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Abstract: In this paper we report the binding properties, by combined 1H NMR, optical absorption,
and fluorescence studies, of a molecular tweezer composed of two Zn(salen)-type Schiff-base units
connected by a flexible spacer, towards a series of ditopic diamines having a strong Lewis basicity,
with different chain length and rigidity. Except for the 1,2-diaminoethane, in all other cases the
formation of stable 1:1 Lewis acid-base adducts with large binding constants is demonstrated. For
α,ω-aliphatic diamines, binding constants progressively increase with the increasing length of the
alkyl chain, thanks to the flexible nature of the spacer and the parallel decreased conformational
strain upon binding. Stable adducts are also found even for short diamines with rigid molecular
structures. Given their preorganized structure, these latter species are not subjected to loss of degrees
of freedom. The binding characteristics of the tweezer have been exploited for the colorimetric and
fluorometric selective and sensitive detection of piperazine.

Keywords: zinc(II) complexes; Schiff-bases; molecular tweezers; Lewis acid-base adducts

1. Introduction

“Molecular tweezers” refer to bifunctional molecular receptors characterized by the
presence of two binding sites connected with a more or less rigid spacer [1,2]. They have
the ability to form complexes with a substrate molecule, resembling a tweezer holding an
object. Depending on the nature of the binding sites and on the conformational rigidity
of the spacer, they find various applications such as in molecular recognition [1,3], in-
cluding biomolecules [4–6], or fullerenes [7], enzyme inhibition or prevention of protein
aggregation [8–10], catalysis [11], switchable molecular tweezers [12,13], electrochemical
switches [14,15], and as building blocks for supramolecular nanostructures [16,17].

Various molecular tweezers have been synthesized as hosts for guest molecules.
Among them, glycoluril- [1,2] or porphyrin-based [3] tweezers are those most studied.
The latter have been involved in various investigations for their ability to bind ditopic
species, e.g., for configuration [18,19] and chirogenesis [20–23] studies, and for the devel-
opment of sensors targeting specific molecules [24], including chiral species [25,26]. More-
over, the binding behavior with ditopic guests of different length and rigidities has also
been explored [27–30].

Zn(salen)-type Schiff-base complexes have recently been investigated for their sensing
properties [31–33], mostly related to their Lewis acidic character [34]. These complexes
easily coordinate Lewis bases with formation of Lewis acid-base adducts, and this process
is accompanied by relevant changes of their spectroscopic properties. Among them, deriva-
tives from the 2,3-diaminomaleonitrile, Zn(salmal) [35,36], are those mostly studied for
sensing a variety of Lewis bases [37–44].

Recently, a dinuclear Zn(salmal) Schiff-base complex (1, Scheme 1) whose units are con-
nected with a non-conjugated, flexible spacer, has been synthesized and characterized [45].
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It has been found that in non-coordinating solvents 1 is stabilized by the formation of
intramolecular aggregates, which hardly deaggregate by addition of monotopic Lewis
bases. However, in the presence of strong ditopic Lewis bases, such as diamines, the
complex easily deaggregates with formation of 1:1 adducts, thus acting as a “molecular
tweezer”. Deaggregation is accompanied by relevant optical absorption changes and a
substantial enhancement of the fluorescence. Therefore, 1 has been investigated for the
selective and sensitive detection of some biogenic diamines [46].
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Scheme 1. Structure of the dinuclear complex 1.

As the dinuclear aggregate complex 1 acts as a “molecular tweezer” upon deaggrega-
tion, this is an unusual feature compared to conventional tweezers characterized by binding
sites kept separate by a spacer. Thus, starting from the defined aggregate 1, in the formation
of Lewis acid-base adducts, it will not be subjected to binding as a consequence of a specific
conformation of the Lewis base. Rather, the ability of the Lewis base to bind the aggregate
could be related to its basicity and to the stability of the adduct. It is thus interesting to
investigate the features affecting the binding interactions between the aggregate molecular
tweezer 1, having a flexible spacer, and the structure of the ditopic Lewis bases.

The aim of this work is to study, through 1H NMR, UV/vis, and fluorescence spectro-
scopies, the binding interactions of the tweezer 1 with diamines of different chain length
and rigidity, to better understand their Lewis acid-base interactions.

