(S2CNPh2)2] occurs at 0.71 V [65]. Likewise, the latter reduces at −0.26 V,
as compared to −0.49 V for the dicyclohexyl complex. Interestingly, the resorcinarene
complexes (Figure 5) prepared by Beer and co-workers show a single reversible oxidation
process suggesting that all eight Cu(II) centres are oxidised in one step, a process that is
unaffected by the inclusion of C60 [52].
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Figure 7. Cyclic voltammetry of [Cu(S2CNiBu2)2] in MeCN.

The reactivity of [Cu(S2CNR2)2] has been widely explored, although only in a few
instances have the products been unambiguously characterised (Figure 8). Ligand ex-
change can occur, but no complex in which one dithiocarbamate has been exchanged for
another anionic bidentate ligand has been crystallographically characterised. Mixtures of
[Cu(S2CNEt2)2] and [Cu(Se2CNEt2)2] are believed to rapidly equilibrate upon mixing to
form [Cu(S2CNEt2)(Se2CNEt2)] as shown by EPR spectroscopy [55].
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The addition of CuCl2 to [Cu(S2CNR2)2] leads to ligand redistribution and the forma-
tion of dimeric [Cu(S2CNR2)(µ-Cl)]2 [65–67], a crystal structure of [Cu(S2CNEt2)(µ-Cl)]2
confirming its identity. It consists of weakly associated dimers being held together by
intermolecular Cu–C1 (2.874 Å) and Cu–S (2.882 Å) interactions [65]. Most complexes of
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this type are difficult to crystallise, possibly due to their equilibrium with monomers in
solution [66]. A minor product of CuCl2 addition to [Cu(S2CNEt2)2] is [Cu3(S2CNEt2)Cl3],
a mixed-valence coordination polymer containing square planar Cu(II) and tetrahedral
Cu(I) centres. The addition of CuX2 (X = Cl, Br) to [Cu(S2CNC5H10)2] in CHCl3/EtOH
is also reported to afford mixed-valence Cu(I)–Cu(II) coordination polymers in which
the halide-substituted centre has been reduced [68]. Related mixed-valence coordination
polymers are also generated upon addition of Cu(I) halides and it may be that there is an
error in this paper. If not, then there is clearly a fine balance between ligand-exchange
and a one-electron reduction-oxidation upon addition of metal salts to [Cu(S2CNR2)2].
Photochemical reactions of [Cu(S2CNR2)2] have been studied in a range of solvents. They
utilise the strongly allowed ligand-metal charge transfer (LMCT) in the visible region,
which leads to a reduction of the copper centre [69]. For example, laser pulse photolysis
of [Cu(S2CNEt2)2] in CCl4 induces a series of transformations resulting in the formation
of binuclear [Cu2(Et2dtc)3Cl] and tetraethyl-thiuram disulfide [70]. The addition of ni-
trogen bases such as pyridine to [Cu(S2CNR2)2] results in loss of the EPR signal, being
suggested to result from the formation of adducts such as [Cu(S2CNR2)2·py], although
no such complexes have been isolated and fully characterised [71]. Water-soluble com-
plexes such as [Cu{S2CN(CH2CH2OH)2}2] and [Cu{S2CN(CH2CO2H)2}2] trap one and
two equivalents of NO in water as shown by spectrophotometric studies [30,72,73]. Sta-
bility constants for each binding process are highly dependent upon the nature of the
substituents ranging from 103–1010 for binding of the first NO and 102–104 for the second.
A very unusual transformation occurs upon stirring [Cu(S2CNR2)2] with the nitrene-source,
[PhI=NTs]n, which leads to sequential insertion of two and four nitrenes into the Cu–S
bonds (Figure 8) [74,75]. This reaction is not unique to copper and may initially result from
nitrene addition to sulfur, which then rearranges to afford the ring-expanded product.

3. Copper(III) Dithiocarbamate Complexes

Cu(III) complexes are fairly common [76], although there has been a recent challenge to
the simple view that copper is in the +3 state in these species [77]. Cu(III) dithiocarbamate
complexes are accessible and relatively stable in the solid state. Most common are the
bis(dithiocarbamate) cations, [Cu(S2CNR2)2]+, which adopt a square planar coordination
geometry. As discussed in the preceding section, [Cu(S2CNR2)2] have a relatively low
oxidation potential [78]; hence, the addition of a range of oxidising agents results in the
formation of the analogous Cu(III) complexes. Common oxidants used are I2 [79–81],
(NO)BF4 [82], InI3 [83], [Cu(BF4)2] [84], polyoxometalates [85,86], [Cu(ClO4)2] [87–91] and
FeCl3 [91]. Upon oxidation, brown solutions of [Cu(S2CNR2)2] become green and the
Cu(III) complexes often crystallise from the reaction medium. In the solid state, they retain
their green colour upon standing in air, but in solution, attempts to run NMR spectra
(for those with diamagnetic anions) lead to broad resonances. This is probably due (at
least in part) to back reduction to [Cu(S2CNR2)2], but EPR spectra also show other Cu(II)
complexes that have not to date been fully characterised [79].

Shtyrlin and co-workers studied the oxidation of [Cu(S2CNEt2)2] by I2 in CH2Cl2
in detail [92]. The initial formation of [Cu(S2CNEt2)2][I3] is reversible (log K = 5.8), as is
further addition of I2 to give [Cu(S2CNEt2)2][I5] (log K = 2.02). Electron transfer between
both of these Cu(III) species and [Cu(S2CNEt2)2] is very fast (ke = 3 × 108 M−1·sec−1 at
298 K). This has prompted a mechanism to be put forward that invokes the formation of an
iodide-bridged intermediate, in which electron-density is delocalised across both copper
centres and the bridging iodine(s). Bond and co-workers generated Cu(III) complexes
upon the addition of (NO)BF4 to [Cu(S2CNR2)2], using these to acquire electrospray mass
spectra, molecular ions being readily observed, while in some instances, sulfur-rich species
were also seen [82]. Importantly, they found that mixing different Cu(III) dithiocarbamate
cations led to global ligand exchange, showing that dithiocarbamates are also labile at the
Cu(III) centre.
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As mentioned above, all contain a square planar centre with Cu–S bond lengths of
ca. 2.2 Å, some 0.1 Å shorter than related Cu(II) complexes, as would be expected upon
oxidation of the copper centre. Indeed, this small but reliable shortening is an easy way to
determine the difference between Cu(II) and Cu(III) centres in mixed-valence complexes.
As has been discussed previously [3,83], several structural motifs are found in the solid-
state, the form adopted being sensitive to the nature of the dithiocarbamate substituents
and the anion. All show intermolecular interactions, either between cations through
secondary Cu···S interactions as discussed for the related Cu(II) complexes, or between
anions and cations. A common structural motif is a coordination polymer (Figure 9a), in
which cations stack to give a distorted octahedral CuS6 coordination geometry and anions
are separate as found in [Cu(S2CNEt2)2][FeCl4] [91]. The anions can also coordinate, giving
rise to different structures. For example, [Cu(S2CNEt2)2][I3] is a coordination polymer with
anions linking Cu(III) centres via CuS4I2 coordination geometry [79] (Figure 9b), while
[Cu(S2CNMe2)2][ClO4] has a pair of Cu(III) centres capped by the anion [91] (Figure 9c).
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Copper(III) dihalide complexes, [CuX2(S2CNR2)], are also known and can also be
accessed from the addition of thionyl chloride to [Cu(S2CNR2)2] [93] or the oxidative
addition of thiuram disulfides to CuX2 [13,78,94] (Figure 10). These complexes are dia-
magnetic, consistent with a square-planar d8 configuration and have been confirmed in
a crystal structure of [CuBr2(S2CNBu2)] [95]. The average Cu–S distance of 2193(6) Å is
consistent with binding to a Cu(III) centre. The addition of Cd(CF3)2 to [CuX2(S2CNR2)]
gives the dialkyl derivative, [Cu(CF3)2(S2CNEt2)], which has also been crystallographically
characterised [96], as has [Cu(C2F5)2(S2CNEt2)] prepared upon the addition of tetraethyl
thiuram disulfide to Cd(C2F5)2 [97], and contain a square planar Cu(III) centre.
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4. Copper(I) Dithiocarbamate Complexes

Copper(I) dithiocarbamate complexes come in two main forms: As clusters in which
the dithiocarbamates bind in a capping manner and as mononuclear species with phos-
phine or phosphite co-ligands. Tetranuclear clusters, [Cu(µ3-S2CNR2)]4, have been known
since the 1960s [98], and can be prepared via three general methods: (i) The reduction
of Cu(II) salts by NH2OH·HCl in the presence of dithiocarbamate salts [99], (ii) from the
comproportionation of [Cu(S2CNR2)2] and activated copper powder [100,101] and (iii) the
addition of thiuram disulfides to copper powder in organic media [102]. Quite recently,
a further route was shown, namely the insertion of CS2 into a copper-amide bond [103].
All are yellow, and diamagnetic and crystal structures show they consist of a tetrahedral
array of copper centres, with each face of the tetrahedron being capped by a dithiocar-
bamate ligand (Figure 11a). The disproportionation of [Cu(S2CNR2)2] and [Cu(ClO4)2]
has been a well-developed route to Cu(III) dithiocarbamate complexes [79,84,90], but the
nature of the Cu(I) complex remained unknown until Hogarth and co-workers isolated
and crystallographically characterised [{Cu(µ4-S2CNPr2)}8][ClO4]2 from the reaction with
[Cu(S2CNPr2)2] [100]. This cluster dication (Figure 11b) consists of a cubic array of copper
atoms with each square face of the cube capped by a dithiocarbamate. The average Cu–Cu
distance of 2.80 Å is slightly longer than that of 2.70 Å found in tetrahedral clusters [100],
while in both, the Cu–S distances are ca. 2.24–2.28 Å.
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The addition of thiuram disulfide (TDS) to Cu(I) clusters leads to oxidation and the
formation of [Cu(S2CNR2)2], and the kinetics and mechanism have been studied [104]. Re-
actions are proposed to proceed via a rapid equilibrium with adducts [Cu(S2CNR2)(TDS)],
which undergo intramolecular electron transfer in a rate-determining step to afford the
final Cu(II) complexes.

