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Abstract: Six pseudohalide zinc(II) containing a variety of N-donor auxiliary amines were structurally
characterized. These include two mononuclear trigonal bipyramidal [Zn(NTB)(N3)]ClO4·1/2H2O
(3) and [Zn(TPA)(NCS)]ClO4 (4), two distorted octahedral [Zn(1,8-damnph)2(dca)2] (5) and [Zn(8-
amq)2(dca)2] (6a) as well as two 1D polymeric chains catena-[Zn(isq)2(µ1,5-dca)2] (7) and catena-
[Zn(N,N-Me2en)2(µ1,5-dca)]dca (8), where NTB = tris(2-benzimidazolylmethyl)amine, TPA = tris(2-
pyridylmethyl)amine, 1,8-damnph = 1,8-diaminonaphthalene, 8-amq = 8-amino-quinoline, isq = iso-
quinoline (isq) and N,N-Me2en = N,N-dimethylethylenediamine. In general, with the exception of
6 and 8, the complexes exhibited luminescence emission in MeOH associated with red shift of the
emission maxima, and the strongest visible fluorescence peak was detected at 421 nm (λex = 330 nm)
in the case of Complex 5.

Keywords: zinc; dicyanamide; azide; isothiocyanate; X-ray; luminescence emission

1. Introduction

Group 12 of the periodic table and specifically zinc and cadmium, although they have
common properties, exhibit different significant aspects. Both form very stable dipositive
ions with an ionic radius of 0.88 and 1.09 Å for Zn2+ and Cd2+, respectively. This of
course results in different stabilities in their metal complexes, where in general, those of
Zn(II) are more stable. While Zn2+ ions are essential for human life as they are involved
in many catalytic enzymatic reactions and metalloenzymes as well as in zinc–protein
complexes [1–5], the corresponding Cd(II) compounds are known to be highly toxic for
humans and animals, and significantly pollutant to the environment [6]. Interestingly,
regardless of the fact that Zn2+ and Mg2+ have almost identical ionic radii and higher Mg2+

concentrations in biological fluids, still Zn2+ cannot play the same role of Mg2+ in biological
systems. Six-coordinate, octahedral [7–16] and tetrahedral, Td [7,8,17–23] as well as five-
coordinate (square pyramidal, SP, and trigonal bipyramid, TBP) [9–11,16,23] are the most
common geometries in Zn(II) and Cd(II) compounds. However, seven-coordinate Zn(II) and
Cd(II) compounds were also isolated and structurally characterized [13,24,25]. Moreover,
three-coordinate species imposed by bulky organic co-ligand(s) were also reported [26,27].

In the presence of auxiliary ligands, the two metal ions Zn2+ and Cd2+ form extensive
metal complexes with pseudo-halide ions {N3

−, NCS− and dca (dicyanamide ion)} with
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different degrees of nuclearity and polynuclear species as well as coordination polymers
(CPs) with various architecture topologies [11–14,28–32]. The three anions N3

−, NCS−

and dca are known to display a wide range of coordination modes through the two
terminal bonding sites (end-to-end) and two sites of the same atom (end-on) as well as
mixed bonding [8,9,11–14,25,28–35]. In addition, the corresponding dca ion provides the
central amide nitrogen for linking metal ions [14,36,37]. These bonding modes have been
previously addressed and summarized [14,32,38–41].

Another interesting feature in studying Zn(II) and Cd(II) complexes, particularly those
derived from heterocyclic compounds, is their capabilities to furnish photoluminescence
emission [15–17,19–23,25,34,35,42–44], which make them very attracting and fascinating
compounds for serving as photochemical devices [43–48]. Two fluorescence tunings of
Zn(II) complexes in terms of intensity and/or emission maximum, particularly fluores-
cence enhancement, chelation enhanced fluorescence (CHEF) or reduction (fluorescence
quenching), may occur [48–50]. These were correlated to the ability of the fluorophore
coordinated ligand to form a π-contact with the metal cation [51]. In general, the CHE
effect results from the stabilization of the excited state in poorly emissive ligands upon
coordination with metal ions such as Zn2+, which tends to freeze the favorable re-emissive
conformation resulting from the lowest excited energy states; from the ligand-centered
charge transfer (LCT), mainly π–π* ligand to meatal charge transfer (LMCT) [52,53].

Herein, we investigate the interaction of Zn(II) with different pseudo-halides in
the presence of flexible and rigid auxiliary ligands incorporating N-donor heterocyclic
rings with possible ligand-centered charge transfer (π–π* LMCT); a property that is
required for observing luminescent emission. The structures of the ligands used in
this study include 2-(ethyl-2-pyridyl)-2-methylquinolyl-methylamine (Meepmqa), tris(2-
benzimidazolylmethyl)amine (NTB), tris(2-pyridylmethyl)amine (TPA), 1,8-diaminonaph-
thalene (1,8-damnph), 8-amino-quinoline (8-amq) and isoquinoline (isq) as well as N,N-
dimethylethylenediamine (N,N-Me2en), which lacks π–π* transition. The structures of
these ligands are represented in Scheme 1. The luminescent emission properties of the
complexes were also investigated. The synthesized pseudo-halido-zinc(II) complexes ob-
tained from this study and other related literature will be structurally compared with those
determined in the corresponding Cd(II) analogs containing the same pseudo-halides and
auxiliary ligands.
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Scheme 1. N-Donor ligands used in this work and in other related studies. Scheme 1. N-Donor ligands used in this work and in other related studies.
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2. Experimental Procedure
2.1. Materials and Physical Measurements

