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Abstract: As the world evolves, so does the energy demand. The storage of hydrogen using metal
hydrides shows great promise due to the ability to store and deliver energy on demand while
achieving higher volumetric density and safer storage conditions compared with traditional storage
options such as compressed gas or liquid hydrogen. Research is typically performed on lab-sized
samples and tanks and shows great potential for large scale applications. However, the effects of
scale-up on the metal hydride’s performance are relatively less investigated. Studies performed so far
on both materials, and hydride-based storage tanks show that the scale-up can significantly impact
the system’s capacity, kinetics, and sorption properties. The findings presented in this review suggest
areas of further investigation in order to implement metal hydrides in real scale applications.

Keywords: metal-hydride; intermetallics; materials scale-up; hydrogen storage

1. Introduction

The human population’s growth rate and the evolution of heavy industrial sectors
result in increasing energy demands [1]. The current and future energy systems needed to
fulfil this demand are required to be cost-efficient, practical, sustainable and reliable [2].

Energy systems based on renewable energy sources will need an appropriate storage
solution to account for their intermittency [3]. Hydrogen is a promising energy vector
since it can store and deliver energy in a useable form, with its energy density being three
times higher than that of liquid hydrocarbons [4,5]. Today, hydrogen is stored as gas [6], by
cryo-compression [7–9], as liquid [10], in solid-state materials [11–13], and chemically [14],
e.g., ammonia [15].

Solid-state storage of hydrogen encompasses a large variety of materials using both
physisorption and/or chemisorption. Various materials have been tested in the last decade,
such as interstitial metal hydrides [12], Metal-Organic-Frameworks (MOF) [16], complex
hydrides [17] and carbon nanotubes [18], among others. Research has been ongoing
to improve their performances towards goals like those set by the US department of
energy [19]. Accomplishments in solid-state storage have been extensively summarized in
various reviews and are outside the scope of the present paper.

Metal hydrides can work at both room temperature and mild pressures [20] and
at elevated temperatures [21,22] and elevated pressures [23]. Furthermore, they store
hydrogen at a higher volumetric density than gas or liquid hydrogen, with safer storage
conditions [5]. Most of the research done on metal hydrides is typically performed at a
lab-scale, on a few grams of materials [24]. However, for hydrogen storage systems in
real applications, investigating the effect of the scaling up of metal hydrides is of critical
importance. Studies have pointed out that scaling up will substantially influence the
performance of metal hydrides-based powders and tanks. This review will present and
discuss the different aspects of metal hydride scale-up and its influence on materials
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thermodynamics and kinetics properties, highlighting promising areas of improvement to
achieve scalable future hydrogen storage systems.

2. Experimental

Metal hydride compounds are typically denoted as AxBy where A elements (A = Ti,
La, Nd, Y, Ge) strongly bind to hydrogen, and B elements (B = Ni, Al, Mn, Fe) hardly bind
or do not bind to hydrogen. The compounds can absorb/desorb hydrogen under given
temperature and hydrogen pressure conditions, with their unit cell experiencing a volume
change by up to 20–25% [25,26]. It is of utmost importance to take this expansion into
account when building scaled-up tank systems, which otherwise can lead to catastrophic
failure of the tanks [27].

One challenge in using metal hydrides in real applications is related to their production
in quantities that go beyond lab-scale experiments. The size of batches and experimental
conditions for synthesis have shown to influence the performances of metal hydrides.
Also important in influencing hydrogenation and dehydrogenation properties are physical
effects due to powder’s compactness in tanks or the tank’s geometry. Another major
problem encountered in scaled-up metal-hydride storage tanks is their often-slow hydrogen
absorption/desorption. On a lab scale, this is generally related to the intrinsic kinetics
of the material. When scaling up, the limiting step is more related to the heat transfer in
and between hydrides [28] due to the low thermal conductivity of metal hydride powders,
typically in the range 0.1–1.0 W/(mK) [29]. Considerable efforts have been made to
improve thermal management using heat pipes [30], tubes [31,32], jackets [33], phase
change materials [34] and fins [35,36]. Our literature survey found that studies often focus
on enhancing heat transfer between the metal hydrides and the cooling medium [37–39].
By far, the most popular heat transfer techniques include tubes, fins and jackets, while
the rest are spread out over mesh types, usage of Expanded Natural Graphite (ENG) and
non-conventional methods.