Over the past decade, through the work of Liu and co-workers, the range of copper-
dithiocarbamate clusters has expanded greatly including examples containing
hydrides [105–108] and acetylides [109–113] with up to 25 copper atoms. More widely
studied are the interconvertible hydride clusters [Cu7H(µ3/4-S2CNR2)6] and [Cu8H(µ4-
S2CNR2)6]+ [108] (Figure 12). They are accessible via a number of routes, all involving
the addition of [BH4]− to Cu(I) or Cu(II) salts. Thus, octanuclear [Cu8H(µ-S2CNR2)6]+

results upon the addition of [BH4]− to [Cu(S2CNR2)2], a process that can be reversed
with the loss of H2 upon oxidation by Ce(IV). The removal of one copper and the for-
mation of heptanuclear [Cu7H(µ3-S2CNR2)6] occurs upon further addition of [BH4]−, a
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transformation reversed upon the addition of Cu(I) sources. Octanuclear clusters have a
tetracapped-tetahedral cluster core, the dithiocarbamates forming a distorted icosahedron
around this, with each adopting a m4-coordination mode. Heptanuclear clusters result
from the removal of one outer copper centre and contain a tri-capped tetrahedral core, the
dithiocarbamates again forming an icosahedron around this, but now some are µ3 binding
and others µ4. In both types, the hydride lies within the central tetrahedron (interstitial)
and can be observed in the 1H NMR spectrum. The change from a cube to a tetra-capped
tetrahedral metal array upon the introduction of the hydride is unexpected, but density
functional theory (DFT) calculations of S2CNH2 model clusters support this structural
change [108].
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In 2014, this chemistry was extended in a quite unexpected way, with the addition
of excess [BH4]− to Cu8 clusters affording molecular nanoscale clusters [Cu28(H)15(µ4-
S2CNR2)12][PF6] [106] (Figure 13a). The core consists of an irregular Cu4 tetrahedron,
encapsulated by a rhombicuboctahedral framework containing 24 Cu atoms (Figure 13b),
the 12 square faces of which are capped by a dithiocarbamate. The 1H NMR spectrum
shows three hydride signals in a 1:8:6 ratio, and a neutron diffraction study allows these to
be associated with (i) an interstitial hydride within the Cu4 tetrahedron, (ii) eight hydrides
capping triangular faces of the rhombicuboctahedron and (iii) two sets of µ5 (four) and
µ6 (two) of square-face truncating hydrides. The chemical equivalence in solution of this
latter set as well as all dithiocarbamate ligands is associated with a rapid reorientation
of the central Cu4 unit on the NMR timescale. Upon heating to 70–80 ◦C (alone or in the
presence of acids) or upon solar irradiation, these nanoclusters decompose to furnish H2
and generate both Cu7 and Cu8 clusters, along with Cu2S. This then links these three cluster
types while also showing how other copper-dithiocarbamate complexes may decompose
to copper-sulfides (see later).

The hydrides in these Cu28 clusters are sufficiently acidic deprotonate alkynes, and this
has been exploited to afford acetylide-containing clusters [109–111]. Thus, [Cu28(H)15(µ4-
S2CNR2)12]+ reacts with terminal alkynes with H2 evolution to give Cu13 clusters [Cu13(µ4-
S2CNR2)6(µ3-C≡CR)4]+ (Figure 1a), which contain a centred cuboctahedral [Cu13]11+ core,
being identical to that found in face-centred cubic bulk copper [110]. There are two cluster
core electrons and thus, unlike other copper-dithiocarbamate clusters discussed to date,
they are mixed-valence complexes containing both Cu(I) and Cu(0) centres. The Cu13
core is capped by acetylides on four of the triangular faces, while each square face is
capped with a dithiocarbamate. It is also possible to prepare clusters containing both
hydride and acetylide ligands. Thus, when a ten-fold excess of PhC2H is reacted with
[Cu28(H)15(µ4-S2CNR2)12]+ at 30 ◦C, mixtures of [Cu8H(µ-S2CNR2)6]+ and the new clusters
[Cu15(H)2(S2CNR2)6(C≡CPh)6]+ result (Figure 14b). The latter was shown to be interme-
diates en-route to [Cu13(µ4-S2CNR2)6(µ3-C≡CPh)4]+ [109]. The Cu15 clusters are also
accessible in higher yields from the simple addition of mixtures of dithiocarbamate salts
and phenylacetylene to [Cu(MeCN)4]+/NaBH4 mixtures in the presence of base. They
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contain an icosahedral Cu12 core, two faces of which are capped, while the final copper
atom is encapsulated as a linear [CuH2]− moiety (Figure 14b).
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Figure 13. (a) Molecular structure of the cation in [Cu28(H)15(µ4-S2CNR2)12][PF6] and (b) a rep-
resentation of the cluster core framework in which a Cu4 tetrahedron is encapsulated by a rhom-
bicuboctahedral C18 moiety. Reproduced with permission from [106]. Copyright 2014 John Wiley
and Sons.
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Wiley and Sons.

The Cu13 clusters are reactive, easily losing a single metal atom to generate a number
of related Cu12 clusters including [Cu12(µ12-S)(µ4-S2CNR2)6(µ3-C≡CR)4] and [Cu12(µ12-
Cl)(µ3-Cl)(µ4-S2CNR2)6(µ4-C≡CR)4] formed upon the addition of KS2CNR2 and simple
dissolution in CH2Cl2, respectively [111]. All contain a Cu12 cuboctahedron with the new
heteroatom encapsulated within the structure. Incorporation of other metals is also possi-
ble [105,109]. The reaction of [Cu15(H)2(S2CNBui

2)6(C≡CPh)6]+ with [AuCl(PPh3)] affords
[Au@Cu12(S2CNBui2)6(C≡CPh)]+, a highly luminescent cluster suggested to contain an
Au@Cu12 alloy core [109], while the central copper centre can also be replaced by silver.
Central doping with Ag or Au significantly affects the physiochemical properties as mani-
fested in the dramatic quantum yield enhancement of [Au@Cu12(S2CNBu2)6(C≡CPh)4]+

measured at 0.59 at 77 K. Palladium-containing [PdCu14H2(S2CNBui
2)6(C≡CPh)6] re-
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sults from the addition of PhC2H to [Cu28(H)15(µ4-S2CNBui
2)12]+ in the presence of

[PdCl2(PPh3)2] [105]. A neutron diffraction study shows that it contains a [PdH2]− unit
encapsulated with the bicapped-icosahedral Cu14 core. These studies are ongoing and, un-
doubtedly, further novel Cu(I) dithiocarbamate clusters will be reported in the near future.

As detailed earlier (Figure 7), [Cu(S2CNR2)2] can be quasi-reversibly reduced to Cu(I)
anions, [Cu(S2CNR2)2]−, but until recently, no examples of these anionic Cu(I) complexes
had ever been isolated, with all attempts leading to loss of a dithiocarbamate ligand
with concomitant formation of Cu(I) clusters [Cu(S2CNR2)]n. In 2013, Teske reported the
preparation and crystal structure of [NH4][Cu(S2CNH2)2]·H2O, formed upon the addition
of [NH4][S2CNH2] to CuSO4 in the presence of KCN [114]. Somewhat unexpectedly,
however, the structure does not show the expected [Cu(S2CNH2)2]− anion, but rather is
a coordination polymer in which each dithiocarbamate ligand spans two copper centres
(Figure 15a). This affords a stacked 2D framework, which includes a staggered chain
of [NH4]+ and water molecules (Figure 15b). When a similar reaction is carried out at
ca. 80–95 ◦C, a second coordination polymer [Cu(S2CNH2)]n results. While each copper
remains bound to four dithiocarbamates, the CuS4 tetrahedral are now linked in a 3D array
reminiscent of a filled β-cristobalite structure [114].
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coordination geometry around each Cu(II) ion and (b) the 2D framework. Reproduced with permis-
sion from [114]. Copyright 2013 John Wiley and Sons.

A second well-developed class of Cu(I) dithiocarbamate complexes are those con-
taining phosphine (and to a lesser extent phosphite) co-ligands, first reported in the late
1960s [115,116] and now relatively common [101,117–119]. Two general types are ac-
cessible, mononuclear four-coordinate complexes [Cu(S2CNR2)(PR3)2] ((Figure 16a) or
[Cu(S2CNR2)(κ2-R2PXPR2)] with a Cu:P ratio of 1:2 [116,118,120–126] and binuclear [Cu(µ-
S2CNR2)(PR3)]2, in which the dithiocarbamates bridge the Cu2 centre
(Figure 16b) [119] [119,127]. They result upon the addition of phosphines to Cu(I) dithio-
carbamate clusters [101,115], while the bis(adducts) are also accessible from reactions of
[CuX(PR3)2] with dithiocarbamate salts [122,124,126]. Mononuclear adducts appear to be
quite robust in both solution and the solid state. They contain a tetrahedral Cu(I) centre that
is somewhat distorted due to the small bite angle of the dithiocarbamate. Loss of phosphine
affords the binuclear complexes, which are less stable, especially in solution, being stable
in benzene but not toluene [119]. In the solid state, the central Cu2S2 ring is planar and
Cu···Cu distances vary at 2.6–2.9 Å. Huang and co-workers prepared a binuclear complex
(Figure 16c) in which the two Cu(I) centres are linked via a piperazine-bis(dithiocarbamate)
ligand [128], while from reactions of borohydride adducts [Cu(κ2-BH4)(PR3)2] with PhNCS,
Orlandini and co-workers prepared a number of mononuclear bis(phosphine) complexes
containing an aniline-derived dithiocarbamate ligand, such as [Cu(S2CNHPh)(PR3)2]
(R = Ph, Cy), one of which (R = Ph) (Figure 16d) has been crystallographically charac-
terised [129]. The structure is as expected, but the stability of the primary dithiocarbamate
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is unexpected given the lack of substantive evidence for analogous Cu(II) complexes. Likely,
this results from the soft nature of the Cu(I) vs. Cu(II) centre, which makes deprotonation,
with concomitant formation of a dithiocarbamate, less favourable.
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Trinuclear phosphine-containing Cu(I) clusters, [Cu3(µ3-S2CNR2)2(diphosphine)2]+, have
also recently been prepared from the addition of dithiocarbamate salts to [Cu(MeCN)4][PF6]
in the presence of the diphosphine [107]. The Cu3 triangle is capped by two dithiocarba-
mates, and one copper is chelated by a diphosphine while the second bridges a Cu–Cu vector
(Figure 17a). There is one report of an unusual phosphine-chloride-containing cluster, namely
[Cu3(PEt3)3(µ-Cl)(µ3-Cl)(µ3-S2CNC4H8)] (Figure 17b), formed from the 1:2:1 reaction between
CuCl, Et3P and NH4[S2CNC4H8] [130]. It contains an incomplete cubane core and can be
envisaged as the monomer [Cu(PEt3)(S2CNC4H8)] being “trapped” by [CuCl(PEt3)]2 en-route
to binuclear [Cu(PR3)(µ-S2CNR2)]2 [119].
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IUCr [130].

There are a small number of further Cu(I) phosphine-dithiocarbamate complexes,
which have been characterised primarily on the basis of only a crystallographic study.
These include [Cu2(µ-dppm)2(µ-S2CNEt2)][ClO4] (dppm = Ph2PCH2PPh2) with mutu-
ally trans diphosphines and a short Cu··Cu vector (2.711(1) Å) [131], [Cu3(µ-dppm)3(µ3-
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S2CNR2)(µ3-I)]I, which contains a Cu3 triangle in which each edge is bridged by a diphos-
phine and the faces by iodide and dithiocarbamate, respectively [122] and octanuclear
[Cu8(SAr)4(SAr)2(S2CNMe2)2][PPh4]2 (Ar = 4-SC6H4Br) [132]. The centrosymmetric cluster
core contains eight copper and ten sulfur atoms with all copper atoms bound to three
sulfurs of either thiolate or triply bridging dithiocarbamate ligands. Four of the copper
atoms are also coordinated to a PPh3 ligand and have a distorted tetrahedral geometry
while the others have a distorted trigonal-planar coordination.

5. Mixed-Valence Copper Dithiocarbamate Complexes

As one might imagine given the rich nature of the chemistry of Cu(I), Cu(II) and
Cu(III) dithiocarbamates described above, and the relatively low potentials that link these
three oxidation states, there is a rich and diverse mixed-valence copper-dithiocarbamate
chemistry. This is primarily focused on Cu(I)–Cu(II) complexes, many of which are co-
ordination polymers, but there are also a reasonable number of Cu(II)–Cu(III) examples.
For this reason, this section is subdivided into two separate subsections, with some slight
overlap from a single complex which contains copper in all three oxidation states.