8-Aminoquinoline, 1,8-diaminonaphthalene, isoquinoline, 1,2-diaminobenzene, 2,2′,2′′-
nitrilotriacetic acid, N,N-dimethylethylenediamine and 2-picolylamine were purchased
from TCI-America (Portland, OR, USA), whereas 2-[2-methylaminoethyl]-pyridine was pur-
chased from Maybridge Co., Belgium. All other chemicals were reagent grade quality. The
organic ligands 2-(ethyl-2-pyridyl)-2-methylquinolyl-methylamine (Meepmqa) [28], tris(2-
benzimidazolylmethyl)amine (NTB) [54] and tris(2-pyridylmethyl)amine (TPA) [55,56]
were prepared according to published procedure. Infrared spectra were recorded on a Cary
630 (ATR-IR, cm−1) spectrometer. Electronic spectra were recorded using Agilent 8453 HP
diode UV–Vis spectrophotometer (Santa Clara, CA, USA). The fluorescence measurements
were performed on Cary Eclipse fluorescence spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA). The Fluorescence Quantum Yield (FL QY) of all complexes in
methanol was measured by an optically dilute (Optical Density < 0.2) relative method us-
ing 1,8 diaminonaphthalene as fluorescent standard of known QY in methanol. The molar
conductivities of the complexes were performed in CH3OH solutions at room temperature
using Mettler Toledo Seven Easy conductometer (Metler Toledo, Columbus, OH, USA) and
calibration by the aid of 1413 µS/cm conductivity standard. The molar conductivity values
were determined from ΛM = (1.0 × 103 κ)/[Zn(II)], where κ is the specific conductance
and [Zn(II)] is the molar concentration of the complex. Elemental microanalyses were
performed by the Atlantic Microlaboratory, Norcross, GA, USA.

Caution! Salts of perchlorate and azide as well as their metal complexes are potentially
explosive and should be handled with great care and in small quantities.

2.2. Preparation of the Compounds
2.2.1. [Zn(Meepmqa)(N3)2] (1)

To a solution containing 0.140 g of 2(ethyl-2-pyridyl)-2-methylquinolyl-methylamine,
Meepmqa (0.50 mmol) dissolved in MeOH (20 mL) Zn(ClO4)2·6H2O (0.190 g, 0.50 mmol)
was added and this was followed by the addition of NaN3 (0.066 g, 0.5 mmol) dissolved
in H2O (1–2 mL). The resulting mixture was heated to boiling for 10 min, filtered while
hot and the resulting yellow solution was allowed to stand at room temperature. The
yellow crystals, which were separated on the following day, were collected by filtration,
washed with propan-2-ol and diethyl ether and air dried (yield: 0.132 g, 62%). Anal. Calcd:
C18H19N9Zn (426.79 g/mol): C, 50.66; H, 4.49; N, 29.54%. Found: C, 50.48; H, 4.33; N,
29.72%. IR bands (ATR, cm−1): 3060 (vw), 2916, 2874 (vw) ν(C–H); 2055 (vs) νa(N3); 1600
(m), 1571 (m), 1510 (m), 1432 (m) ν(C=C and C=N), 752 (s). UV (CH3OH) λmax, nm (εmax,
M−1cm−1): 237 (sh), 264 (5.51 × 103), 272 (5.10 × 103), 304 (4.51 × 103), 317 (4.04 × 103).
Molar conductivity, ΛM (MeOH) = 11.3 Ω−1·cm2·mol−1.

2.2.2. [Zn(Meepmqa)(dca)]ClO4·1/2H2O (2)

To a mixture containing Zn(ClO4)2·6H2O (0.192 g, 0.5 mmol) and Meepmqa (0.140 g,
0.5 mmol) dissolved in MeOH (15 mL), an aqueous solution (5 mL) of sodium dicyanamide
(0.090 g, 1 mmol) was added and the resulting faint yellow solution was heated for 10 min
on a steam-bath, filtered through celite and then allowed to crystallize at room temperature.
After 2 h, the off-white crystalline compound that separated was collected by filtration,
washed with propan-2-ol and Et2O and air dried (yield: 0.23 g, 89%). Characterization:
Anal. Calcd: C20H20ClN6O4.5Zn (517.25 g/mol): C, 46.44; H, 3.90; N, 16.25%. Found: C,
46.59, H, 3.82; N, 16.25%. IR bands (ATR, cm−1): 3527 ν(O–H); 3130 (vw), 3076 (vw) ν(C–H);
2343 (m), 2268 (m), 2187 (s) (C≡N, dca); 1604 (m), 1514 (w), 1443 (m), 1432 (m), 1380 (m)
ν(C=C and C=N); 1076 (vs) ν(Cl–O, ClO4

−). UV (MeOH) λmax, nm (εmax, M−1cm−1): ~240
(sh), 264 (5.04× 103), 272 (4.40× 103), 304 (4.32× 103), 317 (4.28× 103). Molar conductivity,
ΛM (MeOH) = 148 Ω−1·cm2·mol−1.
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2.2.3. [Zn(NTB)(N3)]ClO4·1/2H2O (3)

The complex was prepared using a similar procedure as that described for complex 1
except tris(2-benzimidazolylmethyl)amine (NTB) was used instead of TPA (yield: 72%).
Characterization: Anal. Calcd: C24H22ClN10O4.5Zn (623.34 g/mol): C, 46.24; H, 3.56; N,
22.47%. Found: C, 46.09; H, 3.61; N, 22.64%. IR bands (ATR, cm−1): 3612 (vw); 3266 (w)
ν(N–H); 2062 (vw); 2904 (vw), 2850 (w) 2777 (vw) ν(C–H); 2063 (vs) ν(N3

−); 1625 (m), 1596
(m), 1540 (m), 1492 (s), 1472 (m), 1455 (s), 1389 (m), 1343 (m), 1317 (m), 1277 (s) ν(C=C and
C=N); 1085 (vs), 1041 (vs) ν(Cl–O, ClO4

−); 960 (s), 915 (s), 844 (m) 754 (s), 742 (vs) 619 (vs).
UV (MeOH) λmax, nm (εmax, M−1cm−1): 209 (3.68 × 104), 242 (1.22 × 104), 279 (2.04 × 104).
ΛM (MeOH) = 143 Ω−1·cm2·mol−1.