2.1. Synthesis Using Ball-Milling and Induction Melting

High-energy ball-milling is a process widely used in the field of metal hydrides [40]. It
provides homogeneous and intimate mixtures of different powders with a reduction in the
size of particles and crystallites, leading to a faster reaction with hydrogen [29]. Ball-milling
is used to synthesize materials [41], (re)activate materials [42–44], and can also allow for
scaling up [44,45].

When considering a metal hydride for practical applications, it is important to compare
its properties when produced at a laboratory scale versus at a larger scale. As an example, a
batch of 500 g of MgH2 + 0.5 mol% Nb2O5 + 1 wt% C was prepared with a Szegvari attritor
ball-mill in a single operation [45] and placed into a hydrogen tank in a vertical orientation.
The hydrogen storage capacity in the tank reached a satisfactory 5.4 wt% H2, compared to
a capacity of 6.3 wt% in a lab-scale experiment using the same composition [46]. However,
the kinetics of desorption for the powders in the tank was much slower, with 90% H2
desorbed after 2 h at a temperature range of 325–335 ◦C, compared with a time of 600 s at
315 ◦C needed for a sample at laboratory scale of the prepared powder. In this case, the
worsening reaction kinetics has been related to the local effects of temperature variations
observed during absorption and desorption cycles in the scaled-up sample.

One of the potential problems of scaling up with ball-milling is related to the milling
setup, as seen in experiments performed by Bellosta von Colbe et al. [44]. A large-scale
sample of 6 kg of an FeTiMn-type material was prepared in a CM100 ball-mill in an
inert atmosphere. The sample did not need further activation and immediately reached
1.5 wt% H2 comparable to other studies [47]. After 35 cycles, PCT (pressure–composition–
temperature) measurements showed a relatively stable hydrogen absorption of 1.1–1.2 wt%
H2, as seen in Figure 1. A problem encountered when using larger ball-mills is that a
significant amount of the material can be stuck to the balls and vial used. For instance, in
this study, only 33% of the material was recovered from the CM100 mill. This highlights
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the need for research into possible additives or lubricants that can improve production
yield without contaminating the final product.

1 
 

 

1 

 

2 

 

3 

Figure 1. Sorption properties of the as-milled FeTiMn-alloy from the CM100 ball-mill; (A) absorption
and (B) desorption. Reprinted with permission from ref. [44], Copyright 2019, Elsevier.

The importance of a careful investigation of the effect of additives is highlighted in
large batches of MgH2. A 500 g composite was prepared using a semi-industrial Szegvari
attritor mill with a material weight ratio of 9:1 of MgH2 to Zr-Ni alloy [48]. Figure 2 shows
the dependence of milling time with the absorption/desorption properties. More than 44 h
of milling were required to reach maximum absorption capacity and kinetics, and at least
92 h of milling for best performances in the desorption mode. In comparison, the milling
time needed to achieve similar results in lab-scale samples was 20 h [49]. Analysis of the
X-Ray Diffraction (XRD) of the upscaled powders indicated that Mg was recrystallizing
during cycling, reducing the capacity and kinetics due to fewer H2 pathways [50]. XRD
data further showed that the Zr-Ni alloy consisted of a combination of Zr8Ni21, Zr9Ni11
and Zr7Ni10. A more recent study on a lab-scale sample showed that not all of these phases
are equally good at enhancing the performance [51]. Therefore, control of phase formations
would be an important aspect to consider at both lab and scaled-up size samples.
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Figure 2. Absorption (left) and desorption (right) properties at 304 ◦C and 324 ◦C for different milling
times of MgH2 with Zr-Ni alloy. Reprinted with permission from ref. [48], Copyright 2009, Elsevier.
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Another useful technique for scaling up the production of metal hydrides is indu-
ction melting.

