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Abstract: Heterospin systems have a great advantage in frontier orbital engineering since they
utilize a wide diversity of paramagnetic chromophores and almost infinite combinations and mutual
geometries. Strong exchange couplings are expected in 3d–2p heterospin compounds, where the
nitroxide (aminoxyl) oxygen atom has a direct coordination bond with a nickel(II) ion. Complex
formation of nickel(II) salts and tert-butyl 2-pyridyl nitroxides afforded a discrete 2p–3d–2p triad.
Ferromagnetic coupling is favored when the magnetic orbitals, nickel(II) dσ and radical π*, are
arranged in a strictly orthogonal fashion, namely, a planar coordination structure is characterized.
In contrast, a severe twist around the coordination bond gives an orbital overlap, resulting in
antiferromagnetic coupling. Non-chelatable nitroxide ligands are available for highly twisted and
practically diamagnetic complexes. Here, the Ni–O–N–Csp

2 torsion (dihedral) angle is supposed to be
a useful metric to describe the nickel ion dislocated out of the radical π* nodal plane. Spin-transition
complexes exhibited a planar coordination structure in a high-temperature phase and a nonplanar
structure in a low-temperature phase. The gradual spin transition is described as a spin equilibrium
obeying the van’t Hoff law. Density functional theory calculation indicates that the energy level
crossing of the high- and low-spin states. The optimized structures of diamagnetic and high-spin
states well agreed with the experimental large and small torsions, respectively. The novel mechanism
of the present spin transition lies in the ferro-/antiferromagnetic coupling switch. The entropy-driven
mechanism is plausible after combining the results of the related copper(II)-nitroxide compounds.
Attention must be paid to the coupling parameter J as a variable of temperature in the magnetic
analysis of such spin-transition materials. For future work, the exchange coupling may be tuned
by chemical modification and external stimulus, because it has been clarified that the parameter is
sensitive to the coordination structure and actually varies from 2J/kB = +400 K to −1400 K.

Keywords: aminoxyl; exchange interaction; spin crossover; structural transition; switching behavior;
magneto-structural relationship

1. Introduction

Various magnetic switches operative in solid states are of great interest for applications
to display, memory, sensor, and related smart devices [1–8]. Structural transformations
in solid states often induce a change of a number of physical properties, including mag-
netic, chromic, and electric properties, associated with a change of the unit cell volume,
crystal/molecular symmetry and chirality, electronic state, and spin states. Heterospin
systems have a great advantage in frontier orbital engineering since they utilize a wide
diversity of paramagnetic (open-shell) chromophores and almost infinite combinations
and mutual geometries. Organic radical species can work as ligands [6–8], and Gatteschi
et al. have proposed the versatile “metal–radical approach,” where considerable magnetic
exchange interaction occurs through direct metal–radical coordination bonds [9,10]. Re-
sultant short spin–spin distances and paramagnetically dense systems are favorable for
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constructing strongly exchange-coupled materials and magnets. Recent works on metal–
organic frameworks are making progress in materials involving a radical host and/or
guest [11,12]. Multi-nuclearity and -dimensionality are important keywords in the field of
molecule-based materials chemistry [13–17].

A reversible spin transition between low-spin (LS) and high-spin (HS) states triggered
by external stimuli such as heat and light is named spin crossover (SCO) [1–5,16–19]. Iron(II)
(3d6) compounds are the most popular [20–28], since magnetic and chromic changes are
drastic between S = 0 diamagnetic and S = 2 paramagnetic states. Furthermore, considerable
attention has been paid to room-temperature SCO [29] required for applications under
ambient conditions. Multi-functional SCO materials are also attracting much attention, for
example, exchange-coupled [30] and mesophase-related materials [31–33].