Mixed valence Cu(I)–Cu(II) complexes were first detailed in 1974, with Golding and
co-workers reporting the formation of coordination polymers from the addition of CuX2
(X = Cl, Br) to the piperidine dithiocarbamate complex, [Cu(S2CNC5H10)2],
in EtOH/CHCl3 [68]. Isolated complexes had the formulae [Cu(S2CNC5H10)2(CuX)n]
(n = 4, 6) and were found to be insoluble in common organic solvents, and decomposed to
give the starting Cu(II) dithiocarbamate in polar coordinating solvents such as DMSO, DMF
and pyridine. It is not clear what reduces CuX2 but it likely results from dithiocarbamate
oxidation. Two of these were crystallographically characterised (X = Br) but disorder makes
them quite difficult to fully interpret on a molecular scale.

There was little further activity in this area until 2005 when Okubo and co-workers
reported the structure of [Cu5(S2CNEt2)2Cl3][FeCl4] (Figure 18a) formed upon the addition
of CuCl2 to [Fe(S2CNEt2)3] in an acetone/CHCl3 mix [133]. It contains a single Cu(II)
centre, as supported by magnetic measurements, and the Cu5 sub-units are linked through
the Cu(II) centres to afford a 2D lattice with the [FeCl4]− counter ions located between
the sheets. The material shows interesting physical properties, for example temperature
dependence of the dielectric constants shows 2-D ferroelectric order.

Following this initial report, over the past 15 years, Okubo and co-workers have
prepared a range of Cu(I)–Cu(II) coordination polymers [134–143]. Their synthetic strategy
is to react [Cu(S2CNR2)2] with [CuBr(SMe2)] in mixed organic solvents, with crystals
forming upon concentration of the filtrate. The precise nature of the coordination polymer
generated depends upon the dithiocarbamate substituents, with those derived from cyclic
amines as the favoured species. In all the Cu(II), centres are bound by two dithiocarbamates
in a square planar arrangement, and thus these polymers differ primarily in the nature
of the Cu(I) halide sub-units and also how they arrange themselves with respect to the
Cu(II) centres. Aspects of this work have been reviewed by Batten [144] and the only key
examples will be given here. Thus, with [Cu{S2CN(CH2)n}2] (n = 5, 6) [136,139], 1D chains
result (Figure 18b) in which Cu2Br4 sub-units link together the Cu(II) bis(dithiocarbamate)
centres in the same way as previously reported by Golding and co-workers (n = 4) [68].
With the pyrrolidine dithiocarbamate complex (n = 4), Cu6 sub-units result, formed via the
linking of two crystallographically inequivalent Cu(II) bis(dithiocarbamate) centres linked
via two CuBr groups to give a 3D network (Figure 18c) [134]. Methyl-substitution of the
rings can have a significant effect on the nature of the polymer produced. For example, with
3,5-dimethylpiperidine dithiocarbamate, a 2D structure results via linking together Cu(II)
centres with Cu3Br3 sub-units (Figure 18d) [138]. Related iodide-containing coordination
polymers can also be prepared [139,141] and they show similar structures to the bromides.



Inorganics 2021, 9, 70 16 of 47
Inorganics 2021, 9, x FOR PEER REVIEW 16 of 47 
 

 

 
Figure 18. Representations of the molecular structures of (a) the cation in [Cu5(S2CNEt2)2Cl3][FeCl4], (b) the 1D coordina-

tion polymer [Cu{S2CN(CH2)6}2.Cu2Br4], (c) the 3D structure of coordination polymer [Cu{S2CN(CH2)4}2.Cu2Br4] and (d) 

the molecular sub-unit on [Cu{S2CN(CH2)3(CHMe)2}2·Cu3Br3]. (a,b) Reproduced with permission from [133,136]. Copy-

right 2005 and 2010 American Chemical Society. (c,d) Reproduced with permission from [134,138] Copyright 2011 and 

2013 The Royal Society of Chemistry. 

Mixed-valence Cu(I)–Cu(II) dithiocarbamate coordination polymers have interesting 

physical properties, primarily stemming from their relatively small band gap, which re-

sults from the HOMOs of their various components. For example, while the band gap in 

[Cu(S2CN-2,6-Me2C5H8)2] is 1.30 eV, the coordination polymer generated upon the addi-

tion of [CuBr(SMe2)] has a band gap of only 1.04 eV [143] and exhibits semi-conducting 

behaviour. The estimated bulk conductivity at 300 K of 1.4 × 10−8 S cm−1 is similar to those 

with other dithiocarbamate ligands, which can be as high as 5.2 × 10−7 S cm−1 [134]. 

A number of mixed-valence Cu(II)–Cu(III) dithiocarbamate complexes are known, 

falling into a number of different types. They were first reported in the 1970s upon oxida-

tion of Cu(II) bis(dithiocarbamate) complexes with halides or metal salts [145–147]. For 

example, Cras and Willemse prepared mixed-valence complexes [Cu3(S2CNBu2)6][X] (X = 

M2Br6; M = Zn, Cd, Hg) upon the addition of MBr2 to [Cu(S2CNBu2)2] [145], a complex 

disproportionation and dithiocarbamate redistribution reaction, which also afforded 

[Zn(S2CNBu2)2], [Cu(S2CNBu2)2][ZnCl3] and a (purported) nonanuclear Cu(I) cluster, most 

likely being [{Cu(μ4-S2CNBu2)}8]2+ [100]. They are coordination polymers consisting of 

[Cu3(S2CNR2)6][X]2 sub-units, precise structures that are dependent upon the nature of 

both R and X [145,146]. For example, [Cu3(S2CNEt2)6][Br]2, contains stacked Cu(S2CNEt2)2 

and Cu(S2CNEt2)Br2 units with both copper centres adopting a distorted octahedral coor-

dination. An analysis of Cu–S distances suggests that it is best considered as being com-

posed of [Cu(S2CNEt2)2]+ and [Cu(S2CNEt2)Br2]− ions containing Cu(III) and Cu(II) centres, 

respectively [146]. Crystal structures of [Cu3(S2CNBu2)6][X]2 (X = CdBr3, HgBr3) [145,148] 

show a centrosymmetric Cu3 unit in which [Cu(S2CNBu2)2] is sandwiched between two 

Cu(III) [Cu(S2CNBu2)2]+ sub-units and the [M2Br6]2− counter ions are non-coordinating. 

Stacking of Cu(II) and Cu(III) units can be extended, with the addition of [Cu(ClO4)2] to 

(a) (b) 

(c) (d) 

Figure 18. Representations of the molecular structures of (a) the cation in [Cu5(S2CNEt2)2Cl3][FeCl4], (b) the 1D coordination
polymer [Cu{S2CN(CH2)6}2.Cu2Br4], (c) the 3D structure of coordination polymer [Cu{S2CN(CH2)4}2.Cu2Br4] and (d) the
molecular sub-unit on [Cu{S2CN(CH2)3(CHMe)2}2·Cu3Br3]. (a,b) Reproduced with permission from [133,136]. Copyright
2005 and 2010 American Chemical Society. (c,d) Reproduced with permission from [134,138] Copyright 2011 and 2013 The
Royal Society of Chemistry.

Mixed-valence Cu(I)–Cu(II) dithiocarbamate coordination polymers have interesting
physical properties, primarily stemming from their relatively small band gap, which
results from the HOMOs of their various components. For example, while the band
gap in [Cu(S2CN-2,6-Me2C5H8)2] is 1.30 eV, the coordination polymer generated upon the
addition of [CuBr(SMe2)] has a band gap of only 1.04 eV [143] and exhibits semi-conducting
behaviour. The estimated bulk conductivity at 300 K of 1.4 × 10−8 S cm−1 is similar to
those with other dithiocarbamate ligands, which can be as high as 5.2 × 10−7 S cm−1 [134].

A number of mixed-valence Cu(II)–Cu(III) dithiocarbamate complexes are known,
falling into a number of different types. They were first reported in the 1970s upon ox-
idation of Cu(II) bis(dithiocarbamate) complexes with halides or metal salts [145–147].
For example, Cras and Willemse prepared mixed-valence complexes [Cu3(S2CNBu2)6][X]
(X = M2Br6; M = Zn, Cd, Hg) upon the addition of MBr2 to [Cu(S2CNBu2)2] [145], a com-
plex disproportionation and dithiocarbamate redistribution reaction, which also afforded
[Zn(S2CNBu2)2], [Cu(S2CNBu2)2][ZnCl3] and a (purported) nonanuclear Cu(I) cluster,
most likely being [{Cu(µ4-S2CNBu2)}8]2+ [100]. They are coordination polymers consisting
of [Cu3(S2CNR2)6][X]2 sub-units, precise structures that are dependent upon the nature of
both R and X [145,146]. For example, [Cu3(S2CNEt2)6][Br]2, contains stacked Cu(S2CNEt2)2
and Cu(S2CNEt2)Br2 units with both copper centres adopting a distorted octahedral coordi-
nation. An analysis of Cu–S distances suggests that it is best considered as being composed
of [Cu(S2CNEt2)2]+ and [Cu(S2CNEt2)Br2]− ions containing Cu(III) and Cu(II) centres,
respectively [146]. Crystal structures of [Cu3(S2CNBu2)6][X]2 (X = CdBr3, HgBr3) [145,148]
show a centrosymmetric Cu3 unit in which [Cu(S2CNBu2)2] is sandwiched between two
Cu(III) [Cu(S2CNBu2)2]+ sub-units and the [M2Br6]2− counter ions are non-coordinating.
Stacking of Cu(II) and Cu(III) units can be extended, with the addition of [Cu(ClO4)2]
to [Cu(S2CNPr2)2]2 in CHCl3 resulting in the formation of the dark green coordination
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polymer [Cu(S2CNPr2)2]2[ClO4]. This polymeric complex consists of a chain of alternating
Cu(II) and Cu(III) centres held together by intermolecular Cu–S interactions (Figure 19a),
while the perchlorate anions are not metal coordinated [149]. The formation of this mixed-
valence polymer presumably results from the initial generation of [Cu(S2CNPr2)2][ClO4],
which co-crystallises with unreacted [Cu(S2CNPr2)2]2.
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from [149,150]. Copyright 2013 Elsevier and 2001 John Wiley and Sons.

A quite different type of mixed-valence Cu(II)–Cu(III) dithiocarbamates are the cate-
nane complexes reported by Beer, which consist of interlocking Cu(II) and Cu(III) rings
(Figure 19b) [150]. While there is disorder between the Cu(II) and Cu(III) centres in the
solid-state, magnetic susceptibility and electrochemical measurements suggest that the
tetranuclear catenane dications consist of alternating Cu(II)Cu(III)Cu(II)Cu(III) centres.