Batches of an AB2-type Ti1−xZrxCry1Mny2Niy3Fey4Vy5-alloy (x = 0.05 − 0.45;
y1 = 0.1 − 0.4; y2 = 0.3 − 1.2; y3 = 0.2 − 0.3; y4 = 0.05 − 0.5; y5 = 0 − 0.6; ∑5

i=1 yi = 1.8− 2.5)
were produced via induction melting at lab-scale (50–100 g) and as scaled-up powders
(10 kg) [52]. Reference powders were prepared via arc melting (ca. 15 g). Analysis of the
phase compositions showed that several samples contained minor (<5 wt%) impurities,
including BCC-, Ti2Ni- and mixed oxide type phases. The BCC- and Ti2Ni-type impurities
were more typical for the arc melted and lab-scale samples, while oxide contamination was
present for both lab-scale and scaled-up induction melted samples. This contamination
is believed to be caused by the interaction between the aluminum oxide crucible and the
melt. When comparing crystallographic parameters of the primary phase from the lab-scale
induction melted sample (100 g) and different batches of the scaled-up sample (10 kg), it
was clear that the two types of samples showed significant differences (Figure 3). Variations
in c/a values plotted against the unit cell size (a) were exhibited by the scaled-up samples,
most probably related to their non-uniform cooling. This resulted in a smoother transition
from the α to α + β regions, as seen in PCT experiments (b), and increased hysteresis effects
in absorption/desorption for scaled-up samples (black dots), possibly due to stress effects
from the different unit cell sizes.
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2 

 

3 Figure 3. (a) Crystallographic properties of an AB2-type material prepared in a laboratory sized induction melter and
for different batches of a scaled-up induction melted sample. (b) Absorption/desorption properties of these samples at a
temperature of 20 ◦C. Reprinted with permission from ref. [52], Copyright 2018, Elsevier.

In another study, the same material was produced in a 10 kg batch using induction
melting, followed by milling to reduce the particle size [53]. When comparing measure-
ments between [52] and [53], the plateau pressure is similar. However, it is observed that
the capacity is lower for [53] (170 NL H2/kg) compared to [52] (more than 200 NL H2/kg),
possibly due to the different activation processes used.

Studies on the cooling rate effects have been performed on a TiFe + 4 wt% Zr sys-
tem [54]. A 6.5 kg batch was prepared in an induction furnace and poured into a step-
shaped mold allowing for different cooling rates. Figure 4 shows the effects of cooling rate
on the microstructure at different step mold thickness. The thickest 25 mm step had the
slowest cooling rate and a coarse microstructure (Figure 4a), while the fastest cooling rate
produced a dendritic structure with a fine distribution of the secondary phase (Figure 4d).
This had a significant impact on the first hydrogenation of the material, as seen in Figure 5,
with the fastest cooling sample having the best kinetics and absorbing 1.4 wt% H2. This
difference in kinetics is attributed to the secondary phase’s (TiFe2) finer distribution at a
faster cooling rate.
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Figure 4. Backscattering micrographs of TiFe + 4 wt%Zr showing the effects of cooling rate on the
microstructure at different step mold thickness: (a) 25 mm (slowest cooling rate), (b) 13 mm, (c) 6 mm,
(d) 3 mm (fastest cooling rate). Reprinted with permission from ref. [54], Copyright 2019, Elsevier.
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5 Figure 5. First hydrogenation at room temperature and 20 bar of the prepared TiFe + 4 wt%Zr at
different thicknesses of step mold. Reprinted with permission from ref. [54], Copyright 2019, Elsevier.

The effect of Zr and Mn additions to TiFe have been studied by Patel et al. [20]. The
samples were prepared via induction melting at a large scale (6.5 kg). Depending on which
element was used and the amount, various phases (TiFe, TiFe2, Ti2Fe or Ti) were formed.
As seen in Figure 6, at least 4 wt% Zr was needed for immediate absorption without
prior activation, in line with what was shown for samples obtained at lab scale [55]. With
increasing Mn content, an incubation time was needed, but a higher capacity was reached
if compared to samples doped with Zr only. After 20 h, both samples containing only Mn
as an additive absorbed more hydrogen than samples only containing Zr as an additive,
though the kinetics were still sluggish, as also seen on lab-scale samples [56,57]. When
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adding both elements, a synergistic effect occurred, reaching a capacity of 1.8–2.0 wt% of
H2 and improved kinetics with a maximum capacity reached in 5 h. The corresponding
compounds with both elements at the lab-scale achieved a capacity of 0.9 wt% H2 after 12 h
of absorption [11]. In this case, the results showed a clear improvement of the large-scale
samples. However, one must notice that the lab-scale sample was produced via arc melting
and not induction melting and that the phase composition was vastly different, with the
large-scale samples containing more secondary phases, which have been shown to affect
the first hydrogenation [54].