In spin-transition phenomenon, LS states are favored for the enthalpy control in a
low-temperature phase, whereas HS states for the entropy control in a high-temperature
phase [34,35]. As Figure 1 depicts, the Gibbs energy of a HS state tends to be low-lying in
a high-temperature phase due to an enhanced entropy term in G = H − TS. Entropy as a
coefficient of temperature becomes larger when a spin multiplicity is higher, because the
degeneracy 2S + 1 contributes to the entropy by nR ln(2S + 1). The critical temperature Tc
is defined with the energy-level crossing between the HS and LS states. Spin-transition
behavior would take place only under limited conditions, where the energy levels of HS
and LS states are close to each other.
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A major subject of this review is to describe a successful application of the magneto-
structural correlation to development of molecular HS, LS, and novel spin-transition com-
pounds in nickel(II)(3d8)-bis(nitroxide) heterospin systems. While exotic spin-transition/-
crossover systems have been explored extensively [6,36,37], we will report here the S = 0 
⇄ 2 spin-transition system other than iron(II) complexes. We have utilized nitroxides or 
aminoxyls as a 2p spin source, because nitroxides are persistent enough when sterically 
bulky and/or π-conjugate substituents are attached at appropriate positions [38,39]. Ni-
troxides are highly accessible and chemically modifiable in many ways [40–45], and actu-
ally various spin label agents, such as TEMPO and PROXYL, are commercially available 
and derivatized by users [39,40,46,47]. The new nickel(II)-bis(nitroxide) coordination com-
pounds of the present work were synthesized in a rational manner, since the molecules 
are designable. The chelate ring size is programmable in particular. After overviewing the 
various ground states in nickel(II)-bis(nitroxides), the transition can be assumed just as an 
entropy-driven SCO phenomenon, which is highlighted in this review. 

Figure 1. Schematic drawings of (top) physical properties (the product χmT for example) as a
function of temperature and (bottom) Gibbs energy diagram for phase transition materials.

A major subject of this review is to describe a successful application of the magneto-
structural correlation to development of molecular HS, LS, and novel spin-transition com-
pounds in nickel(II)(3d8)-bis(nitroxide) heterospin systems. While exotic spin-transition/-
crossover systems have been explored extensively [6,36,37], we will report here the S = 0 � 2
spin-transition system other than iron(II) complexes. We have utilized nitroxides or
aminoxyls as a 2p spin source, because nitroxides are persistent enough when sterically
bulky and/or π-conjugate substituents are attached at appropriate positions [38,39]. Nitrox-
ides are highly accessible and chemically modifiable in many ways [40–45], and actually
various spin label agents, such as TEMPO and PROXYL, are commercially available and
derivatized by users [39,40,46,47]. The new nickel(II)-bis(nitroxide) coordination com-
pounds of the present work were synthesized in a rational manner, since the molecules
are designable. The chelate ring size is programmable in particular. After overviewing the
various ground states in nickel(II)-bis(nitroxides), the transition can be assumed just as an
entropy-driven SCO phenomenon, which is highlighted in this review.
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There are a few reports on related spin-transition in 3d–2p heterospin systems. Though
the present review is focused on nickel(II)–nitroxide systems, some relevant copper(II)–
nitroxide systems have already been known, and we have to check them out. Ovcharenko et al.
intensively explored the spin-transition materials in copper(II)(3d9)–nitroxide compounds
as named “breathing crystals” [48–50]. The mechanism has been originally proposed by
Rey et al., which involves a switch of the role of axial and equatorial coordinations [51,52].
It works only in octahedral copper(II) systems having the magnetic orbital in a basal
plane. In contrast, our group focused on octahedral nickel(II) complexes, where the mag-
netic orbitals are localized both in 3dz

2 and 3dx
2−y

2. A coupling switch actually takes
place at any coordination sites, axial or equatorial. Another advantage of our system is
strong ferromagnetic coupling, often stronger than the order of a thermal energy at room
temperature.

Rey et al. also reported another type of spin transition in copper(II)–nitroxide materi-
als [53]. The copper(II) coordination environment is changed between a trigonal bipyramid
and a square pyramid. This mechanism utilized the five-coordinate environment, and it
would be limited practically only for copper(II) compounds. Their compounds were re-
garded as a “pseudo-spin-transition” material displaying an alteration between strong and
weak ferromagnetic couplings. According to their classification, “genuine spin-transition”
materials that would serve a ferro-/antiferromagnetic coupling switch are the target of
our project.

