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Abstract: The reaction in the system CuII/sacNa(H)/NCNR2 (sacNa(H) = sodium saccharinate
(saccharin); R = Me, Et) results in the formation of the complexes [Cu(sac)2(NCNR2)(H2O)2] (R = Me
1, Et 2) instead of the expected products derived from the saccharin–cyanamide coupling. Complexes
1, 2, and hydrate 1·2H2O were characterized by IR, AAS (Cu%), TGA, and also by single-crystal
X-ray diffraction for 1 and 1·2H2O. An integrated computational study of model structure 1 in the
gas phase demonstrates that the Cu–Ncyanamide and Cu–Nsac coordination bonds exhibited a single
bond character, polarized toward the N atom and almost purely electrostatic, with the calculated
vertical total energies for the Cu–Ncyanamide and Cu–Nsac of 43.6 and 156.4 kcal/mol, respectively.
These data confirmed that the copper(II) completely blocks the nucleophilic centers of ligands via
coordination, thus preventing the saccharin–cyanamide coupling.

Keywords: copper(II) complexes; saccharinate ligand; dialkylcyanamides; X-ray diffraction; compu-
tational study

1. Introduction

Saccharin (sacH), which is a common and widely used artificial sweetener [1], also
finds application in diverse areas of chemistry, particularly being applied as a catalyst of a
number of organic reactions (leading to, e.g., compounds of biological importance [2–5])
and a functional group protector [2,6]. SacH is also applied in the preparation of drug-
based co-crystals exhibiting an improved solubility and bioavailability compared to the
poorly soluble parent drugs [7].

Our recent finding in the saccharin chemistry was the observation of unusual metal-
free “two saccharin–one cyanamide” coupling between sacH and NCNR2 to grant guanidi-
nated saccharin derivatives [8]. The distinctive feature of this transformation is its formal
three-component character, while other known examples of reactivity of sacH toward
multiple bond substrates includes the additions to amino alkynes [9,10], isocyanide [11],
isocyanates [12], and carbodiimides [12,13]; all these examples include two-component 1:1
additions.

In light of the general interest in coordination chemistry of NCNR2 (R2 = Alk2, Ar2,
H/Alk, H/Ar, H/CN, etc.) and their metal-mediated and metal-catalyzed reactions (for
our and other group reviews on metal-involving reactivity and coordination chemistry
of cyanamides see [14–17], respectively), we now studied the reaction between sacH
and NCNR2 in the presence of a metal center, which as we assumed, should change its
directionality. For these purposes, we addressed copper(II), as a kinetically labile metal
center, which is commonly used in various catalytic reactions including coupling-based
transformations. We observed that the introduction of copper(II) completely changed
the directionality of the reaction by blocking the nucleophilic centers of both reactants
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by the ligation to give (sac)(NCNR2)CuII species instead of the guanidinated saccharin
derivatives.

2. Results and Discussion
2.1. Synthesis and Characterization

For the study of the CuII-involving reactions between cyanamides and saccharin, we
addressed the copper salts CuCl2·2H2O or CuBr2, N,N-disubstituted cyanamides NCNR2
(R = Me, Et), and sacH or its sodium salt (sacNa). These reactions were performed in
a neat NCNR2 or NCNR2/solvent mixture (solvent = H2O, MeOH, EtOH) where the
copper salts and saccharin(ate) are well soluble. In the systems, CuII/NCNR2/SacNa,
[Cu(sac)2(NCNR2)(H2O)2] (R = Me 1, Et 2) complexes were obtained and isolated as
crystalline solids. The results previously reported for metal-free process “two saccharin–
one cyanamide” addition products were neither isolated, nor identified by HRESI+-MS in
the reaction mixtures, although peaks from the 1:1 addition product were detected in the
HRESI+-MS spectra (see ESI, Supplementary Materials Figures S1 and S2). Furthermore,
we optimized the synthesis conditions in order to increase the yield of complexes 1 and 2.