2. Results and Discussion

To study the binding of various diamines to the molecular tweezer 1, either aliphatic,
alicyclic, and aromatic diamines were considered (Scheme 2). In particular, the flexible pri-
mary α,ω-aliphatic diamines, NH2(CH2)nNH2 (n = 2–12), were studied, and the results com-
pared with those related to the rigid diamines, piperazine (PZ), 1,4-diazabicyclo[2.2.2]octane
(DABCO), and 4,4′-bipyridine (BPY), and the semi-rigid 1,2-bis(4-pyridyl)ethane (DPE).
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UV/vis optical absorption and fluorescence spectral data and binding constants for the
formation of (1:1) 1·diamine adducts (equilibrium (1)) are reported in Table 1. Spectropho-
tometric and spectrofluorometric titrations for the representative 1,10-diaminodecane are
reported in Figures 1 and 2.

1 (soln) + diamine (soln) 
 1 diamine (soln) (1)

In all instances, the binding of diamines to 1 involves an increase of the optical
absorption band centered at λmax = 580 nm and an enhancement of fluorescence intensity
at λmax ∼= 614 nm (e.g., the fluorescence quantum yield, φ, increases from 0.03 to 0.29 on
switching from 1 to the adduct with 1,10-diaminodecane). Moreover, with the exception of
diaminoethane, optical absorption spectra show the presence of multiple isosbestic points,
indicative of the formation of species with a defined stoichiometry. Job’s plot analyses
clearly indicate the formation of 1:1 adducts.

Table 1. Binding constants and optical spectroscopic data for investigated 1·diamine adducts a in
chloroform solution.

Diamine log K Absorption λmax (nm) Emission λmax (nm)

1 582 625
PZ 5.4 ± 0.1 580 618

DABCO 5.6 ± 0.2 580 614
DPE 4.0 ± 0.1 579 614

BPY 2.1 ± 0.2 (K1)
3.6 ± 0.2 (K2) 580 611

1,2-Diaminoethane - 583 614
1,3-Diaminopropane 2.9 ± 0.1 580 614
1,4-Diaminobutane b 4.3 ± 0.1 580 618

1,5-Diaminopentane b 5.0 ± 0.2 580 618
1,6-Diaminohexane 5.1 ± 0.1 580 614
1,8-Diaminooctane 6.4 ± 0.1 587 616

1,10-Diaminodecane 6.2 ± 0.2 580 614
1,12-Diaminododecane 5.9 ± 0.2 580 614

a For comparison, 1·(pyridine)2; λmax = 579 nm (absorption); λmax = 613 nm (emission); log K1 = 2.35; log K2 = 3.58;
from ref. [45]. b from ref. [46].
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Figure 1. (a) Optical absorption titration curves of 1 (15 µM solution in CHCl3) with addition of
1,10-diaminodecane. The concentration of 1,10-diaminodecane added varied from 0 to 50 µM.
(b) Job’s plot for the binding of 1 with 1,10-diaminodecane. The total concentration of 1 and
1,10-diaminodecane is 15 µM. (c) Variation of the absorbance at 580 nm as a function of the
concentration of 1,10-diaminodecane added and fit of the binding isotherm with Equation (1)
(red line).
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Figure 2. Fluorescence titration curves of 1 (15 µM solution in CHCl3; λexc = 516 nm) with ad-
dition of 1,10-diaminodecane. The concentration of 1,10-diaminodecane added varied from 0 to
50 µM. Inset: variation of the fluorescence intensity at 614 nm as a function of the concentration of
1,10-diaminodecane added.

2.1. α,ω-Aliphatic Diamines

As is shown in Table 1, a substantial variation of the binding constants with the
chain length is observed. Despite the analogous Lewis basicity [47] along this investigated
series of aliphatic, linear primary diamines, binding constants span over more than three
orders of magnitude. While shorter diamines are characterized by relatively low binding
constants, the increasing of the chain length parallels an increase of binding constant values.
Largest binding constants are reached with the 1,8-diaminooctane, and then remain almost
unchanged, even if slightly smaller, on further increase of the chain length.

1H NMR titration studies further support the formation of 1:1 adducts. The titration
for the representative 1,10-diaminodecane is reported in Figure 3. In particular, after the
addition of half stoichiometric amount of 1,10-diaminodecane to a CDCl3 solution of 1,
the 1H NMR spectrum shows some changes with the appearance of new broad signals.
A complete variation of the 1H NMR spectrum, with the presence of broad signals, is
observed after the addition of a stoichiometric amount of 1,10-diaminodecane. Finally,
upon the addition of 4-fold molar excess of 1,10-diaminodecane the spectrum evolves
towards a set of sharp signals, except for the down-field shifted H3 and H3

′ protons which
remain slightly broad, indicative of the formation of a defined 1:1: adduct. Moreover, the
doublet of doublet benzylic proton signals, H5, of the aggregate complex 1 becomes a
sharp singlet, indicating that the restricted rotation around the benzylic bonds is no longer
operating in the adduct.

