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Abstract: Nanocrystals of gadolinium orthoferrite (GdFeO3) with morphology close to isometric and
superparamagnetic behavior were successfully synthesized using direct, reverse and microreactor
co-precipitation of gadolinium and iron(III) hydroxides with their subsequent heat treatment in the
air. The obtained samples were investigated by PXRD, FTIR, low-temperature nitrogen adsorption-
desorption measurements, HRTEM, SAED, DRS and vibration magnetometry. According to the
X-ray diffraction patterns, the GdFeO3 nanocrystals obtained using direct co-precipitation have the
smallest average size, while the GdFeO3 nanocrystals obtained using reverse and microreactor co-
precipitation have approximately the same average size. It was shown that the characteristic particle
size values are much larger than the corresponding values of the average crystallite size, which
indicates the aggregation of the obtained GdFeO3 nanocrystals. The GdFeO3 nanocrystals obtained
using direct co-precipitation aggregate more than the GdFeO3 nanocrystals obtained using reverse
co-precipitation, which, in turn, tend to aggregate more strongly than the GdFeO3 nanocrystals
obtained using microreactor co-precipitation. The bandgap of the obtained GdFeO3 nanocrystals
decreases with decreasing crystallite size, which is apparently due to their aggregation. The colloidal
solutions of the obtained GdFeO3 nanocrystals with different concentrations were investigated by
1H NMR to measure the T1 and T2 relaxation times. Based on the obtained r2/r1 ratios, the GdFeO3

nanocrystals obtained using microreactor, direct and reverse co-precipitation may be classified as T1,
T2 and T1–T2 dual-modal MRI contrast agents, respectively.

Keywords: gadolinium orthoferrite; nanocrystals; co-precipitation; free impinging-jets microreactor;
aggregation; MRI contrast agents

1. Introduction

To enhance the contrast of the abnormal tissue from the normal tissue on magnetic
resonance imaging (MRI), contrast agents are used [1]. Contrast agents for MRI act by
shortening the longitudinal and transverse relaxation times of water protons, which are
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denoted by T1 and T2, respectively [2]. As the T1 relaxation time decreases, the signal
intensity on T1-weighted images increases and the affected regions appear brighter (positive
contrast agents), while as the T2 relaxation time decreases, the signal intensity on T2-
weighted images decreases and the affected regions appear darker (negative contrast
agents) [3]. Since the effects of MRI contrast agents are typically more pronounced for
either T1 or T2 relaxation times, they are classified as either T1 or T2 contrast agents, based
on whether the relative decrease is larger for T1 or T2 [4,5]. Unlike single-mode (T1 or
T2) MRI contrast agents, which do not always provide highly accurate anatomical details,
T1–T2 dual-modal MRI contrast agents can exhibit positive and negative contrasts, sharpen
image information and improve diagnosis [6,7]. As a result, the development of T1–T2
dual-modal contrast agents for MRI is scientifically and practically important.

Nanocrystalline gadolinium orthoferrite (GdFeO3) with orthorhombic perovskite
structure containing gadolinium, which is involved in T1 contrast agents [8,9], and iron
oxide, which is used as a T2 contrast agent as nanoparticles [10,11], seems to be promising
as a T1–T2 dual-modal MRI contrast agent. Gadolinium orthoferrite nanoparticles have
been previously proposed as a contrast agent for MRI [12–15]. For example, Söderlind
et al. [12] synthesized very small (~4 nm) GdFeO3 nanoparticles with longitudinal relaxivity
r1 = 11.9 mM−1·s−1 and transverse relaxivity r2 = 15.2 mM−1·s−1, whereas Pinho et al. [13]
synthesized GdFeO3 nanoparticles with an average size of 115 nm, very small T1 relaxivities
(r1 = 0.59−0.60 mM−1·s−1) and larger T2 relaxivities (r2 = 3.84−5.65 mM−1·s−1). However,
in order to achieve a T1–T2 dual-modal contrast effect, the size of GdFeO3 nanoparticles
should be sufficiently small, since with a decrease in the particle size a high specific surface
area of nanoparticles is achieved, which is necessary for effective T1 relaxation with the
participation of near-surface Gd3+ cations on the one hand, and the superparamagnetic state
of nanoparticles at room temperature is reached, which is necessary for the manifestation
of T2 MRI contrast properties on the other hand.

Gadolinium orthoferrite nanoparticles have been successfully obtained by various
synthesis methods, including co-precipitation [16], hydrothermal [17], solution combus-
tion [18], sol-gel [19], microwave [20], sonochemical [21] and heterobimetallic precursor [22].
Since it allows producing GdFeO3 nanoparticles with isometric morphology and minimal
chemical impurities, the co-precipitation method is preferred. However, there are vari-
ous co-precipitation techniques, such as direct, reverse and microreactor co-precipitation,
which can affect the structural, dispersed, morphological and magnetic parameters of
the resulting GdFeO3 nanoparticles. Therefore, it is necessary to study the effect of the
co-precipitation technique on these parameters in order to obtain GdFeO3 nanoparticles
with the desired properties that allow them to be further used as a T1–T2 dual-modal MRI
contrast agent.