Copper(II) saccharinate/dimethyl cyanamide complexes 1 and 1·2H2O (50–75%) were
obtained by the dissolution of CuCl2·2H2O or CuBr2 in NCNR2 (R = Me, Et) at 60 ◦C
followed by the addition of a solution of sacNa in MeOH, EtOH, or H2O (Scheme 1).
Notably, the choice of solvent affects the release of either hydrated, or anhydrous form of
the complex. When the reaction proceeds in dried EtOH, complex 1 was obtained, while
from undried MeOH, EtOH, or in H2O, hydrate 1·2H2O was isolated. In this reaction, sacH
can be used instead of sacNa, however, this treatment gives a lower yield of the product
(up to 35% for 1·2H2O). The yield reduction can be explained by a lower reactivity of the
protonated form (pKa of sacH = 1.6 [18] in H2O). The reason of the moderate yield of 1
and 1·2H2O is the formation of various unidentified by-products. IR monitoring of the
filtrate from the reaction mixture verified broad bands at 1641s and 1620 m-s sh cm–1 and
band 2251 cm–1 s, which were attributed to ν(C=O) from the saccharinate moiety of the 1:1
addition product, and Me2NC(O)NH2, and ν(CN)cyanamide from the coordinated NCNMe2,
respectively.
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Scheme 1. Generation of 1, 1·2H2O (R = Me), and 2 (R = Et).

Upon the extension of the complexation to the other cyanamides NCNR2 (R2 = Et2,
C4H8, C5H10, C4H8O), we found that CuCl2·2H2O and CuBr2 were almost insoluble
in most of these cyanamides (R2 = C4H8, C5H10, C4H8O). Therefore, we modified the
reaction conditions, namely CuCl2·2H2O (or CuBr2) was dissolved in THF and then
a solution of both sacNa and NCNR2 in MeOH (or EtOH) was added to a THF solu-
tion. Under these conditions, a lantern-like complex [Cu2(sac)4(THF)2]·2THF (3·2THF)
was obtained. When we attempted to replace THF in this reaction with another sol-
vent (MeOH, EtOH, or MeCN), we obtained the complex [Cu(sac)2(H2O)4]·2H2O (from
the system CuCl2·2H2O/NCNC5H10/sacNa). The structure of this known [19] complex
[Cu(sac)2(H2O)4]·2H2O was confirmed by X-ray diffractometry (XRD; see ESI). In the case
of NCNEt2, in which CuCl2·2H2O and CuBr2 demonstrated limited solubility, we suc-
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ceeded in obtaining complex 2 under conditions similar to those applied for the synthesis
of 1·2H2O.

Complexes 1, 1·2H2O, and 3·2THF were characterized by IR, AAS (Cu%), and TGA
methods and also by single-crystal X-ray diffraction. Complex 2 was characterized by IR
and AAS (Cu%). The AAS (Cu%) data agree with the calculated values for the proposed
formulas. In the IR spectra of 1, 1·2H2O, and 2, the ν(C≡N) of the NCNR2 ligand was
observed in the range 2226–2245 cm–1; these values are comparable with those observed
for the homoleptic complexes [Cu(NCNR2)4](BF4) (R = Me, Et; ca. 2240 cm–1) [20] and the
mixed-ligand copper(I) complexes [Cu(tpm)(NCNR2)](BF4) (R = Me, Et; ca. 2250 cm–1) [21]
and the clusters [Cu4X6O(NCNMe2)4] (2255–2261 cm–1) [22]. In the IR spectra of all com-
plexes, the two strong bands in the ranges 1306–1330 and 1165–1177 cm–1 were attributed
to νsym(SO2) and νasym(SO2) of the saccharinate ligands, respectively. We also attempted
mass-spectrometric characterization of the obtained species, but the HRMS+ (ESI) spectra
(in MeCN) did not display molecular ions for all complexes and only products of deep
fragmentation of complexes (e.g., ions Cu(NCMe)2

+) were observed due to the lability of
copper(II) complexes in a solution.