1,2-Diaminoethane behaves quite differently. In fact, starting from 10 µM solutions
of 1 a detectable variation of optical absorption or fluorescence spectra occurs after the
addition of ca. 2-fold molar excess of diaminoethane, while the saturation point is reached
by the addition of ca. 800-fold molar excess, unlike longer diamines which form 1:1 adducts
with 1 by addition of stoichiometric amounts. Moreover, in contrast with longer diamines,
optical absorption spectra do not show any isosbestic point. These observations suggest
the formation of multiple, instead of single, adducts (e.g., 1:2 adducts), likely favored by
the presence of the large stoichiometric excess of diamine.
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The concentration of 1,10-diaminodecane added was 25 µM (b), 50 µM (c), and 200 µM (d). For
assignment of 1H NMR signals of the aggregate 1. Adapted from ref. [45].

As binding constants for the formation of 1·diamine adducts reflect the relative stabil-
ity of the adducts with respect to the aggregate [48], given the analogous Lewis basicity
along the series of diamines and the entropic cost upon binding the diamine to 1, the
increasing binding constants with the increased length of diamines can be related to an
increased stability of the intramolecular cyclic adducts. In view of the flexibility of the
spacer in the tweezer 1, which in principle can accommodate almost any ditopic Lewis
base, the different binding constants along the series could be attributed to a larger entropic
cost of the loss of degrees of freedom for diamines with a shorter alkyl chain, while the
involved longer α,ω-diamines are not subjected to conformational strain upon binding,
resulting in larger intramolecular cyclic adducts, also with gain of degrees of freedom of
the flexible spacer of the tweezer.

In comparison to host–guest studies involving glycoluril- or porphyrin-based tweezers
with ditopic guests of different length, 1 behaves quite differently, being characterized
by increasing binding constants with increasing chain length of diamines. In fact, it has
been found that most of these investigated tweezers, having rigid or semi-flexible spacers,
show a preference for a particular guest, rather than for shorter or longer ones. This has
been associated with the guest best matching the distance between the binding sites of
the tweezer [27–30,49–51].

2.2. Rigid Diamines

The binding interaction for the formation of 1·diamine adducts is also affected by the
rigidity of the diamine. PZ is a cyclic secondary diamine with a N-N distance comparable
to that of 1,2-diaminoethane. In spite of this, PZ forms stable 1:1 adducts with 1, with a
large binding constant (Table 1), especially if compared to that of aliphatic diamines with
shorter chain length (n ≤ 4). DABCO is a bicyclic tertiary diamine whose N-N distance is
comparable to that of PZ. It has been widely used to study the binding characteristics of
porphyrin-based tweezers [22,30,52–54]. Again, DABCO binds easily with 1 with a binding
constant slightly higher than that of PZ. This is consistent with the greater Lewis basicity
of the tertiary alicyclic DABCO with respect to the secondary alicyclic PZ [47].
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It therefore turns out that the preorganized structure of PZ and DABCO favors the
formation of stable adducts because, except for the entropic cost upon binding the diamine
to 1, these species are not subjected to loss of degrees of freedom, contrary to aliphatic
diamines with short alkyl chain.

1H NMR titrations using DABCO as titrant suggest the formation of stable 1:1 adducts
even for alicyclic diamines (Figure 4). In this case, however, when half stoichiometric
amount of DABCO is added to CDCl3 solution of 1, two sets of signals are evident in
the spectrum. This indicates the presence in solution of the aggregate complex 1 and its
adduct with DABCO, in a slow equilibrium on the NMR time scale. Moreover, from the
comparison of the signal of H5 protons, a sharper singlet is observed for the adduct with
1,10-diaminodecane, with respect to the broad signal for that with DABCO. This suggests a
greater mobility of benzyl hydrogens in the larger intramolecular cyclic 1·diaminodecane
adduct compared to those of the 1·DABCO adduct (Figure 5).
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concentration of DABCO added was 25 µM (b), 100 µM (c), and 200 µM (d).
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Figure 5. (a) Modeling (PM3, using the HyperChem Software (8.0)) of the 1·diaminodecane adduct
and (b) modeling of the 1·DABCO adduct.