There is one example of a coordination dithiocarbamate complex containing Cu(I),
Cu(II) and Cu(III) centres [151]. Octanuclear [Cu8Br7(S2CNC6H12)4] (Figure 20) results
from the addition of CuBr2 and Br2 to [Cu(S2CNC6H12)2] in CHCl3 and consists of two
Cu bis(dithiocarbamate) subunits linked via a Cu6Br6 moiety, with a further bromide ion
encapsulated within this sub-cluster. Inspection of the Cu–S distances shows that one is
a Cu(II) [Cu–S(av) 2.3106 Å] and the second a Cu(III) [Cu–S(av) 2.2186 Å] centre. It is
supported by a magnetic susceptibility of 1.49 µB at 300 K, consistent with one unpaired
electron. Individual octanuclear clusters align head-to-tail via weak intermolecular in-
teractions to generate a 1D coordination polymer. In the UV-visible spectrum, a broad
absorption band at 1400 nm is attributed to inter-valence charge transfer from the Cu(II) to
Cu(III) centre through the weak Cu-S bonds.
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6. Other Copper Dithiocarbamate Complexes

There are a small number of complexes that contain the copper dithiocarbamate group
that have not been covered above. While at first sight it might seem surprising that simple
mixed-ligand complexes of the type [Cu(S2CNR2)(anionic-chelate)] are not known, this
likely relates to the lability of the dithiocarbamate at the Cu(II) centre. For example, an
obvious candidate would be [Cu(S2CNEt2)(acac)], which, while being briefly mentioned in
the literature, full characterisation data are always missing. Indeed, while it is suggested
to result, along with [Cu(acac)2(S2CNEt2)], from the addition of [Cu(acac)2] to R-S2CNEt2
in reversible-reactivation radical polymerisation reactions [152], the authors could find
no evidence for such species in the reactions of [Cu(acac)2] with tetramethyl thiuram
disulfide. The mixed-ligand Cu(I) complex [Cu(κ1-S2CNC4H8)(κ2-SeS2CNC4H8)][PPh4]
is an unexpected products of the reaction of [Cu(S2CNC4H8)2] with [WSe4][PPh4]2 [153].
It formally results from the insertion of selenium into one of the Cu-S bonds, but this is
coupled with electron-transfer and the dithiocarbamate is monodentate. This is surprising
as insertion of the isoelectronic NTos group affords Cu(II) complexes [74,75].

As far as we are aware, the only well-characterised examples of mixed-ligand Cu(II)
dithiocarbamate complexes are 5-coordinate species containing the unsaturated dinitrogen
ligands, 2,2′-bipy or 1,10-phen [154–157], an example being [CuI(S2CNMe2)(2,2′-bipy)]
(Figure 21a) [154]. Synthetic methods are not always clear as much of this work has
appeared in crystallography journals, but [CuI(S2CNMe2)(2,2′-bipy)] is prepared by the
co-addition of NaS2CNMe2 and 2,2′-bipy to [Cu(OAc)2] in the presence of NaI. All contain
a distorted square pyramidal centre with the halide (normally iodide) in the apical position.
An unusual variation of this structural motif is PbI4[Cu(S2CNMe)(bipy)]2 formed in low
yields upon the addition of PbI2, NaS2CNMe2 and 2,2′-bipy to Cu(OAc)2 in DMF [158].
Here, two [CuI(S2CNMe2)(2,2′-bipy)] sub-units are formally linked via a linear PbI2 moiety
(Figure 21b).
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A second group of complexes are sulfide- or selenide-bridged clusters of either vana-
dium [159,160] or molybdenum-tungsten [161–165], which incorporate between one and
four Cu(II) dithiocarbamate moieties. The group 6 clusters result upon the addition of
[ME4]2− (E = S, Se; M = Mo, W) to CuX in the presence of dithiocarbamate salts, with
the precise cluster generated being dependent upon the ratio of metal ions. For example,
with [MoS4]2− and CuCl in a ca.1:2 ratio and a slight excess of NaS2CNMe2, trinuclear
[MoCu2(µ-S)4(S2CNMe2)2]2− results (Figure 22a) [165]. These reactions have been shown
to proceed via the initial formation of copper halide clusters, with later substitution of
the halide for the chelating dithiocarbamate as shown in the synthesis of pentanuclear
[WCu4(µ3-Se)4(S2CNEt4)4]2− (Figure 22b) [163]. In the solid state, the geometry around
the copper centre is a highly distorted tetrahedron, consistent with Cu(I) centres. Elec-
trochemical measurements also support this assignment with tetranuclear [MoCu3(µ-
S)4(S2CNMe2)3]2− showing two quasi-reversible oxidations in MeCN [165]. There is
one example of a higher nuclearity cluster being generated from these reactions, namely
[Mo2Cu5S2(µ3-S)6(S2CNMe2)3]2− [166]. It has a fused defective cubane skeleton and can
be envisaged as consisting of two MoCu2S(µ3-S)3 linked by a shared copper atom. Two of
the dithiocarbamates bridge the copper centres while the third is chelating.
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Similar reactions with [VS4]3− lead to theformation of [Cu(S2CNR2)2] resulting from
oxidation of the Cu(I) centre, attributed to the higher oxidative ability of [VS4]3− as com-
pared to [MS4]2− (M = Mo, W). The addition of NaSPh to the mixture allows for the isolation
of a range of mixed dithiocarbamate-thiophenolate such as [VCu4(µ-S)4(SPh)2(S2CNR2)2]3−

(Figure 22c), proposed to result from the concurrent addition of Cu(SPh) and Cu(S2CNR2)
fragments to [VS4]3− [160]. The solid-state structures closely resemble those of the group
6 clusters, but in solution, there is evidence of the disproportionation
of [VCu4(µ-S)4(SPh)4−n(S2CNR2)n]3− (n = 1, 2), and electrochemistry shows only irre-
versible redox behaviour.

7. Applications as Single-Source Precursors (SSPs) to Semi-Conducting Nanomaterials

Many methods have been explored for the preparation of nanoscale copper sulfides,
and the thermal decomposition of copper-dithiocarbamate single-source precursors (SSPs)
via cleavage of relatively weak C–S bonds provides a simple and tuneable route to pure
phase materials of different stoichiometries and morphologies [167]. In addition, dithiocar-
bamates themselves can act as capping agents, thus providing a physical barrier between
interparticle interactions, thereby preventing agglomeration, which are particularly impor-
tant as the nanoscopic properties of materials are optimised [168]. The thermal behaviour
of copper dithiocarbamates is dependent on the reaction environment. Under nitrogen,
it proceeds via dithiocarbamate loss to give copper sulfide residues, while in air, non-
stoichiometric oxygen uptake leads to the formation of copper oxide(s). Oxidation of
sulfur-containing species has also been identified at higher temperatures, resulting in the
formation of sulfide, with subsequent oxidation to sulfate being followed by decomposition
of the sulfate to oxide [169]. Copper dithiocarbamates have, therefore, been extensively
utilised in the synthesis of both binary and ternary copper sulfides under inert atmosphere.

7.1. Binary Copper Sulfides

Copper sulfides are widely studied as a result of their application in areas such as op-
tical filters, solar cells, photovoltaics, optical imaging and super-ionic materials [170]. They
exist in a variety of stoichiometric phases ranging from copper-rich (Cu2S) to sulfur-rich
(CuS) phases, with a phase-dependent direct/indirect bandgap in the range of 1.1–2.0 eV.
Some stoichiometric-dependent properties of Cu2−xS include plasmonic absorption, ob-
served in the non-stoichiometric phases around the IR region, and electrical conductivity,
which decreases from copper-poor to copper-rich stoichiometries [171]. These wide vari-
ations in optical and electrical properties also account for the versatility of Cu2−xS in
different applications. The use of copper dithiocarbamates as SSPs for the synthesis of
Cu2−xS offers a simple and tuneable route to the synthesis of various stoichiometries
through the choice of metal complex and reaction system.

There are a number of deposition strategies, the simplest being the heating of the SSP
in the solid state. [Cu(S2CNEt2)2] melts at ca. 200 ◦C and decomposes at 230–300 ◦C [63],
and upon increasing the length of the alkyl chain, some small changes in volatility result [7].
Introduction of fluorine, as in [Cu(S2CN(CH2CF3)2)], significantly reduces the decomposi-
tion temperature to 130 ◦C and this SSP has been used to deposit high-quality, phase-pure,
chalcocite films [172]. For thermal decomposition of the solids, the sulfide product has been
reported to depend upon the nature of substituents, but most likely it is the temperature
that is the key differentiator. For example, decomposition of [Cu(S2CNOct2)2] at 130 ◦C
affords CuS, but at 220 ◦C pure Cu1.8S results, highlighting the reduction of Cu(II) at
temperatures above 200 ◦C [173]. Interestingly, when the SSP is damp, microspheres of
CuS result at 180 ◦C, being rationalised by the co-evaporation of water, which creates the
central cavities around which the CuS nucleates. The SSP can also be pre-dissolved in
a coordinating solvent and then deposited from this solution. Using this approach, tri-
octylphosphine (TOP) solutions of [Cu(S2CNEt2)2], when heated TO 240–250 ◦C, deposited
hexagonal nano-barrels of Cu2S (chalcocite) onto Si(100) substrates [174]. Interestingly, they
found that the morphology of the nanomaterials could be changed to nanowires, upon first
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sequentially depositing layers of chromium (2 nm) and bismuth (12 nm) onto the Si(100)
substrate, and then decomposing the TOP solution of [Cu(S2CNEt2)2] at 250 ◦C.

Copper sulfide materials with small dimensions show quantum dot (QD) behaviour,
which makes them attractive materials for a range of imaging techniques. Burda and
co-workers have reported that decomposition of [Cu(S2CNEt2)2] (in the presence of added
sulfur) in a trioctylphosphine (TOP)/TOPO mixture at 250 ◦C gives Cu1.8S QDs with a
band gap of 2.35 eV, being significantly blue-shifted with respect to the bulk material [175].
The size and shape of these nanomaterials were not given, but Qian and co-workers later re-
ported that a similar decomposition of [Cu(µ3-S2CNEt2)]4, at 110 ◦C for 12 h in a mixture of
oleylamine (OLA) and dodecanethiol (DDT), gave ultra-thin nanowires of chalcocite [176].
By controlling the decomposition conditions (temperature and solvent ratios) they were
able to generate nanowires with diameters ranging from 1.7 nm to tens of micro-meters,
being aligned in bundles. Alivisatos and co-workers also developed this method forming
[Cu(µ3-S2CNEt2)]4 in situ in OLA/DDT at 180 ◦C to generate hexagonal nanocrystals of
chalcocite of 5.4 (±0.4) nm [177]. Further, by varying the copper to ligand ratio they were
able to produce mono-disperse Cu1.93S QDs with sizes ranging 2.5–6 nm [178].

In order to improve the biocompatibility of copper sulfide materials, water-soluble
dithiocarbamate complexes with moieties capable of acting as capping agents for the
prepared nanoparticles have been explored. These complexes could be thermolysed hy-
drothermally at relatively low temperature and without employing any organic passivating
agent. In this way, thermolysis of [Cu{S2CN(CH2OH)2}2] in water at 90 ◦C produces CuS
nanospheres with a diameter of 8 ± 1 nm, showing a surface plasmon resonance at ca.
990 nm [31], and to demonstrate their potential therapeutic utility, their photothermal effect
was measured using a 785 nm laser. An increase of 15.1 ◦C over 3 min was found, but this
led only to a 2% loss of cervical cancer (HeLa) cells being observed after 24 h exposure in
water. Decomposition of [Cu(S2CNEt2)2] in 6-amino caproic acid also gives water-soluble
nanoparticles, but now of digenite phase (Cu9S5) [179], and irradiation with a 980 nm
laser led to a temperature increase of 15.1 ◦C in 7 min. These nanomaterials have potential
applications in photodynamic therapy, although for Cu9S5 the photothermal conversion
efficiency is likely too low.