Complexes 1 and 2 are stable until ca. 70 ◦C and then decompose with the loss of
the NCNR2 ligand in the interval ca. 70–150 ◦C and two H2O ligands at ca. 150–250 ◦C;
after 250 ◦C, the residue undergoes decomposition of sac– ligands forming yet unidentified
species. Hydrate 1·2H2O somehow demonstrates greater stability and its decomposition
starts at ca. 100 ◦C with loss of the crystallization water and the NCNMe2 ligand at
100–150 ◦C; after 250 ◦C, the decomposition to yet unidentified species occurs. Complex
3·2THF is stable until ca. 120 ◦C and then starts losing the solvated THF (125–260 ◦C),
whereupon the coordinated THF (260–326 ◦C) is lost. After 326 ◦C, non-stochiometric
decomposition of the sac– ligands occurs.

2.2. X-ray Diffraction Studies

Single-crystal XRD studies were performed for 1, 1·2H2O (Figure 1), and 3·2THF.
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Complex 1 is crystallized in two forms, viz. anhydrous 1 (from dry EtOH) and
dihydrate 1·2H2O, which was crystallized from H2O. In both structures, the copper(II)
centers are surrounded by two saccharinate, two water, and one dimethylcyanamide
ligands, thus forming the complexes exhibiting a distorted square-pyramidal geome-
try, where the NCNMe2 ligand occupies the apical position. The degree of the geom-
etry distortion is greater for the dihydrate (geometry index [23] τ5 = 0.16 for 1 and
0.35 for 1·2H2O). Two saccharinate ligands are coordinated to the copper(II) center with
different ∠N–Cu–N angles (160.24(14)◦ for 1 and 174.65(15)◦ for 1·2H2O), and for the
{(H2O)2Cu} moieties ∠O–Cu–O are also different: 169.93(12)◦ for 1 and 153.39(19)◦ for
1·2H2O. The Cu–N distances are 2.020(2) (1) and 2.011(3) Å (1·2H2O), similar to those
in some other known square-pyramidal (sac)2CuII complexes (e.g., 1.997(4)–2.046(4) Å
for [Cu(sac)2(H2O)(nicotinamide)]n [24], [Cu(sac)2(H2O)(EtOH)(benzimidazole)] [25], and
[Cu(sac)2(H2O)2(2-methylpyrazine)]) [26]). The Cu–O separations exhibited values (1.963(3)
and 1.971(3) for 1 and 1.995(4) and 1.971(4) Å for 1·2H2O) comparable with the Cu–O
distances in similar (H2O)(sac)2CuII complexes (1.959(4)–2.3145(14) Å) [24–26]. The Cu–
Ncyanamide bond lengths (2.152(3) Å in 1 and 2.158(4) Å in 1·2H2O) were longer than the
Cu–Ncyanamide bond lengths in the known copper(II) complexes featuring cyanamides,
viz. the tetranuclear clusters Cu4Cl6O(NCNR2)4 (R = Me, [22] allyl [27]) and the solvates
Cu4X6O(NCNMe2)4·4(arene) [22] (X = Cl, Br; arene = PhMe, PhCH=CH2; 1.903(10)–1.952(6)
Å) as a consequence of different geometry and composition of the complexes. The C≡N
and C–N bond lengths of the NCNMe2 ligands (1.153(5) and 1.312(5) Å for 1 and 1.156(7)
and 1.306(7) Å for 1·2H2O, respectively) was quite similar. In contrast, the structures of 1
and 1·2H2O demonstrate ∠Cu–N–C (171.6(3) and 146.8(5)◦, respectively), which differently
deviate from the linearity because of a noticeable contribution of the heterocumulene
mesomeric form N(–)=C=N(+)R2. The strong deviation from the linearity of the M–N–C
fragment of the coordinated NCNR2 was observed by us for iridium(III) [28], copper(I) [20],
and zinc(II) [29] complexes featuring disubstituted cyanamides. This strong deviation from
linearity of the M–N–C fragment distinguishes NCNR2 ligands from NCR.

Various type hydrogen bonds were detected in the structures of 1 and 1·2H2O
(Figures 2 and 3). In 1, eight-membered hydrogen bond-based cycle {Ocarbonyl···H–O–H···
Ocarbonyl···H–O–H···} is formed by three molecules of 1. These cycles link the complexes
into 1D-zigzag chains. The oxygen atoms of the SO2 groups from weak hydrogen bonds
with H–Carene binding 1D-chains into a 3D-structure.
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Figure 3. A fragment of crystal packing of 1·2H2O with the interligand hydrogen bonds shown in
dotted lines.