2.2.4. [Zn(TPA)(NCS)]ClO4 (4)

Ammonium thiocyanate, NH4NCS (0.076 g, 1.0 mmol), was added to a mixture con-
taining tris(2-aminomethylpyridine)amine, TPA (0.146 g, 0.50 mmol) and Zn(ClO4)2·6H2O
(0.190 g, 0.5 mmol) dissolved in MeOH (15 mL). The resulting clear solution was heated for
10 min on a steam-bath, filtered and then allowed to crystallize at room temperature. After
3 days, the compound separated was collected by filtration and air dried (yield: 0.215 g,
84%). Colorless single crystals suitable for X-ray analysis were obtained from dilute solu-
tion. Characterization: Anal. Calcd: C19H18ClN5O4SZn (513.29 g/mol): C, 44.46; H, 3.53;
N, 13.64%. Found: C, 43.98, H, 3.51; N, 14.13%. IR bands (ATR, cm−1): 3075 (vw), 2914 (vw)
ν(C–H); 2070 (vs) (C≡N, NCS−); 1610 (s), 1574 (m), 1483 (m), 1439 (s) ν(C=C and C=N);
1078(vs), 1042 (s), 1026 (s) ν(Cl–O, ClO4

−); 756 (vs). ΛM (MeOH) = 148 Ω−1·cm2·mol−1.

2.2.5. [Zn(1,8-damnph)2(dca)2] (5)

The complex was prepared using a procedure similar to that described for 2, except
two equivalents of 1,8-damnph were used instead of Meepmqa (yield: 0.203 g, 79%).
The same product was obtained with Zn(NO3)2·6H2O. Characterization: Anal. Calcd:
C24H20N10Zn (513.87 g/mol): C, 56.09; H, 3.92; N, 27.26%. Found: C, 55.92, H, 3.81; N,
27.01%. IR bands (ATR, cm−1): 3246 (m), 3148 (m) ν(N–H); 3051 (w) ν(C–H); 2260 (s), 2222
(s), 2156 (vs) (C≡N, dca); 1620 (m), 1570 (m), 1397 (m), 1332 (s), 1277 (m) ν(C=C and C=N);
1083 (vs), 998 (s), 911 (m), 814 (s), 757 (vs). UV (MeOH) λmax, nm (εmax, M−1cm−1): 228
(2.82 × 104), ~327 (6.78 × 103, b). Molar conductivity, ΛM (MeOH) = 9.6 Ω−1·cm2·mol−1.

2.2.6. [Zn(8-amq)2(dca)]ClO4 (6)

The complex was prepared using a similar procedure as that described for complex 1
except 8-amq was used instead of Meepmqa (yield: ~67%). Characterization: Anal. Calcd:
C20H16ClN7Zn (519.23 g/mol): C, 46.26; H, 3.11; N, 18.88%. Found: C, 46.08, H, 2.77; N,
20.83%. IR bands (ATR, cm−1): 3248 (m), 3128 (m) ν(N–H); 3075 ν(C–H); 2285 (s), 2235
(s), 2177 (vs) (C≡N, dca); 1628 (m), 1582 (m), 1506 (s), 1474 (m), 1403 (s), 1352 (m), 1323
(s) ν(C=C and C=N); 1070 (vs), 1029 (vs) ν(Cl–O, ClO4

−); 827 (s), 787 (s), 764 (m) 717 (s).
UV (MeOH) λmax, nm (εmax, M−1cm−1): 241 (2.78 × 104), 265 (sh), 336 (4.74 × 103). Molar
conductivity, ΛM (MeOH) = 147 Ω−1·cm2·mol−1.

2.2.7. Catena-[Zn(isq)2(µ1,5-dca)2] (7)

The complex was prepared using a procedure similar to that described for 2, except
two equivalents of isoquinoline (isq) were used instead of Meepmqa (yield: 77%). Charac-
terization: Anal. Calcd: C22H14N8Zn (455.79 g/mol): C, 57.97; H, 3.10; N, 24.58%. Found:
C, 58.27, H, 3.21; N, 24.59%. IR bands (ATR, cm−1): 3075 (w) ν(C–H); 2290 (s), 2234 (s), 2169
(vs) (C≡N, dca); 1633 (m), 1596 (m), 1501 (m), 1384 (s), 1346 (m), 1275 (s) ν(C=C and C=N);
1042 (s), 1018 (m) 952 (m), 930 (s), 863 (m), 819 (vs), 773 (s) 741 (vs). UV (MeOH, saturated
solution) λmax, nm: 210 (sh), 260, 268, 280, 306, 319.
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2.2.8. Catena-[Zn(N,N-Me2en)2(µ1,5-dca)]dca (8)

The complex was prepared using a procedure similar to that described for 2, except two
equivalents of N,N-dimethylethylenediamine (N,N-Me2en) were used instead of Meepmqa
(yield: 68%). Characterization: Anal. Calcd: C12H24N10Zn (455.79 g/mol): C, 38.56; H,
6.47; N, 37.47%. Found: C, 38.45, H, 6.28; N, 37.59%. IR bands (ATR, cm−1): 3295 (w),
3249 (w) ν(N–H); 3167 (w), 2967 (vw), 2897 (vw) ν(C–H); 2318 (m), 2284 (m), 2261 (m),
2239 (m), 2168 (vs), 2189 (vs) (C≡N, dca); 1595 (m), 1466 (m), 1387 (m), 1140 (m), 1058 (m),
1006 (m), 930 (m), 878 (m), 283 (m), 657 (m). UV (MeOH, saturated solution) λmax, nm:
~243 (1.00 × 104), 265 (sh), 271 (1.19 × 104), 278 (9.67 × 103). Molar conductivity, ΛM
(MeOH) = 141 Ω−1·cm2·mol−1.