In this paper, direct, reverse and microreactor co-precipitation techniques were used in
the synthesis of gadolinium and iron(III) hydroxides, which were then heat-treated in the
air to obtain GdFeO3 nanocrystals. The structural, dispersed, morphological and magnetic
features of the obtained GdFeO3 nanoparticles have been studied in detail. Colloidal
solutions of the as-synthesized GdFeO3 nanoparticles were prepared and investigated to
determine their effects as contrast agents for MRI.

2. Materials and Methods

In this work, aqueous solutions of stoichiometric amounts of gadolinium nitrate
hexahydrate (Gd(NO3)3·6H2O, puriss., 99.9%) and iron(III) nitrate nonahydrate
(Fe(NO3)3·9H2O, pur., 98.0%) with a concentration of 0.01 mol/L for each salt were used
as a source of gadolinium and iron(III) ions, while aqueous solutions of ammonia with
a concentration of 0.1 mol/L prepared from aqueous ammonia (NH4OH, puriss. spec.,
23.5%) were used as a precipitating medium.
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2.1. Potentiometric Titrations
2.1.1. Direct Titration

In direct titration, 60 mL of 0.1 mol/L ammonia solution were added in 1-mL portions
to 50 mL of 0.01 mol/L gadolinium and iron(III) nitrates solution, which was placed on
a magnetic stirrer. The pH of the resulting solution after each addition was measured
using a «pH-150MI» pH-meter (OOO «Izmeritel’naya Tekhnika», Moscow, Russia) with an
«ESK-10603» combined pH electrode (OOO «Izmeritel’naya Tekhnika», Moscow, Russia).

2.1.2. Reverse Titration

In reverse titration, 100 mL of 0.01 mol/L gadolinium and iron(III) nitrates solution
were added in 1-mL portions to 30 mL of 0.1 mol/L ammonia solution, which was placed
on a magnetic stirrer. The pH of the resulting solution after each addition was measured
using a «pH-150MI» pH-meter (OOO «Izmeritel’naya Tekhnika», Moscow, Russia) with an
«ESK-10603» combined pH electrode (OOO «Izmeritel’naya Tekhnika», Moscow, Russia).

2.2. Synthesis

In this work, nanocrystals of gadolinium orthoferrite were synthesized by direct,
reverse and ‘microreactor’ co-precipitation of gadolinium and iron(III) hydroxides at room
temperature, followed by heat treatment of the obtained co-precipitated hydroxides in the
air (Figure 1).
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2.2.1. Co-precipitation of Gadolinium and Iron(III) Hydroxides
Direct Precipitation

In direct precipitation, 100 mL of 0.1 mol/L ammonia solution were added at an
average rate of about 3 mL/min in a drop-wise manner to 100 mL of 0.01 mol/L gadolinium
and iron(III) nitrates solution, which was stirred with a magnetic stirrer at a speed of
1000 rpm during the synthesis.
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Reverse Precipitation

In reverse precipitation, 100 mL of 0.01 mol/L gadolinium and iron(III) nitrates
solution were added at an average rate of about 2 mL/min in a drop-wise manner to
100 mL of 0.1 mol/L ammonia solution, which was stirred with a magnetic stirrer at a
speed of 1000 rpm during the synthesis.

Microreactor Precipitation

In microreactor precipitation, 100 mL of 0.01 mol/L gadolinium and iron(III) nitrates
solution and 100 mL of 0.1 mol/L ammonia solution were fed into a free impinging-jets
microreactor through two glass nozzles with a diameter of 0.5 mm using two «Heidolph-
5206» peristaltic pumps (Heidolph Instruments GmbH & Co. KG, Schwabach, Germany)
at a fixed flow rate of 200 mL/min in the form of thin jets colliding in a vertical plane at an
angle of 98◦ between them.

2.2.2. Heat Treatment of the Co-precipitated Hydroxides

The precipitates obtained by the direct, reverse and microreactor co-precipitation were
separated from water by centrifugation and then dried at a temperature of 45 ◦C for 36 h.
Thereafter, the dried samples of co-precipitated hydroxides were heated at a temperature
of 750 ◦C for 4 h in the air. The selection of the heat treatment temperature was based on
the results of differential thermal analysis (DTA) in our previous work [16].

2.3. Characterization
2.3.1. Powder X-ray Diffraction

The powder X-ray diffraction (PXRD) patterns were recorded using a «Rigaku Smart-
Lab 3» diffractometer (Rigaku Corporation, Tokyo, Japan) in the range of 20–60◦ at a scan
speed of 2◦/min and a step width of 0.01◦. The processing of the PXRD data was carried out
in the «SmartLab Studio II» software. The average sizes of the obtained GdFeO3 crystallites
were calculated based on the broadening of X-ray lines using Scherrer’s formula.

2.3.2. Fourier-Transform Infrared Spectroscopy

The Fourier-transform infrared (FTIR) spectra were recorded using KBr pellets on a
«FSM-1202» FTIR spectrometer (OOO «Monitoring» and OOO «Infraspek», Saint Peters-
burg, Russia) in the range of 400–4000 cm−1.

2.3.3. Low-Temperature Nitrogen Adsorption-Desorption Isotherm Measurements

The low-temperature nitrogen adsorption-desorption isotherm measurements were
carried out at 77 K on a «Micromeritics ASAP 2020» nitrogen adsorption apparatus (Mi-
cromeritics Instrument Corporation, Norcross, GA, USA). Using the obtained adsorption-
desorption isotherms, the specific surface area according to Brunauer-Emmett-Teller (BET)
was determined, and the pore size distribution was calculated by the Barrett-Joyner-
Halenda (BJH) procedure. The characteristic particle size of GdFeO3 was estimated by
spherical morphology approximation using the formula D = 6/(S·ρXRD), where D is the
characteristic particle size, S is the BET specific surface area and ρXRD is the X-ray density
of GdFeO3.