In the structure 1·2H2O, we identified several hydrogen bond-based patterns. One out
of the two H2O ligands forms two hydrogen bonds with two H2O, which in turn form each
hydrogen bond with the double bonded O atom of two sac– ligands, and these two saccar-
inate ligands are connected by another coordinated H2O. This 12-atom hydrogen bond-
based cycle {Ocarbonyl···H–O–H···Ocarbonyl···H–O(hydr)···H–O–H···O–H(hydr)···} links
three molecules of 1 and two molecules of H2O. In addition, metal-bound H2O of each
molecule is linked with the O=S moiety of the sac– ligand.

Different systems of hydrogen bonding and types of molecular packing affect geomet-
ric parameters of complex 1 in the structures of 1 and 1·2H2O. Thus, 1 and 1·2H2O differ
by ∠Cu–N–C (171.6(3) and 146.8(5)◦, respectively) and the degree of the square pyramidal
geometry distortion.

On one hand, complexes 1 and 1·2H2O represent the first examples of the structurally
characterized mononuclear (NCNR2)CuII species. Structures of cyanamide copper(II)
complexes were previously represented by the clusters Cu4Cl6O(NCNR2)4 (R = Me, al-
lyl) [22,27,30], and the solvates Cu4X6O(NCNMe2)4·4(arene) (X = Cl, Br; arene = PhMe,
PhCH=CH2) [22], and no single example of mononuclear (NCNR2)CuII was known. For
copper(I), there are several known structures of mononuclear complexes [Cu(NCNR2)4]
(BF4) [20], [Cu(tpm)(NCNR2)](BF4) (tpm = tris-(1,3-dimethylpyrazolyl)methane) [21], and
[Cu(NCNMe2)2(DPEphos)](BF4) (DPEphos = bis[2 -diphenylphosphino)phenyl]-ether) [31],
dinulear [Cu2(µ2-Cl)2(dppm)2(NCNMe2)]·2NCNMe2, [Cu2(µ2-Cl)(dppm)2(NCNMe2)](Cl),
[Cu2(µ2-X)(dppm)2(NCNMe2)2](X) (X = ClO4, NO3), [Cu2(dppm)2(NCNMe2)3](BF4)2 [32],
and polymeric [CuX(NCNAllyl2)] (X = Cl, Br, NO3) species [33].

On the other hand, these complexes represent examples of the (N-sac)2CuII-type com-
plexes. Metal complexes of saccharin(ate) exhibit versatile coordination chemistry due to
the existence of different coordination sites [34]. For copper(II), several types of complexes
are reported, demonstrating monodentate N-, or O-coordination, and N,O-bidentate co-
ordination modes of the sac— ligand [34]. The (N-sac)2CuII moiety is rather typical for
various saccharinate complexes. In relation to 1 and 1·2H2O, the structures of pentacoor-
dinate complexes should be emphasized (e.g., [Cu(sac)2(H2O)2(2-methylpyrazine)] [26],
[Cu(sac)2(H2O)(ethylnicotinate)2] [35], Cu(sac)2(H2O)(nicotinic acid)2] [36], [Cu(sac)2(H2O)
(4-PrC5H4N)2] [37], [Cu(sac)2(H2O)(pyridazine)2] [38], [Cu(sac)2(H2O)(Py)2] [39], etc). No-
tably, no complexes featuring the (sac)(NCR)CuII (R = Alk, Ar, NR2) entity were reported
prior to this study.