2.3. X-ray Crystal Structure Analysis

The X-ray single-crystal data of the six title compounds were collected on a Bruker-
AXS APEX II CCD diffractometer (Bruker AXS, Karlsruhe, Germany) at 100(2) K. The
crystallographic data, conditions retained for the intensity data collection and some features
of the structure refinements are listed in Table 1. Data collections were performed with
Mo-Kα radiation (λ = 0.71073 Å); data processing, Lorentz-polarization and absorption
corrections were performed using the APEX and SADABS computer programs [57,58]. The
structures were solved by direct methods and refined by full-matrix least-squares methods
on F2, using the SHELX program library [59–61]. All non-hydrogen atoms were refined
anisotropically. The hydrogen atoms were located from difference Fourier maps, assigned
with isotropic displacement factors. Geometrical constraints (HFIX) were applied only for
H atoms bonded to C atoms. Further programs used: Mercury and PLATON [62,63].

Table 1. Crystallographic data and processing parameters of 3, 4, 5, 6a, 7 and 8.

Compound 3 4 5

Empirical formula C48H44Cl2N20O9Zn2 C19H18ClN5O4SZn C24H20N10Zn

Formula mass 1246.71 513.28 513.87

System Triclinic Monoclinic Monoclinic

Space group P-1 P21/c P21/n

a (Å) 13.7520(9) 15.2869(9) 7.4176(4)

b (Å) 13.8644(8) 9.6319(5) 11.2397(6)

c (Å) 17.3919(10) 14.7015(9) 13.3287(6)

α (◦) 99.093(3) 90 90

β (◦) 102.308(3) 91.591(4) 98.738(3)

γ (◦) 119.270(2) 90 90

V (Å3) 2689.0(3) 2163.8(2) 1098.34(10)

Z 2 4 2

Dcalc (Mg/m3) 1.540 1.576 1.554

θmax (◦) 27.544 28.782 33.204

Data collected 24602 36586 49264

Unique refl./Rint 12326/0.0642 5570/0.0853 4201/0.1122

Parameters/Restraints 725/140 280/0 176/0

Goodness-of-Fit on F2 1.081 1.051 1.023

R1/wR2 (all data) 0.0897/0.2605 0.0520/0.1274 0.0392/0.0826

Residual extrema (e/Å3) 3.202/−2.305 1.97/−0.73 0.59/−0.55
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Table 1. Cont.

Compound 6a 7 8

Empirical formula C22H16N10Zn C22H14N8Zn C36H72N30Zn3

Formula mass 485.84 455.78 1121.34

System Monoclinic Triclinic Monoclinic

Space group P21/n P-1 C m

a (Å) 8.8263(3) 7.406(3) 13.4600(13)

b (Å) 7.2601(3) 10.549(4) 26.939(3)

c (Å) 16.0965(6) 13.314(5) 7.4731(7)

α (◦) 90 102.690(14) 90

β (◦) 94.614(2) 90.274(17) 109.599(6)

γ (◦) 90 110.278(16) 90

V (Å3) 1028.12(7) 948.1(6) 2522.8(5)

Z 2 2 2

Dcalc (Mg/m3) 1.569 1.596 1.459

θmax (◦) 33.160 33.282 30.104

Data collected 101990 76319 38697

Unique refl./Rint 3932/0.0740 7224/0.0762 7333/0.0436

Parameters/Restraints 159/0 283/0 364/50

Goodness-of-Fit on F2 1.074 1.104 1.038

R1/wR2 (all data) 0.0282/0.0745 0.0379/0.0899 0.0253/0.0637

Residual extrema (e/Å3) 0.49/−0.44 0.60/−0.70 0.72/−0.35

3. Results and Discussion
3.1. Synthetic Aspects

The interaction of a methanolic solution of Zn(NO3)2·6H2O or Zn(ClO4)2·6H2O and
mono- or bidentate N-donor ligands (L) with an aqueous solution containing the pseudo-
halides NaN3, NH4NCS or Nadca in the stoichiometric ratio 1:1:2 afforded only the corre-
sponding di-pseudohalido compounds, [Zn(L)2(X)2] {L = 1,8-damnph, X = dca (5); L = isq,
X = dca (7)}. A polymeric complex with a similar chemical formula, catena-[Zn(N,N-
Me2en)2(µ1,5-dca]dca (8), was obtained from the reaction of Zn(NO3)2·6H2O, N,N-Me2en
and Nadca. On the other hand, under similar conditions the corresponding reaction of
Zn(ClO4)2·6H2O and 8-amq ligand in the presence of Nadca resulted in the formation
of a mixture of the major product [Zn(8-amq)2(dca)]ClO4 (6) and a small amount of the
structurally characterized monomeric compound [Zn(8-amq)2(dca)2] (6a). The elemen-
tal microanalysis was close to the proposed formula 6 (Anal. Calcd: C20H16ClN7Zn: C,
46.26; H, 3.11; N, 18.88%. Found: C, 46.08, H, 2.77; N, 20.83%), and the presence of the
dca and perchlorate in 6 was confirmed by IR. The molar conductivity measurement
of the compound agreed with the 1:1 electrolytic nature of the complex (see Section 2—
Experimental Procedure). However, in the case of the tridentate amine, Meepmqa and
Zn(ClO4)2 five-coordinate [Zn(Meepmqa)(N3)2] (1) and [Zn(Meepmqa)(dca)]ClO4·1/2H2O
(2) complexes were isolated in the presence of aqueous NaN3 and Nadca solutions, respec-
tively. When Zn(ClO4)2·6H2O was employed with the tripod tetraamines (NTB, TPA) and
the pseudohalide salts in the 1:1:2 molar ratio, the five-coordinate mono-pseudohalido
perchlorate compounds [Zn(L)(X)]ClO4 {L = NTB, X = N3