2.3.4. High-Resolution Transmission Electron Microscopy and Selected Area
Electron Diffraction

The morphology and crystal structure were investigated by high-resolution transmis-
sion electron microscopy (HRTEM) and selected area electron diffraction (SAED) using a
«JEOL JEM-100CX» transmission electron microscope (JEOL Ltd., Tokyo, Japan).
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2.4. Functional Properties
2.4.1. Diffuse Reflectance Spectroscopy

The diffuse reflectance spectroscopy (DRS) spectra were obtained using an «AvaSpec-
ULS2048CL-EVO» spectrophotometer (Avantes, Apeldoorn, The Netherlands) equipped
with an «AvaSphere-30-REFL» integrating sphere (Avantes, Apeldoorn, The Netherlands).
Spectralon was used as an optical standard. The calculation of the bandgap values of
the obtained samples of GdFeO3 nanocrystals was performed using the Tauc plot for
direct allowed transitions, while the potentials of the conduction and valence bands were
calculated by empirical equations using the energy of free electrons and the absolute
electronegativity and the obtained bandgap of GdFeO3, as discussed in [23].

2.4.2. Vibration Magnetometry

The magnetic properties were measured at room temperature (298 K) by vibration
magnetometry using a «Lake Shore 7400» vibrating magnetometer (Lake Shore Cryotronics,
Inc., Westerville, OH, USA). The overall magnetic characteristics were calculated according
to the hysteresis loop data using the vibration method built in the magnetometer’s software.

2.4.3. Proton Nuclear Magnetic Resonance
Preparation of Samples

The obtained samples of GdFeO3 nanocrystals were selected as objects of study for
sample preparation. Each of the samples under investigation with a mass of 16 mg was
preliminarily crushed mechanically in an agate mortar in the presence of 2 mL of distilled
water. The crushed particles in the form of a pasty mass were added to 2 L of distilled water
(the resulting concentration is 8 mg/L). The stirred colloidal solution was then sequentially
diluted with distilled water to obtain solutions with concentrations of 6, 4 and 2 mg/L.
The prepared colloidal solutions with a volume of 0.8 mL were placed in tubes with an
inner diameter of 8 mm for further investigation by proton nuclear magnetic resonance
(1H NMR).

Measurement of T1 and T2 Relaxation Times

The measurements were carried out on a «Spin Track» NMR analyzer (Resonance
Systems Ltd., Yoshkar-Ola, Russia) operating at a resonance frequency of 19 MHz for
protons (1H). The temperature of the magnetic system was maintained at 30 ◦C. The
duration of the 90◦ and 180◦ radiofrequency pulses were 3.3 and 6.5 µs, respectively; the
ringing time of the receiving path of the NMR analyzer was 12 µs.

The Saturation-Recovery and Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences
were used to determine the spin-lattice (T1) and spin-spin (T2) relaxation times. In the
Saturation-Recovery experiment, the following parameters were set: observation time—
30 s, starting point—50 ms, number of points—16. For the CPMG experiment, the following
parameters were determined: echo time—4 ms (2τ), number of echoes—3750.

3. Results and Discussion
3.1. Potentiometric Titrations
3.1.1. Direct Titration

According to the obtained direct titration curve (Figure 2a, red curve), by adding
the ammonia solution to the solution of gadolinium and iron(III) nitrates, the pH of the
resulting solution gradually increases until the pH of precipitation (pHpr) of Fe3+ ions
is reached. At this stage, the pH of the titrated solution does not change significantly,
and the Fe3+ ions are precipitated in the form of iron(III) hydroxide. Thereafter, upon
further addition of the ammonia solution, the pH of the resulting solution rises sharply
until the pH of precipitation of Gd3+ ions is reached. At this stage, the pH of the titrated
solution also does not change significantly, and the Gd3+ ions are precipitated in the form
of gadolinium hydroxide.
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As presented in Figure 2a, the pH of precipitation of Fe3+ ions ranges from 2.81 to 2.93,
while the pH of precipitation of Gd3+ ions varies in the range of 7.33–7.64. Thus, at a pH of
about 8, both iron(III) and gadolinium hydroxides already precipitate. On the other hand,
the equivalent volumes (Veq) of ammonia solution required for the precipitation of Fe3+

and Gd3+ ions were determined using the first derivative of the titration curve (Figure 2a,
blue curve), and amounted to about 15.2 mL and 16.8 mL, respectively. The difference
between the experimental equivalent volumes and the calculated ones (15 mL each) can
be explained by the fact that ammonia is volatile; therefore, its concentration decreases
during titration.

3.1.2. Reverse Titration

The obtained reverse titration curve is presented in Figure 2b (red curve). When the
solution of gadolinium and iron(III) nitrates is added to the ammonia solution, gadolin-
ium and iron(III) hydroxides precipitate simultaneously because the pH of the ammonia
solution is sufficient to precipitate both Fe3+ and Gd3+ ions. In this case, the pH of the
resulting solution gradually decreases until the pH of precipitation of Gd3+ ions is reached,
below which Gd3+ ions cannot precipitate and the formed gadolinium hydroxide begins to
dissolve, while the Fe3+ ions continue to precipitate. After that, upon further addition of
the titrant, the pH of the resulting solution gradually decreases until the Fe3+ ions cease to
precipitate and the formed iron(III) hydroxide begins to dissolve.