Complex 3·2THF features two THF per one [Cu2(THF)2(sac)4] (3) entity. Complex
3 exhibits a lantern-like structure, which is comprised by two copper(II) centers, four
N,O-bridging saccharinate ligands, and two terminal THF ligands (Figure 4).
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The Cu–N (2.0246(14) and 2.0335(15) Å) and Cu–O distances (1.9567(12) and 1.9633(12)
Å) for the saccharinate ligands are comparable with those of the corresponding Cu–N
(2.0243(14) and 2.0329(15) Å) and Cu–O (1.9562(12) and 1.9624(12) Å) bond values in
the closely related lantern-like copper(II) species bearing N,O-bridging ligands, namely
[Cu2(Me2NCHO)2(C7H5NS)4]·2(Me2NCHO) (C7H5NS-1,2-benzothiazol-3-ato) [40]. The
latter complex exhibits the trans-N,O-configuration of the benzothiazolato ligands around
the copper(II) center, while complex 3 exhibited the trans-N,N/trans-O,O geometry, thus
preventing the repulsion of the SO2 groups and the THF ligand. In 3·2THF, the Cu–Cu
distance (2.7519(5) Å) was slightly longer than those in Cu2(Me2NCHO)2(1,2-benzothiazol-
3-ato)]·2(Me2NCHO) (2.6816(10) Å). The Cu–OTHF bond lengths (2.1089(17) and 2.1023(18)
Å) were in the typical CuII–O bond range [41]. The bond length and angles for the saccha-
rinate ligand were similar to those reported for the [Cr2L2(µ-sac)4] complexes (L = THF,
Py) [42,43]. In addition, 3·2THF represents a rare reported example of saccarinate-based
lantern-like complexes with a core {M2(Sac)4}. No significant H-bonding was detected
in the structures of the complexes, while weak π–π interactions between aryl···aryl rings
were identified.

2.3. Theoretical Calculations

In order to obtain additional indirect evidence supporting the blocking role of the
copper(II) in the saccharine/cyanamide coupling, we studied the nature of Cu–Ncyanamide
and Cu–Nsac coordination bonds in 1 and carried out an integrated computational study
including the full geometry optimization of the model of structure 1 in the gas phase using
the appropriate experimental XRD structure as a starting point, the topological analysis of
the electron density distribution (QTAIM) [44], the natural bond orbital and charge decom-
position analyses (NBO [45] and CDA [46]), and calculation of the vertical total energies
for the Cu–Ncyanamide and Cu–Nsac coordination bond dissociations (see ESI for all details).
This approach has already been successfully used by us upon studies of bonding properties
in various similar transition metal complexes [20,47–50]. The results of our computational
study revealed that (i) crystal-packing strongly affects the structural characteristics of
1 in the solid state; (ii) the dialkylcyanamide copper(II) complexes featuring noticeable
contribution of the heterocumulene mesomeric form; (iii) Cu–Ncyanamide and Cu–Nsac
coordination bonds in 1 exhibit a single bond character, clearly polarized toward the N
atom and almost purely electrostatic; (iv) the {M}←L σ-donation substantially prevails
over the {M}→L π-back-donation in both Cu–Ncyanamide and Cu–Nsac coordination bonds
in 1; (v) the calculated vertical total energies (Ev) for the Cu–Ncyanamide and Cu–Nsac coor-
dination bond dissociation in optimized equilibrium model structure 1 were 43.6 and 156.4
kcal/mol, respectively. Overall, one can conclude that the nature of Cu–N coordination
bonds in 1 is similar, but the saccharinate is a stronger ligand toward the copper(II) center
than the cyanamide.
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3. Materials and Methods

All solvents and reactants were obtained from commercial sources and used as re-
ceived. Sodium saccarinate was obtained according to the published method [51]. Atomic
absorption spectrometry (AAS) was carried out on a Shimadzu AA-7000 spectrometer
(Shimadzu, Japan) (spectral range 189–900 nm) using the flame emission spectroscopy
method. Standard Cu samples for the calibration solutions were prepared by MERCK
standard (Merck KGaA, Darmstadt, Germany) in 0.1 M HNO3; calibration solutions were
0.01–100.0 mg/L. Spectral analysis of the sample solutions was carried out with 100-fold
dilution. Infrared spectra (4000–400 cm–1) were recorded using a Bruker FTIR TENSOR
27 (Bruker, Germany) instrument in Nujol. The thermogravimetry/differential thermal
analysis was performed with a NETZSCH TG 209 F1 Libra thermoanalyzer (NETZSCH
Group, Selb, Germany) and MnO2 powder was used as the standard. The initial weights of
the samples were in the range 1.1–1.8 mg. The experiments were run in an open aluminum
crucible in a stream of argon at a heating rate of 10 K/min. The final temperature was
530 ◦C. Processing of the thermal data was performed with Proteus analysis software [52].