− (3); L = TPA, X = NCS− (4)}
were the only products regardless of the excess pseudohalide salts used. Similar products,
[Zn(NTB)(N3)]NO3 (3a, Supplementary Materials (SM)) and [Zn(TPA)(NCS)]NO3·1/2H2O
(4b, SM), were obtained in the presence of the appropriate co-ligand and pseudohalide salt
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when zinc(II) nitrate was used instead of the perchlorate (see SM). Whenever the solubility
of the complexes in CH3OH permits, the molar conductivity values, ΛM for 2–4, 6 and
8, were found to be in the range 141–148 Ω−1·cm2·mol−1, which are in complete agree-
ment for their 1:1 electrolytic nature [64]. The non-electrolytic nature of 1 and 5 was also
confirmed (ΛM = 11.3 and 9.6 Ω−1·cm2·mol−1, respectively). The compounds were char-
acterized by IR and UV spectroscopy as well as elemental microanalyses. The molecular
structures of 3–5 and 6a–8 were determined by single crystal X-ray crystallography.

3.2. IR Spectra of the Complexes

The infra-red spectra of the complexes under investigation display general charac-
teristic features for each category of the pseudohalides. The azido compounds 1 and 3
exhibit their strong vibrational frequencies at 2055 and 2063 cm−1, respectively, due to the
asymmetric stretching vibrations, νa, of the azido ligands [8,9,11,28,29,31,34,35,38–40]. The
isothiocyanato complex 4 reveals a strong band at 2070 cm−1, which is inconsistent with
N–NCS bonding; the S–NCS bonding, in general, absorbs at a frequency value slightly
greater than 2100 cm−1 [12,33,40,65]. The IR spectra of the dicyanamido complexes 5, 6
and 7 display three medium–strong intense bands over the 2290–2260, 2240–2220 and 2160–
2180 cm−1 regions, whereas the corresponding bands were located at higher values for
[Zn(Meepa)(dca)]ClO4·1/2H2O (2). These vibrational bands are attributed to νas(C≡N) and
νs + νas(C≡N) and νs(C≡N), respectively [14,25,30,32,36,41,66]. The observed dca bands
in catena-[Zn(N,N-Me2en)2(µ1,5-dca)]dca (8) were further split into 2318, 2284, 2261, 2239,
2168, and 2189 cm−1 as expected because of the presence of dca anions in two different
bonding modes. The perchlorate compound 2 reveals its strong vibrational frequency value
due to the Cl–O stretching of the counter ClO4

− ion at 1073 cm−1. The split of this band into
two in [Zn(8-amq)2(dca)]ClO4 (6) or three in [Zn(TPA)(NCS)]ClO4 (4) (see Experimental
Procedure section) may result from reducing the local symmetry of the ClO4

− ion from Td
to C3v or C2v.

3.3. Description of the Structures
3.3.1. [Zn(NTB)(N3)]ClO4·1/2H2O (3) and [Zn(TPA)(NCS)]ClO4 (4)

The asymmetric unit of compound 3 contains two monomeric [Zn(NTB)(N3)]+ com-
plex cations, one ordered and one disordered perchlorate counter anion and a non-
coordinated water molecule, whereas compound 4 crystallizes with one monomeric
[Zn(TPA)(NCS)]+ complex cation and one perchlorate counter anion in the asymmet-
ric unit. In 3, each Zn2+ center is penta-coordinated by four N-donor atoms of the tripod
NTB molecule and N-donor of the terminal azide anion, and in 4 by four N-donor atoms of
the tripod TPA molecule and N-coordinated NCS− anion (Figure 1 and selected bond pa-
rameters are shown in Table S1). The ZnN5 polyhedra show distorted trigonal bipyramidal
(TBP) geometry with a τ value of 0.87 [0.83] for Zn1 [Zn2] polyhedron in 3, and 0.85 in the
case of 4 (τ value refers to 0 for ideal square pyramid SP and 1 for ideal TBP geometry) [67].
The equatorial positions occupied by the coordinated N-donor of the three arms of tripod
ligands with Zn–N(eq) bond distances are in the range from 2.002(5) to 2.079(3) Å, and
N-(eq)-Zn-N(eq) angles from 106.1(2) to 124.32(11)◦. One axial position is occupied by the
coordinated N-donor atom of the pseudohalide anion with a Zn–N(azide) bond distance of
2.020(5) [2.019(5)] Å in 3 and a Zn–N(NCS) bond distance of 2.006(3) Å in 4. The other axial
position is occupied by the central amine N-donor of the tripod NTB (in 3) or TPA (in 4)
ligand molecule, respectively, with a longer Zn–N(amine) bond length of 2.491(5) [2.489(5)]
Å in 3 and 2.261(3) Å in 4. The axial N–Zn–N bond angle is 174.4(2)◦ [173.0(2)◦] in 3 and
175.26(12)◦ in 4. The terminal azide groups are asymmetric with a mean difference of the
N–N bond lengths of 0.034 Å. The Zn–N–N and N–N–N bond angles in 3 are 119.9(4)◦

[120.7(4)◦] and 178.5(6)◦ [177.6(7)◦], whereas in 4 the Zn–N–C and N–C–S bond angles are
154.3(3)◦ and 178.8(3)◦. In 3, the building blocks are interlinked by hydrogen bonds of type
O–H···O, N–H···O and N–H···N, whereas in 4 no classical hydrogen bonds are observed
(Figures S1 and S2, Table S2).
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3.3.2. [Zn(1,8-damnph)2(dca)2] (5) and [Zn(8-amq)2(dca)2] (6a)