Based on the first derivative of the reverse titration curve (Figure 2b, blue curve), the
equivalent volumes of the gadolinium and iron(III) nitrates required to precipitate Fe3+

and Gd3+ ions and dissolve the formed gadolinium and iron(III) hydroxides were found
to be about 40.7 mL and 40.2 mL, respectively. The difference between the experimental
equivalent volumes and the calculated ones (50 mL each) can be explained by the fact
mentioned above.

In consonance with the results of the direct and reverse titrations, a pH value above 8
can be considered suitable for the co-precipitation of gadolinium and iron(III) hydroxides.
It should be noted that in our next experiments on the synthesis, the pH of the solutions
obtained after the direct, reverse and microreactor co-precipitation was about 9.

3.2. Characterization
3.2.1. Powder X-ray Diffraction

According to the powder X-ray diffraction (PXRD) patterns of the initial samples,
the samples of co-precipitated hydroxides (CPHs) obtained using the reverse (CPH-R)
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and microreactor (CPH-M) co-precipitation are X-ray amorphous, while the sample of co-
precipitated hydroxides obtained using the direct co-precipitation (CPH-D) contains a crys-
talline phase that may be associated with crystalline hydrated iron(III) oxide (Fe2O3·nH2O).
The X-ray phase analysis of all heat-treated products (HTPs) showed that the main synthe-
sis product is orthorhombic gadolinium orthoferrite (o-GdFeO3, GFO) with a small amount
of cubic gadolinium oxide (c-Gd2O3) (Figure 3a).
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Based on the broadening of the (111) reflection using Scherrer’s formula, the average
sizes of GdFeO3 crystallites in the obtained samples were calculated and their volume-
weighted lognormal size distributions were determined (Figure 3b). The values of full
width at half maximum (FWHM) of the resulting distributions were used to obtain in-
formation about the distribution width. In addition, the maximum values (max.) of the
obtained distributions were used to determine the size of the majority of crystallites in
each GdFeO3 sample. It was shown that in the case of direct co-precipitation the average
size of GdFeO3 crystallites was the smallest (about 35 nm), which may be explained by the
presence of the crystalline phase in the initial sample of co-precipitated hydroxides, while
in the cases of reverse and microreactor co-precipitation, the GdFeO3 crystallites have
practically the same average size (about 44 nm), but the crystallite size distribution in the
case of microreactor co-precipitation is wider. This can be explained by the fact that during
microreactor co-precipitation, the jet of gadolinium and iron(III) nitrates solution impinges
with the jet of ammonia solution, the concentration of which is 10 times higher, i.e., there is
an excess of ammonia and the pH of its solution is sufficient to precipitate both Fe3+ and
Gd3+ ions; therefore, both gadolinium and iron(III) hydroxides precipitate simultaneously
as in the case of reverse co-precipitation. Thus, in the cases of reverse and microreactor
co-precipitation, the formed particles of co-precipitated hydroxides have approximately
the same average size, and after the heat treatment, the resulting GdFeO3 nanocrystals also
have practically the same average size.

3.2.2. Fourier-Transform Infrared Spectroscopy

The samples of co-precipitated hydroxides and their heat-treated products were
investigated by Fourier-transform infrared spectroscopy (FTIR), the results of which are
shown in Figure 4. The wavenumbers of the observed bands in the obtained FTIR spectra
and the results of their detailed analysis using the «Fityk» peak fitting program [24]
(version 1.3.1, developed by M. Wojdyr) are presented in Tables 1 and 2 for the samples of
co-precipitated hydroxides and their heat-treated products, respectively.
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Table 1. Assignment of bands in the FTIR spectra of the samples of co-precipitated hydroxides.

Wavenumber (cm−1)

AssignmentExperimental Obtained Using Fityk

CPH-D CPH-R CPH-M CPH-D CPH-R CPH-M

458 s 458 s 469 s 465 s 478 s 469 s ν(M-O), M = Fe3+ or Gd3+, in amorphous CPHs

689 br m 677 br m 672 br m ν(M-OH), M = Fe3+ or Gd3+, in amorphous CPHs

745 vw 756 vw 748 vw δas(CO3
2−, NO3

−), in plane bending,
HOH libration

815 w 819 w δs(NO3
−), out of plane bending, coordinated to

Fe3+ or Gd3+ or in free state833 w 833 w 833 w 838 w 840 w 839 w

840 w 840 w 840 w 842 w 845 w 853 w δs(HCO3
−), δs(CO3

2−), out of plane bending,
coordinated to Fe3+ or Gd3+

881 w 877 w

1043 w 1047 w 1043 w 1043 w 1044 w 1044 w νs(NO3
−), IR-active due to coordination to Fe3+

or Gd3+

1078 w 1076 w 1078 w 1076 w 1079 w 1080 w νs(CO3
2−), IR-active due to coordination to Fe3+

or Gd3+

1102 vw 1114 vw 1119 vw ν’as(CO3
2−), synchronous, splitted, polydentate

coordinated to Fe3+ or Gd3+

1162 vw 1161 vw 1162 vw ν’as(CO3
2−), synchronous, splitted, polydentate

coordinated to Fe3+ or Gd3+

1354 sh 1355 sh 1353 sh 1324 s 1366 s 1341 s ν’as(CO3
2−), synchronous, splitted, bidentate
coordinated to Fe3+ or Gd3+