3.1. Synthetic Work

Synthesis of [Cu(sac)2(NCNR2)(H2O)2] (1, 1·2H2O, 2). CuCl2·2H2O or CuBr2 (0.25 mmol)
was dissolved in 5-fold excess of NCNR2 (R2 = Me2 1, Et2 2; 0.10 mL, 1.3 mmol) at room
temperature (RT), whereupon a solution of sodium saccharinate (0.25 mmol) in certain
solvents (2 mL, dried EtOH for 1, MeOH, EtOH, or H2O for 1·2H2O and MeOH or EtOH
for 2) was added. The resulting mixture was left to stand for 3–5 days at RT without stirring
and the bright greenish-blue prismatic crystals were precipitated. These crystals were
filtered off, washed by methanol, and dried in air at RT. One- or two-fold reprecipitation
from the mother liquid allowed the increased yield of 1·2H2O (75%). The total isolated
yields were 50–75%. Alternatively, 1·2H2O was obtained from a CuX2/saccharin mixture
with excess NCNMe2 and without solvents by keeping for 1 h at 60 ◦C and then at RT
for 2–3 days, however, the reaction proceeds in lower yields (15–35%). A few crystals
of pure 1–2 were mechanistically separated from the reaction mixture and yields were
not calculated.

1. Cu-% (AAS) for C17H18N4CuO8S2 found (calcd.) = 11.4% (11.8%). IR in Nujol
(selected bands, cm−1): 3331 m-s br ν(O–H), 2261 m ν(C≡N), 1646, 1618, and 1587 m
ν(C=O) and δ(O–H), 1313 m-s νsym(S=O), 1170 m νasym(S=O).

1·2H2O. Cu-% (AAS) for C17H22N4CuO10S2 found (calcd.) = 10.7% (11.1%). IR in
Nujol (selected bands, cm−1) 3334 m-s br ν(O–H), 2226 m ν(C≡N), 1646, 1618, and 1566 m
ν(C=O) and δ(O–H), 1313 m-s νsym(S=O), 1170 m νasym(S=O).

2. Cu-% (AAS) for C21H22N4CuO8S2 found (calcd.) = 10.9% (11.3%). IR in Nujol
(selected bands, cm−1) 3330 m-s br ν(O–H), 2245 m ν(C≡N), 1628 s br and 1584 m ν(C=O)
and δ(O–H), 1309 m-s νsym(S=O), 1168 m-s νasym(S=O).

Synthesis of [Cu2(sac)4(THF)2]·2THF (3·2THF). CuCl2·2H2O or CuBr2 (0.25 mmol)
were dissolved in THF (2 mL) at RT, whereupon a solution of sodium saccarinate (0.25 mmol)
and NCNR2 (100 mkL, 1.3 mmol, R2 = C4H8, C5H10, C4H8O) in MeOH or EtOH (2 mL in
each case) was added. The resulting mixture was left to stand for five days at RT without
stirring until the bright greenish-blue prismatic crystals were released. The crystals were
washed by THF (1–2 mL) and dried in air at RT. The isolated yields were 40–50%.

3·2THF. Cu-% (AAS) for C44H48N4Cu2S4O16 found (calcd.) = 11.3% (11.1%). IR in
Nujol (selected bands, cm−1): 1640 m and 1568 m-s cm−1 ν(N–C=O in sac–), 1330 m-s
νsym(S=O), 1177 m νasym(S=O).