 

3 
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Figure 6. First absorption kinetics of TiFe samples containing Mn and Zr. Reprinted with permission
from ref. [20], Copyright 2020, Elsevier.

Over-stoichiometric amounts of Ti in TiFe have been reported to improve lab-scale
sample’s activation performance [58]. Shang et al. [59] tested the effects of adding over-
stoichiometric Ti (Ti1.1Fe) and of partial substitution of Fe for Mn (Ti1.1Fe0.8Mn0.2) by
melting 5 kg of material and pouring it into molds. The study showed that excess of Ti
leads to reduced kinetics and capacity while substituting Fe for Mn with excess Ti leads to
improved kinetics and capacity. Compared to as-cast TiFe, the dehydrogenation enthalpy
decreased for Ti1.1Fe and increased for Ti1.1Fe0.8Mn0.2. The activation properties were
improved due to the presence of β-Ti phase, whereas the enthalpy changes corresponded to
the changes in unit cell volume, showing the importance of understanding and controlling
microstructure and phases of prepared materials.

2.2. Tank Geometry and Filling

This section will present findings on the effect of the geometry and the filling state of
hydrogen storage tanks based on metal hydrides.

After preparing 500 g of La0.9Ce0.1Ni5 via arc melting [26], the compound was placed
into an autoclave oriented either vertically or horizontally. Though there was no significant
effect in the sample’s capacity at different orientations, differences were observed in
the plateau pressures, with a desorption pressure plateau of 0.985 MPa for horizontal
orientation and 0.964 MPa for the vertical orientation (at 333 K). Similar results were
observed for absorption, with the plateau pressure of 1.58 MPa, and 1.36 MPa for horizontal
and vertical orientations, respectively. These differences are believed to be caused by
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additional stresses in the vertical geometry resulting in distortions of the crystal lattice
during cycling.

Another aspect of tank design is seen in experiments done in a vertical tank filled
with 500 g of MgH2 + 0.5 mol% Nb2O5 + 1 wt% C powder [45]. As cycling progressed
in the tank, the kinetics and capacity were affected, as seen in Figure 7, which shows the
material’s sorption properties at different cycles. Here sorption properties for cycles 8, 14,
20 of the tank showed a progressive kinetics degradation and capacity loss. After cycle 20,
the capacity was reduced to 2.8 wt% H2. The degradation in performance was primarily
linked to the powder’s self-densification in the tank, leading to a decrease of open porosity,
thereby hindering hydrogen pathways towards the powder at the bottom of the tank. After
cutting open the tank, a small amount of powder is taken from its bottom and reactivated
with 30 absorption/desorption cycles reacquired kinetics and thermodynamics similar to
those of the initially prepared powder, though 15% of the capacity was lost.

Figure 7. Performance behavior of a scaled-up hydrogen storage tank containing 500 g of MgH2 + 0.5 mol% Nb2O5 + 1
wt% C in absorption and desorption mode showing data obtained for cycle 8, 14 and 20. Reprinted with permission from
ref. [45], Copyright 2009, Elsevier.

A similar effect of self-densification was observed on a smaller lab-scale (Figure 8) [45].
The illustration on each side of the figure shows tanks containing 30 g of MgH2 + 0.5 mol%
Nb2O5 + 1 wt% C without a porous baffle (left) and with a porous baffle (right) used to
facilitate the transport of hydrogen. The temperature at the bottom of the tank without
a baffle showed only a slight temperature increase during cycle 7 (Figure 8b) compared
to cycle 2 (Figure 8a), indicating less material was reacting as the cycling progressed.
Instead, the tank with a porous baffle allowed for a better activation during cycling, with
temperature measurements nearly the same at cycle 3 (Figure 8c) and 10 (Figure 8d). This
indicates that the porous baffle helped hydrogen to reach a much more significant fraction
of the material.



Inorganics 2021, 9, 37 8 of 20

Figure 8. The temperature behavior of two smaller tanks containing 30 g of MgH2 + 0.5 mol% Nb2O5

+ 1 wt% C with (right) and without (left) an added porous baffle. (a,b) Temperature measurements
at cycle 2 and 7, respectively, for the tank without a baffle. (c,d) Temperature measurements at
cycle 3 and 10, respectively, for the tank with a baffle. The colors represent temperatures taken
with thermocouples positioned as indicated. Reprinted with permission from ref. [45], Copyright
2009, Elsevier.