1385 s
sharp

1385 s
sharp

1385 s
sharp

1384 m
sharp

1384 m
sharp

1384 m
sharp νas(NO3

−), in free state/incoordinated

1390 m 1393 m 1396 m νas(NO3
−), monodentate coordinated to Fe3+

or Gd3+

1492 s 1506 s 1498 s 1499 s 1510 s 1502 s ν”as(CO3
2−), ν”as(HCO3

−), asynchronous,
splitted, bidentate coordinated to Fe3+ or Gd3+

1636 m 1632 m 1630 m
1622 w 1625 w 1624 w

ν”as(CO3
2−), ν”as(HCO3

−), asynchronous,
splitted, polydentate coordinated to Fe3+ or Gd3+

or δ(H2O) in adsorbed water

1652 m 1653 m 1654 m δ(H2O), in H-bonded or adsorbed water
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Table 1. Cont.

Wavenumber (cm−1)

AssignmentExperimental Obtained Using Fityk

CPH-D CPH-R CPH-M CPH-D CPH-R CPH-M

1768 w 1768 w 1768 w
1768 w 1768 w 1767 w

ν(C = O), coordinated to Fe3+ or Gd3+

1785 w

2361 w νas(CO2), from atmosphere

2426
sharp w

2427
sharp w

2427
sharp w NO3

− groups

3370 br s 3413 br s 3402 br s

3201 m 3221 m 3188 m νs(H2O), in H-bonded or adsorbed water

3370 s 3397 s 3361 s νas(H2O), in H-bonded or adsorbed water

3498 s 3518 s 3480 s
ν(OH−)

3568 s 3588 s 3552 s

s—strong, m—medium, w—weak, sh—shoulder, br—broad, v—very.

Table 2. Assignment of bands in the FTIR spectra of the heat-treated products.

Wavenumber (cm−1)

AssignmentExperimental Obtained Using Fityk

HTP-D HTP-R HTP-M HTP-D HTP-R HTP-M

436 s 432 s 434 s 441 s 442 s 443 s δ(O-Fe-O), in o-GdFeO3

561 vs 559 vs 561 vs
556 s 554 s 554 s ν(Gd-O), in o-GdFeO3

597 s 593 s 594 s ν(Fe-O), in o-GdFeO3

- 1643 w 1636 w 1655 vw 1640 w 1637 w δ(H2O), in H-bonded or adsorbed water

3435 br m 3470 br m
3260 -m νs(H2O), in H-bonded or adsorbed water

3443 -m 3402 -m 3436 -m νas(H2O), in H-bonded or adsorbed water

s—strong, m—medium, w—weak, br—broad, v—very.

In the FTIR spectra of the samples of co-precipitated hydroxides (Figure 4a), the broad
strong band in the region of high wavenumbers centered at about 3400 cm−1 is most likely
a consequence of the overlapping of asymmetric and symmetric stretching vibrations of
physically adsorbed and hydrogen-bonded water, as well as stretching vibrations of OH−

ions. In the 750–1800 cm−1 region, several weak bands and a strong one with a complex
structure are observed. These bands belong to different types of vibrations of surface
anions. Nitrate ions from ammonium nitrate obtained as a result of the co-precipitation
reaction may be present on the surface of co-precipitated hydroxides. In addition, as noted
earlier, due to the tendency of iron [25] and, possibly, gadolinium to adsorb carbon dioxide
from the ambient air when preparing reaction solutions, drying precipitates and collecting
samples, the formation of carbonate and bicarbonate ions on the surface of co-precipitated
hydroxides is also possible. Nitrate and carbonate ions have the same symmetry group, and
upon coordination to metal ions, the IR-inactive symmetric stretching vibration of these
anions becomes active due to the decrease in symmetry and can manifest itself in the region
of 1040–1080 cm−1. In addition, upon coordination, the doubly degenerate asymmetric
stretching vibration of the anion splits into synchronous and asynchronous vibrations, and
the nature of the coordination can be determined from the magnitude of the splitting. The
separation of the observed strong intense band centered at about 1385 cm−1 into vibration
components suggests that the nitrate ions are present in the samples of co-precipitated
hydroxides in free (1384 cm−1) and weakly coordinated (1390–1396 cm−1) states. On the
contrary, carbonate ions can be coordinated with the surface as monodentate, bidentate and
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polydentate ligands. The observed band of bending vibration of adsorbed water centered at
about 1630–1636 cm−1 consists of two vibrations, one of which disappears during the heat
treatment; therefore, it can be assumed that the disappeared vibration is most likely related
to the asynchronous stretching asymmetric vibration of carbonate ion. The band at about
1768 cm−1 is assigned to the stretching vibration of C = O groups coordinated to metal
ions. The weak bands observed at about 833–840 cm−1 can be attributed to symmetric
out-of-plane bending vibrations of surface nitrate and carbonate ions, whereas the very
weak bands at about 750 cm−1 can be assigned to asymmetric in-plane bending vibrations
of these anions. In the region of wavenumbers less than 700 cm−1, the blurred broad
bands at about 672–689 cm−1 may be related to the M-OH stretching vibrations, while the
observed bands centered at about 458–469 cm−1 may be attributed to the M-O stretching
vibrations. It should be pointed out that the presence of these two bands confirms the
formation of amorphous co-precipitated hydroxides.