3.2. X-ray Structure Determinations

X-ray diffraction studies were performed at 100 K on Rigaku XtaLAB Synergy-S
diffractometer (Rigaku Oxford Diffraction) (HyPix-6000HE type detector) in the case of
1·2H2O, 3·2THF, and [Cu(sac)2(H2O)4]·2H2O and Rigaku XtaLAB SuperNova diffractome-
ter (Agilent Technologies (Oxford Diffraction), Yarnton, Oxfordshire, UK) (HyPix-3000
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type detector) in the case of 1 using Cu Kα (λ = 1.54184 Å) radiation. The structures
were solved with the ShelXT [53] structure solution program using Intrinsic Phasing for
1, 1·2H2O, and 3·2THF, and the Superflip [54] structure solution program using Charge
Flipping for [Cu(sac)2(H2O)4]·2H2O and refined with the ShelXL [55] refinement package
incorporated in the OLEX2 program package [56] using least squares minimization. Em-
pirical absorption correction was applied in the CrysAlisPro 1.171.40.67a (Rigaku Oxford
Diffraction, 2019) (for 1 and 1·2H2O) and 1.171.40.71a (Rigaku Oxford Diffraction, 2020) (for
3·2THF and [Cu(sac)2(H2O)4]·2H2O)) [57] program complex using spherical harmonics,
implemented in the SCALE3 ABSPACK scaling algorithm. The crystallographic data and
structure refinement parameters are given in Table S1. All structures have been deposited at
Cambridge Crystallographic Data Center (CCDC numbers 2062446 (1), 2062447 (1·2H2O),
2062448 (3·2THF), 2062451 ([Cu(sac)2(H2O)4]·2H2O)) and can be obtained free of charge
via www.ccdc.cam.ac.uk/data_request/cif. (Accessed on 07 September 2021)

3.3. Computational Details

The full geometry optimization of model structure 1 was carried out at the DFT
level of theory using the M06 functional [58] with the help of the Gaussian-09 program
package [59]. No symmetry restrictions were applied during the geometry optimization
procedure and appropriate experimental X-ray structure 1 was used as a starting point. The
calculations were carried out using the multi electron fit fully relativistic energy-consistent
pseudopotential MDF10 of the Stuttgart/Cologne group that described 10 core electrons
and the appropriate contracted basis set for the copper atom [60]) and the 6-31G(d) basis sets
for other atoms. The Hessian matrix was calculated analytically for the optimized model
structure 1 in order to prove the location of correct minima on the potential energy surface
(no imaginary frequencies). The topological analysis of the electron density distribution
with the help of the “atoms in molecules” method developed by Bader (QTAIM) [44]
and charge decomposition analysis developed by Dapprich and Frenking (CDA) [46]
were carried out by using the Multiwfn program (version 3.7) [61]. The Cartesian atomic
coordinates for optimized equilibrium model structure 1 are presented in Table S2, ESI,
and as the attached xyz-file.

4. Conclusions

In this study, we demonstrate that in the system CuII/SacNa(H)/NCNR2, copper(II)
forms complexes with saccharinate and disubstituted cyanamides. The directionality of
the reaction is completely different from that observed for the metal-free reaction between
saccharin and NCNR2; the latter results in the formation of guanidinated saccharins [8].

We succeeded in the isolation and characterization of the [Cu(sac)2(NCNR2)(H2O)2]
(R = Me, Et) complexes, which represent the first example of structurally characterized
mononuclear (cyanamide)CuII species. The experimental X-ray structure of 1 was used
as a starting point for an integrated computational study of model structure 1 in the gas
phase. As can be inferred from inspection of the obtained theoretical data, Cu–Ncyanamide
and Cu–Nsac coordination bonds in 1 exhibited a single bond character, clearly polarized
toward the N atom and predominately electrostatic, but the saccharinate was a better ligand
toward the copper(II) center than the cyanamide (the calculated vertical total energies for
the Cu–Ncyanamide and Cu–Nsac were 43.6 and 156.4 kcal/mol, respectively). All these
data confirmed the role of the copper(II) in the change of the directionality of the reaction
between saccharin and NCNR2. The copper(II) completely blocks the nucleophilic centers
of ligands via coordination, thus preventing the saccharin–cyanamide coupling.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/inorganics9090069/s1, crystal data and structure refinement, experimental spectra, and
TG/dTG curves, other experimental data, and cartesian atomic coordinates. The CIF and the
checkCIF output files.

www.ccdc.cam.ac.uk/data_request/cif
https://www.mdpi.com/article/10.3390/inorganics9090069/s1
https://www.mdpi.com/article/10.3390/inorganics9090069/s1
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