Other examples of self-densification are shown in systems such as the mentioned
La0.9Ce0.1Ni5 [26,60] and FeTi [61]. Self-densification can lead to significant forces being
applied to the tank, as found by Nachev et al. [62], which showed that tangential stresses
on the cylinder could be as high as 90 MPa. One way to hinder the self-densification of
powders would be to encase them into resin [63]. For instance, an Mm-Ni-Mn-Co-alloy
mixed with resin showed no signs of degradation after 100 cycles, with the same storage
capacity and plateau pressures as the pure powder alone. Furthermore, the composite
enabled a filling ratio of 50–55% vs. 37% for pure powder while ensuring a lower strain on
the container. However, the kinetics were severely impacted due to less active surface area
being exposed to hydrogen.

In another study, the scale effect of filling was tested on two batches of 500 g and
100 g of LaFe0.1Mn0.3Ni4.8 [64] obtained via arc melting. The two batches showed different
absorption and desorption plateau pressures, with a decreasing plateau pressure for the
larger sample. This was explained with elastic strains due to the mutual influence of
particles during phase transformation in the large batch. Furthermore, the desorption
enthalpy and entropy showed a decrease of 10% when the sample weight changed from
100 g to 500 g [64].

2.3. Thermal Management Using ENG

The impact of adding Expanded Natural Graphite (ENG) on the heat management of
hydrides powders has been mainly investigated for small scale samples [34,65–69]. Lab-
scale experiments using MgH2 milled with 4 at% Ti-V-Cr additive and mixed with 5 wt%
ENG reported a value for the radial heat transfer of ≈ 4.2 W/(mK) [65,70]. In a larger-scale
study of a tank containing compacted discs of metal hydrides, it was reported that by
adding 5 wt% ENG to 1.8 kg of MgH2 with Ti-V-Cr additives, it was possible to reach a
value of radial thermal conductivity of 8 W/(mK) [71]. Minimum absorption times were
obtained if the airflow used to cool the tank was above 40 Nm3/h, as seen in Figure 9a,
where the air temperature and desorption volume at different velocities are plotted. At this
flow rate, the rate-limiting factor for heat removal shifted from heat transfer/convection of
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the air to the radial heat conduction inside the discs. Total absorption was achieved in 40
min, as seen in Figure 9b.

Figure 9. (a) Absorption characteristics of 1.8 kg MgH2 with Ti-V-Cr additives and ENG for airflow
rates ranging from 5 to 60 Nm3/h; (b) the time needed to absorb and the average outlet temperature
of the air for different flow rates at 290 ◦C and 1 MPa. Reprinted with permission from ref. [71],
Copyright 2011, Elsevier.

By increasing the ENG amount to 10 wt%, the thermal conductivity can be further
enhanced to about 14 W/(mK) [72], as seen in Figure 10 in the case of a tank filled with
10 kg of materials compacted discs. The initial thermal conductivity of about 8 W/(mK),
measured at lab-scale for similar ENG amounts [70], raised after the first cycle. This rise
in values was related to Mg grain recrystallization from nanometer to micrometer size
during the first 10 cycles [72]. It was also found that the discs deformed during cycling,
with the disc’s axial deformation being more significant than the radial deformation, as
seen in Figure 11. This was attributed to the anisotropic distribution of ENG in the discs.
As cycling progressed, the desorption kinetics were slowing down but not the absorption
kinetics. According to the authors, this could be related to the manufacturing of the discs,
where MgH2 with Ti-V-Cr additives was first ball-milled with ENG and then compressed
into a disc. The milling introduced defects aiding kinetics, which disappeared with Mg
grain’s recrystallization during cycling [72]. A possible link between the heat transfer
fluid temperature and the material’s capacity seemed to be present, as seen in Figure 12.
When the temperature increased, a higher capacity was observed, and vice versa when the
temperature was lowered. The reason is unclear and needs further investigation.
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Figure 10. Changes in the thermal conductivity as a function of cycle number for ball-milled MgH2

with Ti-V-Cr additive and 10 wt% ENG compacted discs. Reprinted with permission from ref. [72],
Copyright 2012, Elsevier.