In the FTIR spectra of the heat-treated products (Figure 4b), there are practically no
bands corresponding to vibrations of anions, which indicates that the surface is cleaned.
In the region of low wavenumbers, strong bands are observed at about 559–561 cm−1,
which, according to the literature data, can be assigned to the Gd-O and Fe-O stretching
vibrations in the Gd-O-Fe and Fe-O-Fe systems [26]. A detailed analysis of the structure of
this band shows that it includes two vibrations at about 554–556 and 593–597 cm−1. As a
result of comparison with the wavenumbers of vibrations of cubic iron and gadolinium
oxides, it can be assumed that these two vibrations are most likely related to the Gd-O
and Fe-O stretching vibrations, respectively. The bands observed at about 432–436 cm−1

(441–443 cm−1 as obtained using Fityk) are most likely attributed to the O-Fe-O bending
vibrations in octahedral FeO6 groups [27]. The obtained data allow us to conclude that
the bands at about 441–443, 554-556 and 593–597 cm−1 are characteristic of orthorhombic
gadolinium orthoferrite. It should be noted that some shift in characteristic vibrations
in the FTIR spectra of the heat-treated products in comparison with the co-precipitated
hydroxides is a consequence of the formation of the crystal structure of o-GdFeO3.

3.2.3. Low-Temperature Nitrogen Adsorption-Desorption Isotherm Measurements

To estimate the specific surface area of the GdFeO3 nanocrystals and the pore sizes
in the obtained samples, the measurements of low-temperature nitrogen adsorption-
desorption isotherms were carried out. Figure 5a shows the results of these measurements,
as well as the integral and differential surface areas depending on the pore width in the
investigated samples.
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According to the IUPAC classification [28], all the obtained adsorption isotherms
belong to the IV type, and the hysteresis loops belong to the H3 type, which suggests the
presence of slit pores with a wide size distribution in the studied samples. These results
can be explained by the presence of pores of different sizes between individual GdFeO3
nanocrystals in their aggregates. The appearance of mesopores in the obtained samples is
due to the space between individual GdFeO3 nanocrystals, while macropores originate in
the space between the aggregates of these nanocrystals.

The total pore volume, BET specific surface area, characteristic particle size and
number of nanoparticles per aggregate based on the nitrogen adsorption-desorption data
are shown in Figure 5b. According to the presented results, in the case of microreactor
co-precipitation, the total pore volume was the highest (about 38.5 mm3/g) and the BET
specific surface area was the largest (about 10.5 m2/g), while in the case of direct co-
precipitation, the total pore volume was the lowest (about 13.5 mm3/g) and the BET
specific surface area was the smallest (about 4.4 m2/g). The characteristic particle sizes,
calculated from the obtained values of the BET specific surface area and the X-ray density
of GdFeO3, are significantly larger than the corresponding values of the average crystallite
size calculated based on the broadening of X-ray lines, which indicates the aggregation
of nanocrystals and the presence of grain boundaries inaccessible for nitrogen sorption.
Comparing the characteristic particle sizes with the average crystallite sizes, we found
that the GdFeO3 nanocrystals obtained using direct co-precipitation tend to aggregate
more than the GdFeO3 nanocrystals obtained using reverse co-precipitation, which, in
turn, aggregate more strongly than the GdFeO3 nanocrystals obtained using microreactor
co-precipitation. This can be explained by the fact that the use of such microreactors
at the stage of co-precipitation of gadolinium and iron(III) hydroxides intensifies this
process due to the intensification of mass and heat transfer and, after heat treatment of the
co-precipitated hydroxides, makes it possible to obtain dispersed GdFeO3 nanoparticles.

3.2.4. High-Resolution Transmission Electron Microscopy and Selected Area
Electron Diffraction

The HRTEM images of the obtained GdFeO3 samples are shown in Figure 6.
The survey HRTEM images of the GFO-D, GFO-R and GFO-M samples (Figure 6a,c,e)

show a similar morphology of GdFeO3 nanoparticles, but a noticeable difference in both
their size and aggregation degree. It can be seen that the size of the GFO-D nanoparticles is
about 25–35 nm, which is much smaller than the size of the GFO-R and GFO-M nanopar-
ticles (about 40–50 nm) and this direct observation is in good agreement with the PXRD
results (see Section 3.2.1). It should be noted that the aggregation degree in the GFO-D and
GFO-R samples seems to be higher than the aggregation degree in the GFO-M sample, in
which there are more individual particles and interparticle space, which determines the
specific surface area of these nanopowders (see Section 3.2.3).

The morphology of individual GdFeO3 nanoparticles for all synthesized samples
(Figure 6b,d,e) is close to isometric with a slight ellipsoidal distortion. The observed
nanoparticles are single-crystal, which is confirmed by the presence of visually fixed
atomic planes at high magnification (Figure 6b,d,f). In addition, the aggregates of GdFeO3
nanoparticles are completely crystalline, which is confirmed by the SAED results (see the
insets in Figure 6a,c,e), which are typical for polycrystalline systems.
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corresponding samples are shown as insets in the survey HRTEM images (a,c,e).