In the centrosymmetric mononuclear complexes [Zn(1,8-damnph)2(dca)2] (5) and
[Zn(8-amq)2(dca)2] (6a) (Figure 2 and selected bond parameters are shown in Table S1), the
Zn(II) centers form axially elongated octahedra by the ligation of four N-donor atoms of two
trans-coordinated 1,8-diaminonaphthalene (5) and 8-aminoquinoline (6a) molecules and of
two terminal dicyanamide ligands. The axial Zn1–N(dca) bond distances are 2.2179(14) and
2.2051(11) Å, whereas the equatorial Zn1–N bond distances are in the range from 2.1199(15)
to 2.1620(14) Å, respectively. The N1–Zn1–N2 bite angle is 80.25(6) and 78.94(4)◦ for the
six-membered chelate ring in 5 and the five-membered chelate ring in 6a, respectively,
whereas the other N–Zn–N cisoid bond angles deviate less than 2.8◦ in 5 and 5.9◦ in 6a
from a rectangular angle. The naphthalene-rings in 5, as well as the quinoline rings in 6a,
are inclined by 52.2 and 22.3◦ to their mean equatorial ZnN4 plane. The terminal dca anions
have the following bond parameters: Zn–N–C: 161.72(14) and 147.31(10)◦; N–C–N: from
171.69(14) to 173.71(14)◦; C–N–C: 121.66(16) and 122.26(12)◦; C–N(nitrile): from 1.155(2) to
1.1648(18) Å; N–C(amine): from 1.3042(17) to 1.321(2) Å. Hydrogen bonds of type N–H·N
to adjacent non-coordinated N5 acceptor atoms of dca anions form a supramolecular 2D
system in 6a, whereas N4 and N5 atoms of neighboring dca anions act as acceptors for
hydrogen bonds of type N–H···N to generate a supramolecular 3D network structure with
bcu topology in 5 (Table S2, Figures S3 and S4) [61–63].
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3.3.3. Catena-[Zn(isq)2(µ1,5-dca)2] (7) and Catena-[Zn(N,N-Me2en)(µ1,5-dca)]dca (8)

The common feature of 7 and 8 is 1D polymeric chains (Figures 3 and 4 and bond
parameters are shown in Table S1). In 7, neutral chains of catena-[Zn(isq)2(µ1,5-dca)2] are
formed via bis µ1,5-dca bridging ligands, which connect the Zn(II) metal centers along the
a-axis of the unit cell. Each ZnN6 octahedron is completed by two terminal isoquinoline
molecules in trans disposition. The Zn–N bond distances vary from 2.1369(17) to 2.1735(17)
Å and N–Zn–N bond angles deviate less than 0.60◦ from ideal octahedral geometry. The
parallel stacking of the isoquinoline molecules is stabilized by the formation of π···π
ring···ring interactions (Table S3,Figure S5). The cationic chains in 8 are formed via single
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µ1,5-dca bridging ligands, which connect the metal centers in an alternate [Zn1···Zn1···Zn2]
sequence along the b-axis of the unit cell. Each distorted ZnN6 octahedron is completed by
four N-donors of two chelating N,N-Me2en molecules in trans disposition. The Zn–N bond
distances vary from 2.063(4) to 2.278(3) Å and N–Zn–N bond angles deviate up to 7.5◦

from ideal octahedral geometry. Hydrogen bonds of type N–H···N are formed between
N,N-Me2en and dca counter anions, which are arranged parallel to the µ1,5-dca bridging
ligands, to generate a supramolecular 2D system oriented along the a- and b-axis of the unit
cell (Table S2, Figure S6). The dca anions in 7 and 8 have the following bond parameters:
Zn–N–C: from 148.80(15) to 168.49(16)◦; N–C–N: from 170.5(4) to 175.1(2)◦; C–N–C: from
119.09(17) to 125.7(4)◦; C–N(nitrile): from 1.144(4) to 117.0(5) Å; N–C(amine): from 1.296(4)
to 1.313(2) Å. Partial two-fold disorder is observed for N,N-Me2en molecules ligated to
Zn2, which is located on the special position.
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3.4. Structural Comparison between Zinc(II) Complexes and Cadmium(II) Analogs

In this section, we are focusing on the Zn(II)-pseudohalide complexes and their
corresponding structurally characterized Cd(II) analogs containing the same auxiliary
ligands and pseudohalides. These compounds are collected in Table 2 for comparison.
Inspection of the data in this table reveals that although the two metal ions can produce
compounds with similar geometrical features and the same pseudohalide bonding modes
(see entries 7–10, 12 and 13 and 20–25), still many other compounds show significant
differences with respect to geometry, nuclearity and pseudohalide bonding modes (entries
1–5, 9 and 11 and 14–19). This behavior precludes any possibility of predicting the structure
of any of the two complexes if one of them was determined. This could not only be
attributed to the smaller ionic size of the Zn2+ ion but also to its hard Lewis acid nature in
regard to the soft Cd2+ ion.
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Table 2. Structural parameters of pseudohalido-Zn(II) complexes and their Cd(II) analogs *.

# Zn(II) or Cd(II) Complex Pseudoh. Bonding Geom. Dim./Nuc. Ref.

1 [Zn(TPA)(N3)]ClO4 (4a) monodentate N3
− TBP mononuclear [68]

2 [Cd6(TPA)4(µ1,1,3-
N3)4(µ1,1N3)6](ClO4)2·2H2O

µ1,1,3- N3
−, µ1,1-

N3
− dist. Oh, and PBP hexanuclear [13]

3 [Zn(TPA)(N3)2] monodentate N3
− dist. Oh, mononuclear [68]

4 catena-[Zn(N,N-Me2en)2(µ1,5-dca)]dca (8) µ1,5-dca dist. Oh CPs,1D This work

5 catena-[Cd(N,N-Me2en)(µ1,5-dca)2] µ1,5-dca dist. Oh
CPs, 1D double

chains [14]

6 [Zn(isq)2(NCS)2] monodentate NCS− dist. Td mononuclear [69]

7 trans-[Zn(isq)4(NCS)2] monodentate NCS− trans-Oh mononuclear [69]

8 trans-[Cd(isq)4(NCS)2] monodentate NCS− trans-Oh mononuclear [69]