Figure 11. The axial and radial expansion of MgH2 and Ti-V-Cr additive compacted discs with
10 wt% ENG as a function of the cycle number. Reprinted with permission from ref. [72], Copyright
2012, Elsevier.

Figure 12. The H2 capacity of MgH2 with Ti-V-Cr additives compressed with 10 wt% ENG during the
20 first cycles. The temperature is kept at 240 ◦C except for cycle 11, and 13, where the temperature
is changed to 300 ◦C and 220 ◦C, respectively. Reprinted with permission from ref. [72], Copyright
2012, Elsevier.
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2.4. Thermal Management by Other Methods

Other methods have been used to influence heat conductivity. For instance, by evenly
distributing 2 wt% of carbon fibers with the metal hydride, it was possible to promote the
thermal conductivity by 5–6 times compared to the bare metal hydrides [73].

Another way to improve a system’s thermal management is to divide the metal
hydrides into several smaller tanks, having a shorter distance between the hydrides and
the heat exchanger [74]. Here, a system consisting of five tank modules in parallel was
built, with each tank containing just below 1 kg of Hydralloy C5 (Al0.27Ti27.13V13.95Mn51.31
Fe2.98Zr2.97). Tests run on a single module showed a capacity of 1.65 wt% H2 which is
slightly less than measured on a lab-scale sample (1.7 wt% H2). However, the lab-scale
sample’s kinetics were much faster than the results measured in the tank system, showing
a desorption time of 10 min for the lab-scale and 2 h for the scaled-up systems. This
is attributed to the different heat transfer in the two cases. Inside the tank module, the
system’s inability to keep the temperature of the hydrides stable is shown in Figure 13,
which reports the temperature plots during three cycles. With five tank modules in parallel,
it was initially observed that the absorption time was comparable as for the single tank
test, though with much slower desorption. The desorption time was again comparable to a
single tank module by changing the flow controller, though the capacity was lowered to
1.5 wt% H2.

Figure 13. Average temperature profiles for three cycles on a single tank containing just under 1 kg
Hydralloy C5. The absorption (a) was done at 3 MPa. Desorption (b) was done at 0.2 MPa. Reprinted
by permission from Springer Nature, Applied Physics A: Materials Science & Processing, [74],
Copyright 2016.

Endo et al. [75] developed a full-scale system using a similar approach, with four
tanks containing 65 kg of TiFe each (tank-type 1) and one bigger tank with 260 kg of TiFe
(tank-type 2). The tanks are thermally coupled to a 3.5 kW fuel cell, as seen in Figure 14.
The setup showed that it is possible to keep supplying the fuel cell using tanks of type 1
for 9 h. Figure 15 shows the pressure, stored H2 amount, metal hydride temperature and
the fuel cell power output over time. Despite the decreasing temperature and pressure of
the TiFe-based tanks, full desorption was possible using heat output from the fuel cell.
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Figure 14. Schematic of the tank system consisting of two tank types. The heat transfer medium is 60% brine moving at
9.0 L/min. Reprinted with permission from ref. [75], Copyright 2019, Elsevier.
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Figure 15. Schematic of the tank system consisting of two tank types. The heat transfer medium is
60% brine moving at 9.0 L/min. Reprinted with permission from ref. [75], Copyright 2019, Elsevier.

3. Simulation

An indispensable tool for improving hydrogen storage in metal hydride is the ability
to model the system, the metal hydride’s behavior, and the metal hydride bed itself.

3.1. Porosity

Porosity is a parameter that is either calculated during cycling [76] or kept con-
stant [77–80]. Changes in the porosity throughout the tank are less common in simu-
lations [81,82]. The effect of self-densification was simulated for Ti0.98Zr0.02V0.43Fe0.09
Cr0.05Mn1.5, showing that the reaction rate could be enhanced up to 25 times due to particle
pulverization [82]. However, self-densification will increase the time it takes to absorb H2
due to lowering the thermal diffusivity and constrictions on hydrogen pathways. This
effect was observed in the experiments described earlier.