The structure of DPE is more rigid than that of α,ω-aliphatic diamines because
of the presence of two heterocyclic aromatic rings linked by an ethyl group. In the
anti-conformation, a N-N distance of 9.3 Å can be estimated, slightly longer than that
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of 1,6-diaminohexane (8.7 Å). However, the binding constant of DPE results are one order
of magnitude lower than that of 1,6-diaminohexane. This can be attributed to a higher con-
formational strain upon binding DPE to 1, in comparison with the flexible diaminohexane.

BPY was also investigated as rigid diamine. Spectrophotometric titrations again
indicate the formation of a defined species; by the presence of multiple isosbestic points,
however, the saturation point is reached with ca. a 500-fold molar excess of BPY. In this
case the binding isotherm is fitted with a model involving a 1:2 adduct (equilibria (2)),
instead of a 1:1 adduct (equilibrium (1)).

1 (soln) + BPY (soln) 
 1·BPY (2)

1·BPY (soln) + BPY (soln) 
 1·(BPY)2 (soln) (2’)

Even if the ditopic BPY is expected to possess a strong Lewis basicity comparable to
pyridine, it behaves as a monotopic species. Deaggregation of 1 with pyridine gave the
same results (Table 1) [45].

2.3. Sensing Piperazine

The molecular tweezer 1 can be used as a suitable chemodosimeter for the detection
of piperazine. PZ possesses important pharmacological properties and is used, together
with its salts, as an anthelmintic [55], in industrial gas treatments such as CO2 capture
system [56,57], and also as the precursor for a class of psychogenic drugs [58,59]. Piper-
azine may cause allergic dermatitis [60], and it has been demonstrated that, although not
extremely toxic, it has a low biodegradability [61]. Detection of PZ is thus relevant for
environment monitoring and protection [62].

The tweezer 1 allows both the colorimetric and fluorometric selective and sensitive
detection of PZ. A calculated limit of detection (LOD) down to 0.76 µM and 0.33 µM is
obtained from the spectrophotometric and spectrofluorometric data, respectively, with
a linear dynamic range up to 10 µM (Figures 6 and 7). These values are better than
those reported in the literature using spectrophotometric methods [63–66]. Various other
techniques have been developed for the detection and quantitation of piperazine, such
as HPLC [67], voltammetry [68], or capillary electrophoresis [69]; most of them, however,
require time-consuming procedures. Therefore, the development of simple and direct
methods for sensing piperazine is highly desirable. In this regard, only a few optical
chemosensors are reported in the literature for the selective detection of PZ [70–72].
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Figure 6. (a) Optical absorption titration curves of 1 (15 µM solution in CHCl3) with addition of PZ.
The concentration of PZ added varied from 0 to 60 µM. (b) Variation of the absorbance at 580 nm as a
function of the concentration of PZ added and fit of the binding isotherm with Equation (1) (red line).
(c) Linear best fit in the linear dynamic range (weight given by data error bars).
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Figure 7. (a) Fluorescence titration curves of 1 (15 µM solution in CHCl3; λexc = 515 nm) with addition
of PZ. The concentration of PZ added varied from 0 to 60 µM. (b) Variation of the fluorescence
intensity at 618 nm as a function of the concentration of PZ added. (c) Linear best fit in the linear
dynamic range (weight given by data error bars).

The selectivity of 1 towards PZ was proven by performing competitive experiments.
These were conducted by mixing a solution of 1 with PZ (1:1 molar ratio) and a 10-fold
molar excess of interferent (Figure 8). These results were then compared with those
obtained by adding to 1 either PZ in an equimolar amount, or the interferent in a 10-fold
molar excess. As potential interferents, some monotopic species with a strong Lewis
basicity were considered. Pyridine was chosen as the heterocyclic aromatic amine, while
isopropylamine, diethylamine, and triethylamine were chosen as prototype compounds of
primary, secondary, and tertiary amines. Moreover, the heteroditopic 4-amino-1-butanol,
bearing two different coordinating sites with a different Lewis basicity, was also considered.
As shown in Figure 8, very small or no changes of the absorbance at λmax = 580 nm
are observed after the addition of each potential interferent, especially for diethylamine
and triethylamine. Therefore, these data suggest that 1 can be considered a selective
receptor towards PZ, even in the presence of common aliphatic or aromatic monotopic or
heteroditopic amines.
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Figure 8. Absorbance of 1 at 580 nm upon the addition of an equimolar amount (15 µM) of piperazine
(orange bars); upon the addition of an equimolar amount (15 µM) of piperazine with the presence of
10-fold molar excess (150 µM) of interferent (green bars); upon the addition of 10-fold molar excess
(150 µM) of interferent (violet bars).
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3. Experimental Section
3.1. Materials and General Procedures