9 cis-[Zn(8-amq)2(NCS)2] monodentate NCS− cis-Oh mononuclear [70]

10 cis-[Cd(8-amq)2(NCS)2] monodentate NCS− cis-Oh mononuclear [34]

11 catena-[Cd(8-amq)(µ1,3-NCS)2] µ1,3-NCS− dis. Oh CPs, 1D [71]

12 trans-[Zn(1,8-damnph)2(dca)2] (5) monodentate dca trans-Oh mononuclear This work

13 trans-[Cd(1,8-damnph)2(dca)2] monodentate dca trans-Oh mononuclear [14]

14 [Zn(bedmpza)(N3)]ClO4 monodentate N3
− dist. TBP mononuclear [11]

15 [Cd(bedmpza)(µ1,1-N3)(N3)]2·1.5H2O µ1,1-N3
−,

monodentate N3
− dist. Oh dinuclear [11]

16 [Zn(bepza)(NCS)2] monodentate NCS− dist. TBP monomer [12]

17 [Cd2(bepza)2(µ1,3-NCS)2(NCS)2] µ1,3-NCS−,
mono-dentate NCS− dist. Oh dinuclear [12]

18 [Zn(DMP)(µ1,1-N3)(N3)]2 µ1,1- N3
− dist. TBP dinuclear [28]

19 catena-[Cd(DMP)(µ1,1-N3)2] µ1,1- N3
− dist. Oh CPs, 1D [28]

20 catena-[Zn(3-ampy)2(µ1,5-dca)2] µ1,5-dca dist. Oh CPs, 3D [30]

21 catena-[Cd(3-ampy)(µ1,3-dca)(µ1,5-dca)] µ1,5-dca, µ1,3-dca dist. Oh CPs, 3D [30]

22 catena-[Zn(4-OMP)2(µ1,5-dca)2] µ1,5-dca dist. Oh CPs, 1D [32]

23 catena-[Cd(4-OMP)2(µ1,5-dca)2] µ1,5-dca dist. Oh CPs, 1D [32]

24 catena-[Zn(4-azpy)2(µ1,1-N3)(µ1,3-N3)] µ1,1- N3
−, µ1,3- N3

− dist. Oh CPs, 1D [31]

25 catena-[Cd2(4-azpy)4(µ1,1-N3)2(µ1,3-
N3)2] µ1,1- N3

−, µ1,3-N3
− dist. Oh CPs, 1D [31]

* Abbreviations: Pseudoh. = pseudohalide anion, CPs = coordination polymer, Dim = dimensional, Nuc = nuclearity, dist. = distorted,
Oh = octahedral, Td = tetrahedral, SP = square pyramidal, PBP = pentagonal bipyramid, TPA = Tris(2-pyridylmethy)amine, N,N-
Me2en = N,N-dimethylethylenediamine, 8-amq = 8-aminoquinoline, 1,8-damnph = 1,8-diaminonaphthalene, isq = isoquinoline, 3-am-
py = 3-aminopyridine, 4-az-py = 4-azidopyridine, 4-OM-py = 4-methoxypyridine, DMP = 2-[3,5-dimethyl-1H-pyrazol-1ylmethyl)]pyridine,
bepza = [bis(2-pyrazol-1H-yl)ethyl)]amine, bedmpza = = [bis((3,5-dimethyl)-2-pyrazol-1H-yl)ethyl)]amine.

3.5. Luminescence Emission

The optical properties of the synthesized pseudo-halido-zinc(II) complexes were
investigated in methanol by UV–Vis and luminescence spectroscopy. To examine the effect
of the pseudohalide on the luminescence emission, the TPA series of [Zn(TPA)(X)]ClO4
(X = NCS−, 4; X = N3

−, 4a [68]; X = dca, 4b [72]) were studied. These complexes, together
with containing a TPA ligand, show two absorption bands centered around 205 and 260 nm,
which can be assigned to ligand-centered π–π* and n–π* transitions of the pyridyl rings
and those containing N atoms. As seen in Figure 5, upon photoexcitation at 260 nm,
complexes 4, 4a and 4b showed pronounced emission maxima at ~450 nm and a large red
shift up to ∆λ = 190 nm was observed, which can be ascribed to ligand to sensitized charge
transfer transition (LCT) from the lowest excited energy states within the whole complex.
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Interestingly, parent ligand-centered charge transfer (LCT) emission in the azido complex
4a was quenched in 4 and 4b. In addition, it is noted from normalized emission intensities
that complex 4a with N3