By simulating changes in the initial porosity, significant differences were obtained in
the absorption and desorption performance for a 210 kg Ti-Mn alloy system [81]. In the
study, the performance described how fast a preset goal (for instance, 90% H2 capacity)
was reached. Thus, a performance improvement is a decrease in the time it takes to reach
this predefined goal. As seen in Figures 16 and 17, changing the simulated porosity value
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from the initial 0.5 to either 0.4 or 0.2, the absorption performance decreased by 39%
or 44%, respectively, while the desorption performance was only reduced by 2% or 4%,
respectively. Increasing the simulated porosity to either 0.6 or 0.8, again, a negative impact
on the absorption performance of 8% and 24%, respectively, was observed. On the other
hand, the desorption performance increased by 2% and 9%, respectively, though so far, no
experiments have been done to confirm this.

Figure 16. Percentage change of absorption performance. The values with no bars are the default
values by which the changes are compared to. The numbers indicate the chosen value of the
parameter. The data are reproduced from [81].

Figure 17. Percentage change of desorption performance. The data are reproduced from [81].

3.2. Tank Design

Simulations by Ye et al. [79] showed that by changing the Height/Radius (H/R) ratio
of the tank from 0.25 to 2, an increase in the cooling time during absorption was observed.
For values over 2, the exact opposite trend was observed. This is explained by the fact that
at lower H/R values, the heat and mass transfer are one dimensional and depend on the



Inorganics 2021, 9, 37 14 of 20

system’s z-coordinate (height), whereas at higher values, the one-dimensionality changes
to mainly depend on the radius of the tank. Similar trends are seen for a double layer
annulus tank design [76,77,80]. In all three studies, as the metal hydride layer thickness is
decreased, so did the system’s average temperature indicating a better thermal connection
with the tanks cooling system. Figure 18 shows the average temperature and inlet pressure
for different thickness of LaNi4.25Al0.75 layers. A schematic of the tank design is seen in
Figure 19. This highlights the importance of the geometry of the tank [26,64].
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Figure 18. Simulated results, showing the inlet pressure and hydride (LaNi4.25Al0.75) temperature of
different metal hydride layer thicknesses for a double-layered annulus metal hydride tank. Reprinted
with permission from ref. [76], Copyright 2020, Elsevier.
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Figure 19. Geometry of the double-layered annulus tank design containing LaNi4.25Al0.75. Reprinted
with permission from ref. [76], Copyright 2020, Elsevier.

3.3. Thermal Management

Simulations regarding thermal conductivity include absorption when Hydralloy C5
is compacted with ENG [83]. Significant improvements in the system’s kinetics were
obtained, as can be seen in Figure 20, which shows the absorption properties of samples
with 5 wt% and 12.5 wt% ENG added. It takes 4.1 min to achieve 90% hydrogen filling
for the loose powder when the tank radius was 20 mm. By compressing the powder with
5 wt% or 12.5 wt% ENG, this time was reduced to 2.4 min and 1.6 min, respectively. The
same trend was observed when the tank radius was increased to either 40 mm or 80 mm.
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Figure 20. Simulation results regarding the hydrogenation properties of a Hydralloy C5 compacted
with 5 wt% ENG (A), and 12.5 wt% ENG (B) and a loose powder without ENG (C) at 20 ◦C and
40 bar at different radii. Reprinted with permission from ref. [83], Copyright 2013, Elsevier.

Manai et al. [78] also provided simulated evidence that increasing thermal conductivity
significantly improved hydrogen storage kinetics and temperatures. Four different tank
configurations, seen in Figure 21, were simulated using Ti0.95Zr0.05Mn1.55V0.45Fe0.09.
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Figure 21. Visual representation of the different configurations used: (a) 1st configuration “reference”;
(b) 2nd “compact”; (c) 3rd “alternation”; (d) 4th “compact mixture”. Reprinted with permission from
ref. [78], Copyright 2019, Elsevier.

The 1st configuration (reference) consisted of the tank filled with loose powder. The
2nd configuration (compact) contained metal hydrides compressed into discs. This allowed
the amount of metal hydride to rise from 298 g for loose powder to 682 g for discs, while
the thermal conductivity increased by 22%. The 3rd configuration (alternation) was an
alternation configuration in which compacted discs were separated by stainless steel fins,
increasing the system’s thermal transfer. This lowered the mass of metal hydrides present
in the simulation to 630 g. In the 4th configuration (compact mixture), the stainless-steel
fins from the 3rd configuration were removed and replaced with stainless-steel powder
mixed with the metal hydride before turning the mixture into discs. This process increased
the thermal conductivity of the compacted discs compared to the 2nd configuration. The
mass of the metal hydrides was kept the same between the 3rd and 4th configuration. The
resulting temperature and the reacted fraction of the metal hydrides during absorption are
shown for the simulated bed configurations in Figure 22.
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22 Figure 22. Simulation results for different storage bed configurations, (a) Bed’s core temperature;
(b) Reacted fraction during absorption at 50 ◦C and 40 bar. Reprinted with permission from ref. [78],
Copyright 2019, Elsevier.