High boiling primary amines, especially oleylamine (OLA, bp 364 ◦C), have been
widely used as media in the decomposition of copper dithiocarbamates. This was first
reported by Hu and co-workers who decomposed [Cu(S2CNEt2)2] in OLA at 300 ◦C, to
generate OLA-capped Cu9S5 nanocrystals with a diameter of ca. 70 nm and athickness of
ca. 13 nm [179]. The phase is highly sensitive to the experimental conditions used and, thus,
decomposition of the same SSP in OLA/oleic acid (OA) mixtures at 280 ◦C gives Cu7.2S4
with a mean diameter of ca. 20 nm from the decomposition of [Cu(S2CNEt2)2] [180].
More recently, Botha and Ajibade [181] used the hot-injection method to decompose
[Cu(S2CNC5H10)2] in OLA and isolated pure phases of CuS and Cu9S5 at 180 to 220 ◦C,
respectively. CuS can also be obtained upon decomposing [Cu(S2CNC4H8X)2] in OLA
(X = NPh) [182] or octadecylamine (X = S) [183], and Motaung et al. [184] reported the
synthesis of Cu7S4 upon thermolysis of [Cu(S2CNBuPh)2] in OLA. Wang and co-workers
studied the decomposition of the longer-chain SSP, [Cu(S2CNBu2)2], injecting it into a
mixture of OLA and OD (2:3) with added DDT (0.8 equiv.) at 190 ◦C to afford Cu7S4
nanocrystals with an average diameter of 9 ± 1 nm [185].

Trindade and co-workers have decomposed both [Cu(S2CNEt2)2] and [Cu(S2CNBu2)2]
at 240 ◦C in ionic liquids, obtaining digenite (Cu9S5) nanocrystals, as opposed to covellite,
which was formed at the same temperature in OLA [186]. Solvothermal process was
recently utilised to decompose [Cu(S2CNMePh)2] in OLA. At temperatures below 240 ◦C,
a mixture of CuS and Cu9S5 resulted, but above 240 ◦C pure Cu9S5 was formed (Figure 23).
Oleylamine was used as the capping agent and the phase selectivity for the Cu9S5 phase
was attributed to its increased tendency, at high temperature, to drive the reaction towards
the copper rich phase [187].
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thermolysis of [Cu(S2CNMePh)2] in OLA.

Copper(II) bis(dithiocarbamates) have also been exploited for the introduction of cop-
per as a dopant in metal sulfides [188], resulting in improved charge carrier concentration
and current conductivity. Two examples are the preparation of Cu-doped FeS2 [189] and
Cu-doped SnS [188]; bandgap modulation was achieved by varying the percentage of
copper. In an attempting to form doped metal sulfides using the SSP route, it is important
that all precursors decompose within a similar temperature range, as this allows for their
simultaneous decomposition ensuring that dopant levels can be controlled by varying
SSP stoichiometries.

The decomposition mechanism of copper dithiocarbamates has not been extensively
studied and, thus, we look to related systems for direction. The decomposition
of [Ni(S2CNR2)2] in primary amines has been shown to proceed by the initial coordination
of the amine to form five or six coordinate adducts [190]. Following this, and at higher
temperatures, amide exchange occurs with [Ni(S2CNR2)2] converting to [Ni(S2CNHR2)2],
and it is these primary amine derivatives that decompose via deprotonation and loss of
isothiocyanate [191]. While this decomposition pathway has not been proved for analogous
Cu(II) bis(dithiocarbamates), the structural similarly between d8 [Ni(S2CNR2)2] and d9

[Cu(S2CNR2)2] make it tempting to suggest a similar mechanism operates for copper. Like-
wise, for [Fe(S2CNR2)3], the initial amine coordination is followed by an intramolecular
electron transfer to generate [Fe(S2CNR2)2] and half an equivalent of the oxidised form of
the dithiocarbamate, namely thiuram disulfide (R2NCS2)2 [192]. Thus, while reduction of
Ni(II) to Ni(I) is unfavourable, reduction of [Cu(S2CNR2)2] occurs at low potentials and
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thus Cu(I) species may also be prevalent. Indeed, a number of authors report an initial
conversion of brown solutions to yellow, with this colour change being associated with
the formation of Cu(I). These two potential decomposition pathways are summarised in
Figure 24. Importantly, in the amide-exchange process at nickel, the zwitterionic adducts
are shown to be transition states, and not adducts as has been erroneously suggested by
some authors [182].
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7.2. Ternary Metal Sulfides

Copper dithiocarbamates have been used as SSPs to prepare a range of ternary metal
sulfides, the most important of which is copper indium sulfide, CuInS2. This is a semi-
conductor with a bandgap (bulk) of ca. 1.45 eV, and its high absorption coefficient in the
visible region, exceptional radiation hardness and a pronounced defect tolerance, make
it suitable for a range of applications. Further, the metals can be adjusted to fine-tune the
properties of the material; when the Cu:In ratio is <1, they display n-type semiconductor
properties, while when >1 they are p-type semiconductors. The Bohr exciton radius of
CuInS2 is 4.1 nm, and quantum confinement effects can be observed in nanocrystals of
up to ca. 8 nm. At room temperature, CuInS2 adopts the chalcopyrite structure, but at
elevated temperatures, a random distribution of cations is thermodynamically favoured,
leading to the zinc blende structure at >980 ◦C, and wurtzite at >1045 ◦C. A range of copper
and indium dithiocarbamates have been used in the synthesis of CuInS2. A synthetic
challenge arises from the different Lewis acidities of hard In(III) and soft Cu(I). For this
reason, the dithiocarbamate SSP approach is extremely useful since both [In(S2CNR2)3] and
[Cu(S2CNR2)2]/[Cu(S2CNR2)]4 are easily prepared and handled, and they show similar
solubility and decomposition profiles in a range of coordinating solvents.

The SSP approach to CuInS2 was first reported by Cui et al. who decomposed mixtures
of [In(S2CNEt2)3]/[Cu(S2CNEt2)2] in ethylenediamine (en) at 195 ◦C [193], and soon after,
O’Brien prepared thin films of CuInS2 on a range of substrates by aerosol-assisted chemical
vapor deposition (AACVD) at 250–500 ◦C of [Cu(S2CNMeHex)2]/[In(S2CNMeHex)3] [194].
While pure chalcopyrite films can be produced, the ratio of the two SSPs must be carefully
controlled, with indium-rich mixtures affording β-In2S3 as the major product, while copper-
rich precursors give mixtures of Cu1.75−2S and CuInS2. In 2008, Yang, Lu and co-workers
developed a simple method to produce CuInS2 nanomaterials with both the zinc blende
and wurtzite structures [195]. This involves injection of [In(S2CNEt2)3]/[Cu(S2CNEt2)2]
into OLA at 200 ◦C and affords CuInS2 within minutes. The phase can be adjusted by
adding different capping agents to the decomposition mixtures; with oleic acid, the zinc
blende phase results, while with DDT, the kinetically metastable wurtzite phase is gener-
ated. Further, by simply varying the ratio of the two SSPs the stoichiometry of the zinc
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blende particles can be controlled in the range Cu3InS3.1 to CuIn2.2S3.8, and the size of the
nanocrystals can also be adjusted by varying the temperature and the amount of OLA.
Other copper dithiocarbamates can also be used as SSPs. For example, wurtzite CuInS2
nanocrystals have been prepared in OLA at 200 ◦C using [Cu(S2CNBu2)2] [196], while the
indium source can also be varied to afford mixtures of wurtzite and chalcopyrite phases,
which show dual emission in the visible (600–700 nm) and near-IR (700–800 nm) [197]. The
decomposition of mixtures of [Cu{S2CMe(CH2CH2OH)}2] and [In{S2CMe(CH2CH2OH)}3]
affords ternary nanoparticles (CuInS2) of the wurtzite phase. A study of their electro-
chemical properties using cyclic voltametric, square-wave voltammograms and electronic
impedance spectroscopy showed that the nanoparticles exhibited good electrocatalytic
activities and could be useful in areas such as photovoltaics [198]. The use of copper dithio-
carbamates as SSPs to CuGaS2 has been less widely studied, but methods used broadly
follow those described above for indium, using [Ga(S2CNR2)3] as a precursor [194].

While the formation of these materials is clearly a multi-step process, some mech-
anistic insight has been elucidated. Upon heating [Cu(S2CNEt2)2] and [In(S2CNEt2)3]
in OLA/DDT mixtures at 180 ◦C, after a few minutes the solution changes from yellow
to brown, with this being associated with the formation of Cu1.75S [199]. This acts as a
catalyst for the growth of CuInS2 nanoribbons, which have tips of Cu1.75S. The tip size is
ca. 10–15 nm in the initial stages of nanoribbon growth but increased to ca. 20–40 nm in
the final stages. The produced CuInS2 nanoribbons are 2–3 µm by 20–50 nm and have a
ripple-like structure resulting from bending strain. Wurtzite CuInS2 nanowires can also
be prepared using other catalytic centres, for example Ag2S, which is rapidly generated
upon adding [Ag(S2CNEt2)]6 to the reaction mixture [200]. It has been suggested that the
high mobility of the group 11 cations promotes the formation of Cu+/Ag+ vacancies in the
first-formed M2S nanoparticles, which facilitates diffusion of molecular copper and indium
species into M2S to reach supersaturated states. Nanospheres and nanopencils of CuInS2
can also be prepared. For example, heating [Cu(S2CNEt2)2]/[In(S2CNEt2)3] in OLA/DDT
at 200 ◦C gives wurtzite nanopencils with diameters of 10 nm and lengths of 55 nm, one
end of which is narrowed to a point [201]. Adding the chelate 1,10-phenathroline changes
the morphology, so-called tadpole-like structures resulting with lengths of 140 nm and di-
ameters of 25 nm. High resolution transmission electron microscopy (HRTEM) shows that
growth of the nanopencils is along the (001) direction, and it is suggested that 1,10-phen
may disrupt this growth process.

An alternative strategy is to incorporate copper and indium into the same SSP as
championed by Nomura and co-workers, who prepared heterobimetallic complexes, such
as [iBu2In(µ-SPr)Cu(S2CNBu2)] from the reaction of [iBu2InSPr] and [Cu(S2CNBu2)2], and
used them to prepare thin films of CuInS2 [201,202]. The heterobimetallic complexes were
not fully characterised and this approach has not been widely developed until recently
when Nowotny, Schneider and co-workers prepared and crystallographically characterised
[(Ph3P)2Cu(µ-S2C2O2)In(S2CNEt2)2]. They showed that hot-injection of this SSP into OLA
at 240 ◦C gave nanospheres of CuInS2 with extremely small diameters (ca. 2 nm) [203].