− exhibited the strongest luminescence at ~450 nm among the TPA
series (Figure 5, left). The luminescence of 4a is found to be nearly 1.6 times greater than
the visible luminescence of complex 4b with dca.
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The influence of the auxiliary ligands, L, was also investigated for the azido com-
pounds, 1, 3 and 4a. As illustrated in Figure 6, all the azido complexes when excited at their
second or higher wavelength absorption band displayed luminescence emission peaks as-
sociated with LCT transitions (Figure 6, UV spectra). These complexes show bathochromic
shifts consistent with their corresponding electronic absorption spectra. Therein, Complex
1 showed the largest bathochromic shift (∆λ = 115 nm) with the emission peak maxi-
mum centered at 375 nm (λex = 260 nm). Comparison of the absolute emission intensities’
wavelengths and UV–Vis. spectra of the dicyanamido Zn(II) complexes 2, 5, 6, 7 and 8 con-
taining different coordinating ligands in methanol was performed (Figure S7, SM). Therein,
complex 5 shows the strongest visible fluorescence peak at 421 nm (λex = 330 nm). The
UV–Vis. spectrum 5 (Figure S7-Right, SM) exhibits a broad absorption peak center around
330 nm, which is assigned to the n–π* transition of the amino group and another absorption
peak in the UV region at 230 nm ascribed to the π–π* transition of the naphthalene system.
The fluorescence quantum yield (FL QY) of the complex is estimated to be around 9% and
close to the quantum yield (QY) of 1,8-diaminonaphthalene ligand in methanol [73]. The
absolute emission intensities of 2 and 7, seen in the UV region, roughly determined to
be ~6.8- and ~9-fold, respectively, are lower than the reference complex 5 (Figure S7–FL,
SM). The complexes [Zn(8-amq)2(dca)]ClO4 (6) and catena-[Zn(N,N-Me2en)(µ1,5-dca)]dca
(8) did not show any detectable luminescence emission spectra (Figure S7) because of the
fluorescence quenching of the 8-amq in polar protic solvents due to hydrogen bonding with
the MeOH [74] in the former complex and the lack of π–π* transition in the N,N-Me2en of
Complex 8.
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The fluorescence quantum yield (FL QY) of complex 5 is estimated to be around 9% and
close to the QY of 1,8-diaminonaphthalene ligand in methanol [73]. The absolute emission
intensities of 2 and 7, seen in the UV region, roughly determined to be ~6.8- and ~9-fold,
respectively, are lower than the reference complex 5 (Figure S7—FL, SM). The complexes
[Zn(8-amq)2(dca)]ClO4 (6) and catena-[Zn(N,N-Me2en)(µ1,5-dca)]dca (8) did not show any
detectable luminescence emission spectra (Figure S7) because of the fluorescence quenching
of the 8-amq in polar protic solvents due to hydrogen bonding with the MeOH [74] in
the former complex and the lack of π–π* transition in the N,N-Me2en of complex 8. The
FL QY of the pseudohalido-Zn(II) complexes under investigation in MeOH together with
λmax absorption and emission is tabulated in Table 3. The FL QY of all complexes was
measured in MeOH by an optically dilute relative method using 1,8 diaminonaphthalene
(1,8-damnaph) as a fluorescent standard of known QY in methanol [73].

Table 3. The λmax absorption, λmax emission, and FL QY of the pseudohalido-Zn(II) complexes under
investigation in MeOH.

Complex λmax Absorption or
λex (nm)

λem Emission
(nm) FL QY

[Zn(Meepmqa)(N3)2] (1) 260 373 2.62%

[Zn(Meepmqa)(dca)]ClO4·1/2H2O (2) 260 373 1.15%

[Zn(NTB)(N3)]ClO4·1/2H2O (3) 240 294 0.98%

[Zn(TPA)(NCS)]ClO4 (4) 260 450 0.67%

[Zn(TPA)(N3)]ClO4 (4a) 260 324, 450 1.50%

[Zn(TPA)(NCS)]NO3·1/2H2O (4b) 260 450 0.50%

[Zn(1,8-damnph)2(dca)2] (5) 330 421 9.00%

[Zn(8-amq)2(dca)]ClO4 (6) 260 323 0.25%

[Zn(isq)2(µ1,5-dca)2] (7) 260 335 0.56%

The luminescence emission observed in the complexes 3–6a may be attributed to the
CHE effect, which tends to reduce energy loss via radiationless thermal vibrations, and
the intraligand π*–π emission band may shift due to perturbations in the electronic states
of the ligands upon coordination with Zn2+ ions [52,53]. Attempts made to correlate the
fluorescence enhancements to the rigidity of chelation or to strong Zn–Nav(amine) bond
lengths were unsuccessful. For example, in the case of Zn–TPA series, all Zn–Nav (TPA):
2.111 (4), 2.111 (4a) [68] and 2.094 Å (4b) [72] were very close to providing a satisfactory
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explanation for the fluorescence enhancement differences between the three TPA complexes,
and in some cases the lack of crystal structures as compounds 1 and 2.

4. Conclusions

In this study, the interaction of Zn(II) perchlorate or nitrate with pseudohalides
and in the presence of N-donor auxiliary ligands resulted in the formation of a series
of mononuclear five-coordinate complexes, including [Zn(NTB)(N3)]ClO4·1/2H2O (3),
[Zn(TPA)(NCS)]ClO4 (4) and two distorted octahedral [Zn(1,8-damnph)2(dca)2] (5) and
[Zn(8-amq)2(dca)2] (6a) as well as two 1D polymeric chains catena-[Zn(isq)2(µ1,5-dca)2]
(7) and catena-[Zn(N,N-Me2en)2(µ1,5-dca)]dca (8). The compounds [Zn(TPA)(X)]ClO4
(X = NCS−, N3

−, dca) display luminescence emission maxima in methanol at ~450 nm
with a large red shift up to ∆λ = 190 nm. The effect of different auxiliary ligands, L, on
the emission spectra examined in the azido and dicyanamido series revealed that the
strongest visible fluorescence peak at 421 nm (λex = 330 nm) was observed in [Zn(1,8-
damnph)2(dca)2] (5) and, as expected, there was no detectable luminescence emission in 8
due to the lack of π–π* nor 6 due to fluorescence quenching in MeOH [74]. The comparison
of our series together and the structurally characterized other related Zn(II)-pseudohalido
complexes with the corresponding Cd(II) analogues clearly showed that the prediction of
the Zn(II) structure based on a structurally characterized Cd(II) analogue or vice versa is
not an easy query.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/inorganics9070053/s1, Figure S1: Packing plots of 3, Figure S2: Packing plots of 4, Figure S3:
Packing plot of 5, Figure S4: Packing plot of 6a, Figure S5: Packing plot of 7, Figure S6: Packing plot
of 8, Figure S7: Fluorescence and UV-Vis. spectra of the dicyanamido Zn(II) complexes 2, 5, 6, 7 and 8
in methanol, Table S1: Selected bond distances (Å) and bond angles (◦) of 3, 4, 5, 6a, 7 and 8, Table S2:
Possible hydrogen bonds, Table S3: ring·ring interactions in 7. CCDC 2089669–2089674 contain the
supplementary crystallographic data for 3, 4, 5, 6a.
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