All the chemicals used were purchased from Sigma-Aldrich (Darmstadt, Germany)
and used as received. Complex 1 was synthesized and purified as previously reported [45].
Chloroform stabilized with amylene was used for optical absorption and fluorescence
titrations. Before being used, it was purified as follows: dried on anhydrous K2CO3
for 2 h, filtered and stored over molecular sieves (3 Å) in the dark under argon atmo-
sphere. Chloroform solutions of 1 were prepared by dissolving the compound in chlo-
roform and filtering it through a 0.2 µm Teflon membrane filter. CDCl3 was stored over
molecular sieves (3 Å).

3.2. Physical Measurements
1H NMR measurements were run at 27 ◦C on a Varian Unity S 500 (499.88 MHz for 1H)

spectrometer. Tetramethylsilane was used as internal reference for all NMR experiments.
Optical absorption spectra were recorded at room temperature with an Agilent Cary
60 spectrophotometer. Fluorescence spectra were recorded at room temperature using a
JASCO FP-8200 spectrofluorometer (JASCO Europe). Spectrophotometric and fluorometric
titrations were performed with a 1 cm path cell using 15 µM chloroform solutions of 1.
Chloroform solutions of involved Lewis bases were added to the solution of 1 using Rainin
(METTLER TOLEDO, Columbus, OH, USA) positive displacements pipettes. At least
three replicate titrations were performed for each diamine. In fluorometric titrations, the
wavelength of excitation was chosen in an isosbestic point. The fluorescence quantum yield
was obtained using fluorescein (φF = 0.925) in 0.1 M NaOH as a standard. The absorbance
value of the samples at and above the excitation wavelength was lower than 0.1 for 1 cm
path length cuvettes.

3.3. Calculation of Binding Constants and Limit of Detection

Binding constants, K, for the formation of 1 diamine adducts (equilibrium 1) were
calculated by fitting the binding isotherms, obtained from the plot of A vs. cA from
spectrophotometric titration data, with Equation (1) [73,74].

A = A0 +
Alim − A0

2c0

[
c0 + cDA + 1/K−

[
(c0 + cDA + 1/K)2 − 4c0cDA

]1/2
]

. (1)

where A0 is the initial absorbance of the solution having a concentration c0, A is the
absorbance intensity after addition of a given amount of diamine (DA) at a concentration
cDA, and Alim is the limiting absorbance reached in the presence of an excess of DA. Further
details are reported elsewhere [46,48]. These calculated binding constants are comparable
to those previously obtained by a multivariate analysis from spectrophotometric titrations
of 1 with PZ, DPE, and 1,4-diaminobutane [45]. In the case of BPY, binding constants K1
and K2 for a 1:2 adduct (equilibria (2)) were calculated by fitting the binding isotherm using
Equation (35) of Ref. [73].

The limit of detection (LOD) was estimated, both from optical absorption or fluores-
cence data, according to IUPAC recommendations (Equation (2)) [75,76].

LOD = K × Sb/S (2)

where K = 3, Sb is the standard deviation of the blank solution, i.e., the absorbance or
fluorescence signal of 1, and S is the slope of the calibration curve obtained from the plot
of the absorbance or fluorescence intensity of 1 vs. the concentration of the DA added.
Each point is related to the mean value obtained from at least three replicate measurements.
Twenty blank replicates were considered.
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4. Conclusions

The binding properties of a molecular tweezer, composed of two Zn(salmal) units
connected by a flexible spacer, towards a series of ditopic diamines having strong Lewis
basicity have been explored by means of combined 1H NMR, optical absorption, and
fluorescence studies. The formation of stable 1:1 Lewis acid-base adducts with large binding
constants is demonstrated. For α,ω-aliphatic diamines, binding constants progressively
increase with the increasing length of the alkyl chain, thanks to the flexible nature of the
spacer and there is a parallel decrease of the conformational strain upon binding for longer
diamines, reaching the largest value for the 1,8-diaminooctane. Stable adducts are also
found even for short diamines with rigid molecular structures. The preorganized structure
of these ditopic species which, except for the entropic cost upon binding the diamine to 1,
are not subjected to loss of degrees of freedom, accounts for the large binding constants.

These binding characteristics can be exploited for the detection of ditopic strong
Lewis bases. The colorimetric and fluorometric selective and sensitive detection has been
demonstrated for piperazine.
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