Configurations 3 and 4 gave better heat transfer efficiencies, absorption and desorption
rates and increased hydrogen storage densities. This suggests the importance of three key
aspects for designing performative tasks: an efficient heat transfer (between the tank and
its surrounding fluid), a tailored porosity of the metal hydride storage bed, and the usage
of high-thermal-conductivity materials.

4. Conclusions and Outlook

In the previous pages, we presented the most significant results from studies in which
scaling up production and performances of metal hydrides were considered experimentally
and in simulations. It is clear that when scaling up metal hydrides in order to use them
in practical applications, their possible changes in performance need to be carefully taken
into account, especially in relation to the following considerations.

The technique chosen for the material preparation has an important role. Ball-milling
large batches of powders has been demonstrated to be a viable option, with materials
retaining storage capacities comparable to materials ball-milled at lab scale. However,
industrial milling yield in many cases is too low. More research should be devoted to
finding additives and lubricants that can increase industrial-scale milling yield while
maintaining the desired material sorption properties. While ball-milling is for light metal
hydrides and complex hydrides, the most used synthesis route, safety measures have
to be taken to handle the produced highly reactive powders and avoid contact with air
and humidity.

A valuable technique for preparing interstitial metal hydrides at kilogram scales is
induction melting, though cooling large-sized samples has been shown to significantly
affect the material’s properties. Non-uniform cooling has been shown to impact phase
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transitions and increase hysteresis during hydrogen absorption/desorption. Changes in
microstructure due to the role of cooling rates have been clearly demonstrated in the case
of TiFe + 4wt%Zr, resulting in differing kinetics of the first hydrogenation of the material.
A capacity of 1.4 wt% was achieved for the fastest cooling sample, while the slowest
cooling sample did not reach this value even after 20 h of absorption due to changes in
the microstructure. These results suggest that methods need to be developed to ensure
uniform cooling during the preparation of large-scale ingots.

While lab-scale metal hydrides have shown that element substitution can be beneficial,
some scaled-up materials showed worse sorption properties compared to their lab-scale
size. This indicates that each composition needs to be tested carefully at both lab and large
scale to ensure knowledge of the proper working conditions.

Another important key point to consider is the geometry and the filling state of the
tanks. These have been shown to affect the thermodynamic properties of the used metal
hydrides. Furthermore, as absorption and desorption progress, the material in a tank might
move due to the respective volume changes as well as gravimetry and therefore tend to
self-densify in some spaces, leading either to a lower capacity or high stresses, as well as
strains of the tank wall. Such a significant amount of stress has shown to be present on the
tank wall and poses a considerable challenge to tank designers. In the future, different tank
geometries have to be built and tested against each other to optimize the storage system
and improve the long-term cycling properties.

The thermal management of scaled-up tank systems has been shown to significantly
impact the kinetics, where an increase in the system’s thermal conductivity vastly improved
the system kinetics. An important role is played by the way metal hydrides are filled into
a tank. Here, both experiments and simulations indicated that by compressing metal
hydrides into discs with stainless steel particles or ENG, both thermal heat transfer and
thermal conductivity were substantially increased, improving hydrogen filling and release
times as well as the capacity of the storage systems.

Recent world initiatives clearly demonstrate the renewed interest in hydrogen as
an energy vector for energy storage. Metal hydrides as a storage medium in large scale
applications can be one of the essential players in the future energy storage systems,
provided that the aspects of their scaling up are taken into consideration. Furthermore,
the costs of the various storage materials themselves may hinder larger-scale applications.
Therefore, research has to be performed in order to examine the effect of contaminants in
cheaper, albeit lower-purity, materials, as well as the possibility of using waste materials
that are otherwise difficult to recycle for their original purposes.
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