Direct measurement of interplanar distances in the observed nanocrystals (Figure 6b,d,f)
surely indicates their belonging to orthorhombic gadolinium orthoferrite. These values
(0.35 nm (111), 0.22 nm (202) and 0.20 nm (220)) are in good agreement with the d-spacing
values obtained by the Rietveld method from the PXRD results (3.46 Å, 2.195 Å and 1.94 Å,
respectively) within method error.

Since there is no noticeable morphological difference between the GFO-D, GFO-R
and GFO-M samples, the process of their formation proceeded in the same mode, and
the crystallite size, the aggregation degree and the main functional characteristics of
the samples are determined by the co-precipitation technique and not by the annealing
parameters, which were maintained the same for all samples.

3.3. Functional Properties
3.3.1. Diffuse Reflectance Spectroscopy

To investigate the semiconducting properties and determine the bandgap values of the
obtained GdFeO3 nanocrystals, their electronic diffuse reflectance spectra were obtained,
which are presented in Figure 7a.
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Based on the processing of these spectra, the bandgap values were calculated using
the Tauc plot for direct allowed transitions (Figure 7b), which is the dependence of the
square of the product of the Kubelka-Munk function and the photon energy on the photon
energy, i.e., (F(Rd)·hv)2 = f (hv), where Rd is the diffuse reflectance, F(Rd) = (1 − Rd)2/2Rd is
the Kubelka-Munk function and hv is the photon energy. In each calculation, the section
of the Tauc plot, where the experimental points have a linear relationship, was used. By
extrapolating this region to the abscissa axis, we can obtain the bandgap value of the studied
GdFeO3 nanocrystals. On the other hand, the potentials of the conduction and valence
bands of the obtained GdFeO3 nanocrystals were calculated using empirical equations
found in the literature [23].

According to the results presented, in the case of direct co-precipitation, the bandgap
value and the valence band potential of the GdFeO3 nanocrystals are smaller and the
conduction band potential is larger than in the cases of reverse and microreactor co-
precipitation, where these values practically coincide. This allows us to conclude that
the bandgap of the obtained GdFeO3 nanocrystals decreases with decreasing crystallite
size, which contradicts what is expected. The bandgap value generally decreases with
increasing particle size. Due to the limitation of electrons and holes, the energy of the
bandgap between the valence and conduction bands increases with decreasing particle
size, but here we have the opposite relationship. This may be explained by the aggregation
of the obtained GdFeO3 nanocrystals. The GdFeO3 nanocrystals obtained using direct co-
precipitation tend to aggregate more strongly and their characteristic size was the largest;
consequently, the bandgap value, in this case, was the smallest.

3.3.2. Vibration Magnetometry

Figure 8 shows the magnetic hysteresis loops of GdFeO3 samples obtained at room
temperature (298 K) using a vibrating magnetometer.
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According to the data obtained, all the observed dependences of the magnetization
on the magnetic field have a characteristic S-shape with the absence of complete satu-
ration even at an external field of 45 kOe, which, taking into account the low remanent
magnetization values (Mr = 0.013–0.069 emu/g), may indicate the superparamagnetic
character of the synthesized nanoparticles [29]. As shown in our previous work [16], the
presence of a large number of aggregated GdFeO3 particles leads to the appearance of a
more complex magnetic structure, as a result of which the observed magnetization depen-
dences characterize not individual nanoparticles of GdFeO3, but its superparamagnetic
cluster. This model is confirmed in this work, where, despite the low values of remanent
magnetization and the absence of complete magnetization of all samples, even at high
values of the applied field, sufficiently large values of the coercive force are still observed
(Hc = 179–570 Oe). When the external magnetic field reaches its maximum values, the inter-
nal magnetic moments of superparamagnetic clusters of nanoparticles align along the field,
resulting in pure magnetization, but complete saturation does not occur due to the presence
of disordered surface-bound magnetic moments of the samples [30]. As the applied field
decreases to zero and moves down the hysteresis loop, a small remanent magnetization
remains due to the presence of cluster magnetic moments of strongly coupled nanoparticles
whose collective behavior is characteristic of ferromagnets [31]. Thus, the example of
three obtained samples of GdFeO3 clearly shows that the behavior of aggregated clusters
of superparamagnetic nanoparticles differs significantly from the behavior of individual
superparamagnetic nanoparticles.

3.3.3. T1 and T2 Proton Relaxation

Taking into account that superparamagnetic GdFeO3 nanoparticles may be considered
as a promising basis for T1–T2 dual-modal MRI contrast agents, the longitudinal (T1) and
transverse (T2) relaxation times of water protons were measured in colloidal solutions
of the synthesized GdFeO3 nanoparticles with different concentrations. After that, the
relaxation rates (1/T1 and 1/T2) were plotted as a function of concentration (Figure 9).
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The presented MR relaxivity curves indicate an increase in longitudinal relaxivity
(r1) in a row GFO-D < GFO-R < GFO-M and an increase in transverse relaxivity (r2) in
a row GFO-M < GFO-R < GFO-D. These dependencies are strongly correlated with the
crystallite-aggregate sizes of GdFeO3 samples and their magnetic behavior. To better
understand the “structure to properties” relationship in this system, it is necessary to
compare various structural, morphological and functional characteristics of the obtained
nanopowders, which are summarized in Table 3. Since T1 relaxation is proportional to the
available amount of high-spin Gd3+ cations on the surface of GdFeO3 nanoparticles, the T1
relaxivity (r1) should increase with an increase in the specific surface area of nanopowders
(see Figure 5b). On the other hand, T2 relaxation is proportional to the superparamagnetic
characteristics of GdFeO3 nanoparticles and the T2 relaxivity (r2) changes accordingly (see
Figure 8).