Semiconductors CuInS2 and ZnS can be combined to make novel functional materials,
and the SSP approach is an effective route. For example, in 2009, Xu and co-workers
reported that the simple decomposition of mixtures of [Zn(S2CNEt2)2], [Cu(S2CNEt2)2]
and [In(S2CNEt2)3] in octadecane (OD)/OLA in the presence of capping agents could
be used to access almost monodispersed nanocrystals of (CuInS2)x(ZnS)1−x alloys over
the entire composition range [204]. As with CuInS2 alone, both zinc blende and wurtzite
phases can be formed, being easily controlled by the judicious choice of a capping agent,
as shown for pure CuInS2 [205]. More complex materials can also easily be made, and by
simply adding [Cd(S2CNEt2)2] to the decomposition mixture, solid-solution nanocrystals
of (CuInS2)x(ZnS)y(CdS)z can be accessed [206]. The morphology of these materials can
also be tuned. The decomposition of mixtures of diethyl dithiocarbamate complexes
in OA/DDT affords nanobelts of (CuInS2)x(ZnS)1−x with lengths of ca. 3–5 µm and
widths of 50–100 nm [207]. A study of the growth process of the nanobelts showed
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the initial formation of Cu1.75S nanoparticles, presumably from the rapid decomposition
of [Cu(S2CNEt2)2]. These developed into nanowires by a solution–liquid–solid growth
process, with matchstick-like structures observed in the early stages. Simply changing the
reaction medium leads to the formation of alloys with very different morphologies, for
example spherical (CuInS2)x(ZnS)1−x nanocrystals of ca. 7.1 nm diameter with the zinc
blende structure have been prepared through the in situ ethanolamine-derived SSPs in
dimethyl formamide (DMF) at 180 ◦C [208].

Copper dithiocarbamates have also been used in conjunction with other metal dithio-
carbamates including bismuth, tin, iron and antimony as dual SSPs for the synthesis of
a range of ternary metal sulfides, including copper antimony sulfides (CuSbS2, Cu3SbS4,
Cu12Sb4S13 and Cu3SbS3) [209], copper bismuth sulfides (Cu3BiS3, and Cu4BiS9) [210],
copper tin sulfides (Cu2SnS3, and Cu4SnS4) [211] and copper iron sulfides (CuFe2S3 and
Cu5FeS4) [18]. The unique chemical, physical and structural properties of these ternary
copper sulfides makes them potential materials for optoelectronic devices such as solar
cells [212], superconductors and sensors. These unique properties arise from the increased
stoichiometric variation and possible synergy originating from the introduction of a third
element into the structure of the metal sulfide [213,214].

Most researchers use [Cu(S2CNEt2)2] as the copper source as detailed in the syntheses
of Cu3BiS3, Cu4Bi4S9 and Cu3SnS4, with different stoichiometries resulting upon vari-
ation of the precursor concentrations, temperature and solvent, and in some instances,
the morphology can also be tuned [210]. Xu et al. reported the synthesis of CuSbS2 and
Cu12Sb4S13 nanomaterials by varying the OLA/DDT solvent ratio, while maintaining a con-
stant precursor ratio and reaction temperature [209]. The addition of 1,10-phenanthroline
(phen) resulted in isolation of Cu3SbS3 stoichiometry, purportedly via the in situ for-
mation of adduct [Cu(S2CNEt2)2(1,10-phen)], although we note that this complex is not
known and this more likely results from some selective metal chelation, which changes
the metal–substrate ratio. Since these compounds exhibit stoichiometric and morphology-
dependent optical and electrical properties, dithiocarbamate complexes of copper provides
a facile route to their controlled syntheses. Co-thermolysis of [SnClBu(S2CNMePh)] and
[Cu(S2CNEtPh)2] in different molar ratios provides a simple route to a range of copper tin
sulfides. Thus, with an equimolar ratio of the two SSPs, pure Cu2SnS3 results, but as the
amount of [Cu(S2CNEtPh)2] is increased, secondary peaks are seen in the PXRD attributed
to tetragonal Cu2S and orthorhombic Cu4SnS4 [215].

A number of iron copper sulfides have been prepared from dithiocarbamate SSPs.
Gupta and co-workers used the hot-injection of [Cu(S2CNEt2)2]/[Fe(S2CNEt2)3] into a
solution of sulfur in OLA/TOP at 180 ◦C, to prepare nanocrystals of CuFeS2 with an
average diameter of ca. 12 nm [216], the morphology of which could be tuned from
spherical to pyramidal, the latter resulting upon the addition of [Cu(acac)2] (Figure 25a,b).
Hogarth and co-workers reported that heating [Cu(S2CNiBu2)2]/[Fe(S2CNiBu2)3] in OLA
at 230 ◦C gave spherical nanocrystals of ca. 11 nm in diameter, being slightly reduced upon
the addition of iBu4-TDS to the decomposition mixture [217].
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7.3. Quaternary Metal Sulfides

Copper-containing Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) are amongst the
most widely studied quaternary semiconductors as they show potential for applications in
thin film solar cells, having power conversion efficiencies of ca. 10%. Over the past decade,
there has been many reports of the use of dithiocarbamate SSPs for the synthesis of CZTS
thin films and QDs. The formation of quaternary (and multinary) sulfides via the SSP
approach adds a further level of complexity with the reactivity of three or more components
having to be considered, which can lead to issues of stoichiometric control, while there is
also a tendency to generate a plurality of compositional phases in the early stages. Further,
for thin film synthesis, the three precursors must have similar volatility and decomposition
temperatures/profiles. For the diethyldithiocarbamate derivatives of copper, zinc and
tin, their decomposition occurs at 220, 240 and 174 ◦C, respectively, and the low value of
the latter may lead to the initial formation of SnS. O’Brien and co-workers thus utilised
the higher decomposition temperature of [Sn(S2CNBu2)4] (300 ◦C) to form a suitable SSP
mixture [218] for the first AACVD synthesis of CZTS thin films. They deposited these at
360 ◦C to obtain films of kesterite ca. 690 nm thick, which could be increased to 1.15 µm at
400 ◦C, with optical bandgaps varying at 1.3–1.5 eV. CZTS thin films can also be prepared
from dithiocarbamate SSPs nanoparticles via the initial formation of nanoparticles upon
initial decomposition in OLA followed by drop-casting toluene suspensions of these onto
substrates, with films of up to 10 µm being accessible [219]. Another approach is to aerosol
spray toluene solutions of the diethyl-dithiocarbamate complexes onto a hot substrate at
ca. 400 ◦C, which gives thin films comprised of nanoplatelets of CZTS. Further studies
have shown the initial formation of a copper-rich phase and this promotes later anisotropic
growth [220]. In solvothermal syntheses from OLA/DDT, the initial formation of Cu2S
nanoparticles has also been observed, and these in turn catalyse the growth of CZTS [221].
Thus, a consistent picture emerges whereby the copper dithiocarbamate SSP decomposes
first, and the generated copper sulfide catalyses later decomposition processes.

As shown in Figure 24, it is postulated that primary amine complexes [Cu(S2CNHR)2]
are key intermediates in the formation of copper sulfides. These appear to be unstable,
and to date, no well-characterised examples have been reported. They may be generated
in situ and it has been reported that the addition of CS2 to the primary amine solution
containing copper, zinc and tin salts and spin-coating the mixture onto substrates, then
heating at 320 ◦C for a few minutes affords thin films of CZTS [222,223]. This suggests
that [M(S2CNHR)n], including [Cu(S2CNHR)2], are generated but rapidly decompose. The
quality of the films is dependent upon the nature of the amine dependent upon the amine;
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with ethanolamine giving the best-quality films. These results suggest that both the rates
of formation and decomposition of [Cu(S2CNHR)2] (and tin and zinc) complexes are likely
substituent dependent. Further studies into this exciting discovery are eagerly awaited.

8. Biological Applications

Copper is an essential element for most aerobic organisms, being present in metallo-
proteins and metal-labile pools [224], and consequently, copper homeostasis is critically
important to normal human physiology. This is exemplified by the life-threatening im-
pact of copper deficiency and overload associated with Menkes and Wilson’s disease,
respectively [225,226]. The biological effects of dithiocarbamates centre on their ability
to exert both pro-oxidant and antioxidant effects [227], while their high metal-chelating
ability allows them to modulate the active sites of many metal-containing proteins [228]. In
addition, the free thiol groups may also interact with other molecules such as the sulfhydryl
groups. Thus, dithiocarbamates are able to inhibit enzymes and also oxidise glutathione
by covalently interacting with free protein thiols [229] and glutathione peroxidase-like
activity [230]. They can also affect cellular detoxification mechanisms due to their ability to
subdue hepatic microsomal process of drug metabolism [231] and also suppress glutathione
S-transferases [232].

Given the biological importance of copper and the use of tetraethyl thiuram disulfide
(Disulfiram) since the 1950s as a drug used in alcohol aversion therapy [233–235], then
it is not surprising that copper dithiocarbamates, especially [Cu(S2CNEt2)2], have been
widely studied in a biological context. Thus, it has been shown that free Cu(II) interacts
with disulfiram to afford [Cu(S2CNEt2)2] in high yields, a transformation accompanied
by the oxidative decomposition of small amounts of disulfiram [236,237]. While disul-
firam itself has little effect on cancer cells, in the presence of Cu(II) IC50, values in the
nanomolar range have been found against a number of cancer cell lines, and consequently
copper-dithiocarbamates have been widely studied in a biological domain, particularly
as anticancer agents. Copper dithiocarbamates are able to alter cancer cell metabolism
and, in addition, their ability to selectively respond to normal and tumour cells differently
forms the basis of their development as complexes with antineoplastic properties [238].
Using complexes derived from biologically active amines suggests potential for both metal
and ligand interference with a pathogen’s life cycle [239]. In accordance with Tweedy’s
theory, metal complexes would exhibit greater biological activity than the corresponding
ligand, with this being attributed to increased π-electron delocalisation in the chelate ring.
Chelation results in a reduction in the polarity of metal ions, which enhances the lipophilic
nature of chelates and ultimately improves penetration of the lipid layer of the microbial
cell membrane and blocking of enzyme metal binding sites [240].

8.1. Anticancer Agents

Cancer cells have a high copper demand for their maintenance, proliferation and
metastasis. While platinum complexes are the most widely developed metal-based an-
ticancer agent [241], platinum resistance has led to the consideration of other metals,
especially copper [242], complexes of which have been found to induce cancer cell death
through the generation of reactive oxygen species (ROS), and by proteosome inhibition. Es-
pecially in respect of the latter, copper dithiocarbamates have shown promise in preclinical
studies [243]. Detailed molecular mechanisms underlying their anticancer activity remain
largely unknown, but mechanistic studies have shown that they can act as DNA intercala-
tors [244], proteasome inhibitors [245], inhibitors of nuclear factor kappa B (NF-κB) [246]
and are also able to inactivate numerous metal-containing enzymes [247].