Table 3. Summarized characteristics of the GdFeO3 nanoparticles synthesized using different co-precipitation techniques.

Sample Crystallite Size,
nm

Aggregate Size,
nm

Specific Surface Area,
m2/g

Bandgap Value,
eV

Remanence,
emu/g

Coercivity,
Oe

GFO-D 34.7 188.2 4.4 2.337 0.069 503
GFO-R 43.9 137.4 6.0 2.474 0.052 570
GFO-M 44.3 78.5 10.5 2.467 0.013 179

To quantitatively describe the T1 and T2 relaxations of the obtained GdFeO3 nanopar-
ticles, the corresponding values of relaxivities (r1 and r2) were calculated by linearizing the
1/T1 and 1/T2 dependences on concentration (Figure 9). The obtained values of relaxivity
are given in Table 4, supplemented with data on the relaxivities of other orthoferrites of
rare-earth elements [13]. It should be noted that the T1 relaxivity (r1) increases from 0.28 to
0.81 mM−1·s−1 with an increase in the specific surface area from 4.4 to 10.5 m2/g, which is
explained by an increase in the contact amounts of high-spin paramagnetic Gd3+ cations
with water protons. When comparing these values with data for other nanocrystalline
rare-earth orthoferrites (Table 4), it becomes clear that the size and surface of crystallites
play a key role in ensuring high values of longitudinal relaxivity. As for the T2 relaxivity
(r2), its value is determined by the magnetic structure of orthoferrite nanoparticles. Ac-
cording to the results obtained, the T2 relaxivity (r2) increases from 1.08 to 3.57 mM−1·s−1

as the size of GdFeO3 nanoparticles decreases from 44.3 to 34.7 nm, which ensures their
more pronounced superparamagnetic behavior (see details in Section 3.3.2). The r2/r1
ratio can be used to quickly and easily assess the potential of the synthesized GdFeO3
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nanoparticles with respect to T1 or positive (r2/r1 < 2), T2 or negative (r2/r1 > 10) or T1–T2
dual-modal (r2/r1 ~2–10) MRI contrast [32]. According to this classification, the GFO-D
sample (r2/r1 = 12.58) may be considered as a T2 MRI contrast agent, the GFO-M sample
(r2/r1 = 1.33) may be classified as a T1 MRI contrast agent, while the GFO-R sample (r2/r1
= 3.80) may have T1–T2 dual-modal MRI contrast properties. It should be pointed out that
these conclusions were made on the basis of only the r2/r1 ratio, despite the low relaxivities
of the obtained GdFeO3 nanoparticles; therefore, the possibility of their potential use as
T1, T2 or T1–T2 dual-modal contrast agents for MRI requires further study. Interestingly,
the previously investigated nanocrystalline rare-earth orthoferrites have been proposed as
negative MRI contrast agents [13] (see Table 4). It is worth noting that a significant increase
in the relaxivity of the synthesized GdFeO3 nanoparticles is possible with the subsequent
use of additional procedures, such as dialysis of colloidal solutions [12], but taking this
issue into account is beyond the scope of this work.

Table 4. Relaxivities of the synthesized GdFeO3 nanocrystals, compared with literature data for other
nanocrystalline rare-earth orthoferrites.

Sample r1, mM−1·s−1 r2, mM−1·s−1 r2/r1 Reference

GdFeO3 (GFO-D) 0.28 3.57 12.58 This work
GdFeO3 (GFO-R) 0.43 1.65 3.80 This work
GdFeO3 (GFO-M) 0.81 1.08 1.33 This work

GdFeO3 0.60 5.65 9.42 [13]
TbFeO3 0.68 9.45 13.90 [13]
EuFeO3 0.20 6.18 30.9 [13]

4. Conclusions

The approach proposed in this work, which is based on direct, reverse and microre-
actor co-precipitation of gadolinium and iron(III) hydroxides with their subsequent heat
treatment at a temperature of 750 ◦C for 4 h in the air, can be successfully used for the
synthesis of superparamagnetic close-to-isometric GdFeO3 nanocrystals with various
crystallite sizes (34.7–44.3 nm), aggregation degrees (6–160 nanoparticles per aggregate),
specific surface areas (4.4–10.5 m2/g), bandgap values (2.337–2.474 eV), longitudinal relax-
ivities (0.28–0.81 mM−1·s−1) and transverse relaxivities (1.08–3.57 mM−1·s−1). According
to the obtained r2/r1 ratios, the synthesized GdFeO3 nanoparticles may be classified as
T1 (GFO-M, r2/r1 = 1.33), T2 (GFO-D, r2/r1 = 12.58) or T1–T2 dual modal (GFO-R, r2/r1
= 3.80) contrast agents for MRI, but the possibility of their potential use as such requires
further study.
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