As stated above, disulfiram alone has poor anticancer activity but does have the
ability to transverse biological membranes, including the blood–brain barrier. It is also
easily reduced to the dithiocarbamate by glucose reductase. Disulfiram is, nevertheless,
an extremely active anticancer agent in the presence of copper ions. It does not form a
stable complex with Cu(II), but the two react rapidly to afford [Cu(S2CNEt2)2], a process
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that requires a small stoichiometric excess of disulfiram, and [Cu(S2CNEt2)2] has been
identified in the brains of mice fed with disulfiram [62]. O’Brien has proposed a mechanism
for this, which involves the initial reduction of Cu(II) to Cu(I) with concomitant formation
of bitt-42+, the oxidised form of disulfiram [237] (Figure 26). The bitt-42+ is unstable and
undergoes a catastrophic decomposition, which leads to the formation of 30 electrons per
molecule and leads to oxidative stress on cells [236]. This likely accounts for the massive
cell death observed when exposed to disulfiram-copper mixtures [248,249]. Biological
detection of [Cu(S2CNEt2)2] is usually made by EPR [62] but, recently, mass spectrometry
has also been used to detect this complex in A549 cell [250].
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[Cu(S2CNEt2)2] is also an effective anticancer [236,248,251–256] especially in vitro as
are many derivatives [36,37,257–262]. This was first established for pyrrolidine dithiocar-
bamate, which exhibits high potency to inhibit a cancer-specific proteasome, showing a
cytotoxic effect on different human tumour cells after complexation with copper. Generated
[Cu(S2CNC4H8)2] has also been reported to induce cellular apoptosis in both prostate and
human breast cancer cells [257,263] and is a potential treatment for refractory neurob-
lastoma in children. Zhang et al. [264] have reported suppression of the proliferation of
BE(2)C cells (a human neuroblastoma cell line) using this complex, having a higher potency
than cisplatin based on IC50 values. The treatment of cancer cells resulted in an arrest
of cell cycle progression and cellular apoptosis. Investigation of a series of substituted
pyrrolidine complexes has allowed a structure–activity association [265,266]. Thus, both
the ligand polarity and ring size affect the activity, with the proteasome-inhibitory abil-
ity being significantly decreased upon ring substitution by large and polar groups [266].
Furthermore, Wang et al. have reported that some pyrrolidine derivatives exhibited less
inhibition activity of aldehyde dehydrogenase (ALDH) in human breast cancer cells [265].

The activity of [Cu(S2CNEt2)2] against osteosarcoma cancer lines has been measured,
showing IC50 values of 2.37 ± 0.12 µM after 24 h, while analogous Fe(III) and Cr(III)
complexes were inactive and Mn(III) had higher IC50 values of 13.3± 1.43 µM [262]. Higher
levels of ubiquitin-bound proteins were observed by cells treated with [Cu(S2CNEt2)2]
and the accumulation of proteasome substrate IkBα. Apoptosis of the cancer cell was
observed to proceed by the activation of caspases 3 and 7, which resulted in cleavage
of PARP-1 into smaller fragments. The anticancer activity of copper dithiocarbamate
complexes can be tuned by varying substituents tuning both structural and electronic
properties. This was observed in the study on the antiproliferative activity of two copper
complexes of dithiocarbamate glycoconjugates (glucose and galactose) on human cancer
cell lines [267]. A four-fold increase in activity was observed as compared to the free
ligands. Their activity was also influenced by the nature of the glycoconjugates, with the
galactose-based complex showing higher antiproliferation activity as compared to glucose.
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Further, they exhibit higher activity than related zinc complexes, and the activity of the
glycoconjugates is correlated with their hydrophilicity, which determines their ability to
move across cell membranes.

A major barrier towards the development of [Cu(S2CNEt2)2] and related complexes de-
rived from non-polar secondary amines is their extremely poor water solubility
(<1 mg mL−1). There are a number of possible ways around this, one being to co-deliver
disulfiram and Cu(II) such that they react and generate [Cu(S2CNEt2)2] within the tumour
microenvironment [268–270]. This can be done in a number of ways, the most common
being the incorporation of disulfiram and Cu(II) into a polymeric nanoparticle, for example
as reported by Pu and co-workers who used a poly(ethylene glycol) (PEG)-b-poly(ester
carbonate) (PEC) composite [270]. They established in vitro anticancer activity, although
interestingly, loading the nanoparticles with pre-formed [Cu(S2CNEt2)2] gave higher antitu-
mor efficacy. A related approach is the in situ generation of [Cu(S2CNEt2)2] from a prodrug,
for example from an enzyme-activatable dithiocarbamate [271,272]. The prodrug was ob-
tained by conjugating the dithiocarbamate through a leucine spacer and a p-aminobenzyl
(pAB) linker to the C-terminus of peptides, cleavage of the prodrug obtained from the
peptide sequences Arg-Ser-Ser-Tyr-Tyr-Ser-Leu-pAB-DTC and His-Ser-Ser-Lys-Leu-Gln-
Leu-pAb-DTC, respectively (point of cleavage indicated by wavy lines) resulting in the
generation of [Cu(S2CNEt2)2] (Figure 27).
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Figure 27. Chemical structures of prodrugs and the reaction scheme to the formation of
[Cu(S2CNEt2)2] via PSA-induced cleavage and amino acid trimming activity of non-specific
aminopeptidases. Reproduced with permission from [271]. Copyright 2020 Elsevier.

As hinted above [270], another potential route to circumvent the low water solubility
is the so-called Trojan horse approach, whereby the pre-formed copper complex is encap-
sulated into a vestibule. Approaches here include encapsulation in a polymer matrix [270],
the aqueous core of liposomes [273], within hyaluronic acid nanoparticles [274,275] or apo-
ferritin [276]. Related to this approach is an interesting report of stabilised metal ion ligand



Inorganics 2021, 9, 70 30 of 47

complex (SMILE) technology, whereby [Cu(S2CNEt2)2] is embedded into nanoparticles
comprised of various stabilising agents that are already approved as safe excipients by
the UD Food and Drug Administration [277]. For example, PEG−PLA/[Cu(S2CNEt2)2]
nanoparticles show excellent stability with only a minor loss of copper concentration af-
ter 30 days but have good activity (nanomolar) against drug-resistant DU145-TXR cells.
Light-triggered [Cu(S2CNEt2)2] release has also been developed using the Trojan horse
approach [278,279], for example Liu and co-workers prepared vestibules from biocom-
patible phase-change materials incorporating a near-infrared (NIR) dye, thus allowing
[Cu(S2CNEt2)2] release upon irradiation with an NIR laser [278].

Another approach is to modify the dithiocarbamate substituents to give enhanced
water solubility, although changing these inevitably affects anticancer activity. Fregona
and co-workers have utilised proline-derived complexes (Figure 2e) with some water
(and DMSO) solubility [40,41]. Their activity is improved by supporting them on a non-
ionic block copolymer, with the encapsulated copper complex showing enhanced stability,
bioavailability and water solubility. Some of these complexes have shown comparable
activity to standard drugs, with few showing higher activity when compared to standard
anticancer drugs [259]. Carbohydrate-functionalised complexes have also been prepared
and studied by Fregona and co-workers, and an example (CuGlu) is shown (Figure 28) [37].
They have enhanced water solubility, and CuGlu shows an interesting IC50 value toward
the HCT116 human colorectal carcinoma cell line, although related complexes bearing two
diastereomers of D-glucose did not show any cytotoxic properties.
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Figure 28. Line drawing of the molecular structure of a carbohydrate-functionalised dithiocarbamate
complex prepared by Fregona and co-workers.

The mode of action of [Cu(S2CNEt2)2] has been widely studied and reviewed [61].
It functions as a proteasome inhibitor, inducing apoptosis by specifically targeting the
ubiquitin-proteasome pathway (UPP) [280–282]. Due to the role of UPP in the control of
the expression, activities and location of various proteins, a potential strategy in the devel-
opment of anticancer agents has been found in the selective suppression of proteasome
and apoptotic induction in cancer cells. Recently, the p-97-NPL4-UFDI protein has been
identified as a target for [Cu(S2CNEt2)2], being proposed that this leads to accumulation
of ubiquitinated proteins leading to a heat shock response [62]. Induction of apoptosis in
neuroblastoma cells by [Cu(S2CNEt2)2] has been shown to result from increasing levels of
intracellular copper concentrations, which triggers the release of cytochrome c and capase
activation [253], and it has also been shown to be an activator of Nrf2 in cultured vascular
endothelial cells [283].

8.2. Antimicrobial, Antibacterial, Antioxidant and SOD-like Activity

Antimicrobial and antibacterial properties of dithiocarbamate complexes, including
those of copper, have recently been reviewed by Tiekink and co-workers [284] and hence
this section will cover only a brief overview of selected examples. Antimicrobial resistance
is a major societal problem, with increasing resistance to so-called last-resort antibiotics
such as carbapenems being of particular concern. Metallo-β-lactamases (MβLs) hydrolyse
carbapenems, penicillins and cephalosporins, and consequently the inhibition of MβLs is a
topic of considerable interest. In a recent communication, Yang and co-workers have shown
that both disulfiram and [Cu(S2CNEt2)2] are potent MβL inhibitors [285]. While the former
acts selectively on New Delhi metallo-β-lactamase (NDM-1) via covalently binding to the
Cys208 residue leading to release of Zn(II), the copper complex is active at nanomolar levels
against a range of MβLs, a process that does not lead to loss of Zn(II). The mechanism of
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action remains to be fully elucidated, but X-ray photoelectron spectroscopy (XPS) suggests
that a reduction of Cu(II) to Cu(I) occurs, a process that has been associated with oxidation
of a Zn(II)-thiolate centre in the active site of NDM-1. As the redox chemistry of the copper
centre is easily tuned via judicious choice of dithiocarbamate substituents, this suggests
that further work in this area should be highly productive.

Dithiocarbamate salts have been studied for the management and control of bacteria [286],
and Cu(II) bis(dithiocarbamate) complexes also show antibacterial activity, although it is nor-
mally lower than that of the free ligand [287]. This is the case for [Cu(S2CNC5H10O)2], which
shows moderate inhibitory activity against both Gram-positive and Gram-negative bacte-
ria [287] and a small library of N’N-diarylformamidine-derived dithiocarbamates, the activity
of which is influenced by the presence of chloro-substituents [288]. In contrast, Onwudiwe and
Ekennia [24] have reported that the antibacterial activity of NaS2CNEtPh is enhanced across
a broad spectrum of the bacteria even after Cu(II) complexation. Further studies are required
to ascertain if the activity of [Cu(S2CNR2)2] simply relates to loss of free ligand, for example
upon oxidation to Cu(II). The antibacterial activity of Cu(I)-phosphine complexes has also been
explored, with [Cu(PPh3)2(S2CN(R)CH2CH2OH)] being selective against Gram-positive bacte-
ria (R = Cy, iPr) [127]. Related N,N′-diarylformamidine-derived dithiocarbamate complexes
(Figure 2d) have also been investigated but show poor activity, possibly resulting from their
inability to penetrate bacterial cell walls [289].

The release of hydrogen atoms close to the coordination core of metal complexes
is responsible for the radical scavenging effect of metal complexes [290]. The presence
of copper boosts the antioxidant activity of the ligands as their proton-donor capacity is
enhanced, as does the presence of electron-donating groups at carbon [291,292]. The an-
tioxidant activity of a series of copper dithiocarbamates has been reported by Oladipo et al.
Using a standard assay, it was noted that their activity was significantly enhanced as com-
pared to the free ligands [19]. Similarly, copper complexes with N’N-diarylformamidine
dithiocarbamate ligands (Figure 2d) show enhanced antioxidant activity, being higher for
those with symmetrical vs. unsymmetrical ligands [288]. The in vitro antioxidant activity
of [Cu(S2CNEtPh)2] is also greater than that of the uncoordinated dithiocarbamate salt [24].

Superoxide dismutase (SOD) is a copper-containing enzyme that catalyses the conver-
sion of superoxide to oxygen and peroxide via a Cu(II)–Cu(I) redox couple. The SOD-like
activity of Cu(II) dithiocarbamate complexes has been extensively studied by Cao and
co-workers [293–298] and others [267]. In order to enhance their water solubility, they
prepared a range of cyclodextrin [293,297] and α-amino-acid [295] functionalised dithiocar-
bamates and their Cu(II) complexes. For the latter, structure–activity relationships were
established between −log IC50 values and the molar refraction of the amino acid sub-
stituents, and also the Cu(II)–Cu(I) redox potentials. The complex derived from L-glutamic
acid showed especially high SOD-like activity interpreted on the basis of EPR spectroscopy
to its distorted ground-state geometry [295].

8.3. Applications in Medical Imaging

Copper has several positron-emitting radionuclides, 60Cu, 61Cu, 62Cu and 64Cu, with
a range of half-lives that are suitable for applications in molecular imaging, and radio-
labelling/biodistribution of 62Cu-dithiocarbamate has been studied by an in vitro evalu-
ation using non-radioactive Cu-glycine. 62Cu forms stable and neutral dithiocarbamate
complexes, with a brain accumulation that is much higher than that reported for 62Cu-
glycine [299]. 64Cu emits a low-energy positron (0.65 MeV) that allows for high-resolution
positron emission tomography (PET) imaging, and the relatively long half-life (12.7 h)
enhances its application in preclinical studies and applications in which prolonged scan-
ning (beyond 24 h) is required [300]. Hence, there is a growing interest in the use of
the cyclotron-produced 64Cu for diagnostic purposes [301]. Due to their ability to cross
the blood brain barrier, lipophilicity, kinetic lability and potential to be easily absorbed
and trapped in cells, both [64Cu(S2CNR2)2] RR = Me, Et) have been used as brain per-
fusion imaging agents [302],. Charoenphun et al. [303] reported their use in labelling a
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mouse macrophage cell line (J774), which showed enhanced efficiency dependent on the
dithiocarbamate utilised. Thus, while [64Cu(S2CNMe2)2] exhibited the fastest and most
efficient uptake, the rates of wash-out were too fast for in vivo imaging cell trafficking. The
results were similar to other reported complexes of diethyldithiocarbamate and diphenyl
dithiocarbamate, which suggest a rapid intracellular dissociation process.

Bifunctional dithiocarbamates, which incorporate bis(phosphonate) group(s), have
been developed by de Rosales et al. [38] who prepared a dual-modality complex for
medical imaging, utilising the high soft-tissue resolution of magnetic resonance imaging
(MRI) and the sensitive signal of PET. The 64Cu complex (Figure 2g) was synthesised and
conjugated with superparamagnetic Fe2O3 nanoparticles as a Dual-Modality PET–MRI
Agent. The ligand was designed to bind to Cu(II) through the dithiocarbamate, leaving
the bis(phosphonate) ends free to bind to the surface of the Fe2O3 nanoparticle [304,305]
(Figure 29) and was successfully used in a mouse model to image draining lymph nodes.
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9. Other Applications
9.1. Removal of Cu(II) and Environmental Remediation

Due to continued increases in world population and industrialisation, environmen-
tal pollution presents a global challenge, and the identification and removal of inor-
ganic and organic pollutants has become a major research area. The main area of en-
vironmental applications of dithiocarbamates concern the adsorption of metal ions, with
the high binding constants for Cu(II) and aqueous insolubility of [Cu(S2CNR2)2] mak-
ing dithiocarbamates attractive reagents for the removal of Cu(II) [9]. The normal ap-
proach here is to functionalise cheap and highly stable materials such as lignin [306]
and starch [307]. A similar approach can also be used to remove copper from pharma-
ceutical reaction media down to <10 ppm, with [NH4][S2CNC4H8] being most widely
used [11]. Polymeric Cu(II) N,N′-bis(dithiocarboxy)piperazine ([CuBDP]n) has been shown
to be effective for the removal of Acid Red 73 from wastewater, with absorption be-
ing as high as 364 mg g−1, being significantly better than either [Cu(S2CNMe2)2] or
[Cu(S2CNEt2)2], which are able to absorb up to 37.8 and 42.9 mg·g−1, respectively [308].
The Cu(III) complex [Cu{S2CN(CH2CH2OH)2}2]3[PW12O40] (Figure 30) shows high sono-
catalytic activity for Rhodamine B dye degradation and a nanohybrid obtained from
[Cu{S2CN(CH2CH2OH)2}2], and H3PW12O40 has high activity as an adsorbent for the
removal of methylene blue, with 95% removal being achieved within 50 min [85].
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9.2. Photovoltaic Cells

Dye sensitisation is an important technique in improving the efficiency of TiO2-based
solar cells, with potential alternatives to Si-based solar cells due to their ease of fabrication,
low cost and adaptability [309]. Metal dithiocarbamate complexes have been explored as
dye-sensitising agents because of their ease of functionalisation, which can lead to improved
absorption and adsorption capacity of TiO2. Additionally, the d9 electronic configuration
of Cu(II) may facilitate agostic interactions, supramolecular architecture stabilisation and
the formation of important intermediates [21]. Maner and co-workers [21] have reported
the photosensitising activity of five Cu(II) dithiocarbamate complexes [21], with 4-N,N-
diethylbenzyl-N-methyl substituents having the highest conversion efficiency of 3.62%,
being comparable to values obtained from a standard ruthenium dye. The phot-sensitising
activity of the complexes appears to depend primarily on structural features, interfacial
charge recombination and electron lifetime. The activity of ferrocenyl-functionalised
dithiocarbamates has also been reported [310], with their efficiency as photosensitisers
depending upon the nature of the heteroaromatic conjugated linkers. Similarly, the dye-
photosensitising ability of a ferrocenyl-substituted dithiocarbamate complex, possessing
an –OH group to anchor onto the TiO2 surface, was reported by Yadav [311]. Its activity is
influenced by the nature of the absorption, dye-loading ability and the anchoring geometry
of the complex. Compared to cobalt analogues, the efficiency of the copper complex is
lower, however, but higher than related nickel species.

9.3. Applications in Organic Transformations and Homogeneous Catalysis

Over the past decade, a number of organic transformations have been shown to occur
in the presence of copper ions (both Cu(I) and Cu(II)) and NR2H-CS2-base, conditions
associated with the formation of [Cu(S2CNR2)2] and/or [Cu(S2CNR2)]4. As far as we
are aware, the first of these was reported in 2011 by Ma and co-workers, who showed
that mixtures of secondary amines CS2 and K2CO3 in the presence of a range of stoi-
chiometric amounts of copper halides efficiently affords 2-N-substituted benzothiazoles
(Figure 31) [312].
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Copper dithiocarbamates have not found widespread use in homogeneous catalysis,
despite having many of the attributes associated with good catalysts such as a range of
accessible oxidation states and coordinative unsaturation. While the reaction discussed
above is formally catalytic, the amounts of copper used are near to stoichiometric; nev-
ertheless, there soon followed a range of related transformations in which much smaller
amounts of copper were utilised either in the presence of dithiocarbamates [313,314] or
thiuram disulfides [315–318]. By way of example, Bolm and co-workers have reported that
Cu2O is an efficient catalyst for the formation of aryl dithiocarbamates from the coupling
of thiuram disulfides and aryl iodides [315]. While mechanistic details have not been fully
elucidated, one proposed route is via a Cu(II) species [CuAr(S2CNR2)], which undergoes
reductive-elimination of the product. This seems unlikely, and a second radical-initiated
route whereby reduction of Cu(I) affords aryl radicals, which subsequently add to the
thiuram disulfide, seems more plausible. In closely related transformations, Cu(III) interme-
diates, [CuI(Ar)(S2CNR2)], have been postulated, with reductive-elimination regenerating
Cu(I), and this seems at least plausible [316,317].

Copper dithiocarbamates have been implicated as catalysts in living free radical
polymerisation reactions [152,319–321]. For example, in the presence of 2,2′-bipyridine and
AIBN, [CuCl(S2CNEt2)Cl]2 has been shown to catalyse the reverse atom-transfer radical
polymerisation of vinyl monomers affording polymers with low polydispersity [152]. A
likely catalytic species is [CuCl(S2CNEt2)(2,2′-bipy)] in which a dithiocarbamate radical
shuttles between the copper centre and the developing polymer chain.

Both [Cu(S2CNR2)2] and [Cu(S2CNR2)]4 are active catalysts for the conversion of
alkenes into aziridines using the hyper-valent iodine compound [PhI=NTs]n as the nitrene
source [75]. Reactions occur rapidly at room temperature in CH2Cl2 and are easily mon-
itored by the dissolution of oligomeric [PhI=NTs]n, which leads to the initially cloudy
solution turning clear. Cu(I) complexes are the most active catalysts and Cu(II) also work,
but [Cu(S2CNR2)2][ClO4] are inactive [322,323]. The mechanism remains unknown but
may involve initial coordination of PhI=NTs to a Cu(I) centre. Unfortunately, their utility is
stifled by a secondary reaction between catalyst and PhI=NTs, which leads to the formation
of insoluble and catalytically inactive Cu(II) amides (Figure 8) possibly via the addition of
NTs to sulfur followed by ring expansion.

10. Summary and Conclusions

In this review, we have attempted to give an overview of the coordination chemistry
and various applications of copper dithiocarbamates. Some aspects of this work, such
as the synthesis of Cu(II) bis(dithiocarbamates), [Cu(S2CNR2)2], are very mature, and
their ease of synthesis and robustness to a wide-range of variation in substituents means
that they have found applications in a wide range of different areas, including materials
science and medicine. Over the last decade, the most widely exploited application is their
thermal decomposition to afford copper sulfides, the size, phase and morphology of which
can be tuned via judicious choice of reaction conditions. This approach has been further
extended to the synthesis of technologically important ternary and quaternary sulfides,
most notably Cu2ZnSnS4 (CZTS), which results from the co-decomposition of copper,
zinc and tin dithiocarbamates. Another important development is the realisation that
[Cu(S2CNEt2)2] is formed in the biological domain when the anti-alcohol drug disulfiram
is taken, and that it shows anticancer behaviour, leading to detailed investigation of the
biological role of Cu(II) bis(dithiocarbamates). While still not fully understood, there
is strong evidence that it functions as a proteasome inhibitor, specifically targeting the
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ubiquitin–proteasome pathway and inducing apoptosis. A major problem with using
[Cu(S2CNEt2)2] and most other derivatives as drugs is their extremely low water solubility,
and this is being addressed using a Trojan Horse strategy to deliver [Cu(S2CNEt2)2] or to
generate it in situ within the cell from reaction between Cu(II) ions and disulfiram. Thus,
an “old” molecule finds new relevance bringing an “old” branch of coordination chemistry
back to life. In doing the latter, over the past decade, a wide range of novel new Cu(I)
dithiocarbamate clusters have been discovered. Their structures are novel, with some
being in the nanoscale domain, and understanding how to control their specific size and
shape, for example by using different dithiocarbamate substituents and/or other ancillary
ligands to generate bespoke clusters in high yields, remains an exciting challenge. Given
the widespread development of simple Cu(II) and Cu(I) complexes as SSPs to nanoscale
copper sulfides, these clusters might be viewed as intermediates in this process or could
be potential SSPs themselves, an area that appears to be totally unexplored to date. We
look forward to these exciting new developments and hope that in 10–20 years a researcher
scanning this review will find it useful background reading but quite out of date since the
field will have moved on enormously.
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