2. Results and Discussion
2.1. Advantage of Nitroxides

Heterospin strategy takes advantage of a variety of the symmetry and energy level
of magnetic orbitals. The exchange interactions in heterospin compounds have been
intensively investigated in connection with molecular structures [9,10,54–58], because they
are regulated as well with their mutual spatial arrangement. McConnell has proposed that
the exchange interaction is proportional to the spin densities at the interacting atoms [59].
Accordingly, a paramagnetic center atom is directly bonded to a metal center, giving rise to
considerable exchange coupling.

There have been a number of organic (2p) spin carriers and related tailored ligands
owing to sophisticated synthetic techniques. For example, SQ, NN, IN, VD, DTDA, and
BT are well-known persistent radicals (Figure 2), usually carrying a π* spin. A 2-pyridyl
group (abbreviated as 2py, hereafter) or related 2-azaaromatic ring was introduced as
Ar in Figure 2. Namely, 2,2′-bipyridine-6,6′-diylbis(NN) [60], 2pyIN [61,62], 2pyVD [63],
2pyDTDA [64,65], and 2pyBT [66,67] are ready to form a chelated structure in the presence
of transition metal ions. The benzotriazinyl or Blatter’s radical (BT) [68] is a relative
newcomer [66] in the community of the 2p–3d heterospin molecular magnetism. When
copper(II) and nickel(II) ions were applied, ferromagnetic couplings were often observed
(see below).

The discovery of the ferromagnetic coupling in copper(II)- and nickel(II)-SQ com-
pounds by Kahn [69] and Benelli [70] is recognized as a pioneering work. These works
are important for the progress of ferromagnetic heterospin systems in materials chemistry
and also for comprehension of the nature of exchange interaction in terms of theoretical
quantum chemistry. Moreover, SQ derivatives and their aza analogues have established the
foundation for the development of valence tautomeric compounds [71–73]. The spin den-
sity at the ligating atom is reduced owing to spin delocalization onto the wide heteroatomic
system: N2O2 in NN, N2O1 in IN, N4 in VD, N2S2 in DTDA, and N3 in BT. Compared with
these radicals, we assume that aryl tert-butyl nitroxides (Ar–NO; the tert-butyl nitroxide
group is abbreviated as NO hereafter) would have an advantage; the nitroxide group has
a relatively large spin density on the ligating oxygen atom [74], as proven with the ESR,
NMR, and polarized neutron diffraction experiments. Iwamura et al. have explored the
bulk magnets comprising HS di- and trinitroxides and magnetic transition metal ions [8].
The coordination ability of nitroxide oxygen atoms has been noticed since 1970’s [9].
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2.2. Magneto-Structural Relationship and Molecular Design

Copper(II)– and nickel(II)–radical complexes having a direct radical coordination
bond are the best documented in the 3d–2p heterospin systems [9,60–70]. There have been
an increasing number of compounds showing a ferromagnetic 3d–2p coupling [75–81]. It is
believed for a long time that axial coordination in copper(II)–nitroxide complexes displays
relatively weak ferromagnetic interaction whilst equatorial coordination strong antiferro-
magnetic interaction [9]. However, after the accumulation of experimental results, it be-
comes familiar that ferromagnetic interaction is possible in equatorial coordination [60–62].
On the contrary, the magnitude of the coupling interactions often exceeds the order of
thermal energy of room temperature, even in the ferromagnetic case. The following ex-
planation is plausible [69,74]. Strictly orthogonal arrangement of two magnetic orbitals
(metal dσ and radical π*) favors ferromagnetic coupling (Figure 3a,c). In contrast, severe
twist around the coordination bond gives rise to an orbital overlap between magnetic
orbitals and consequently antiferromagnetic interaction (Figure 3b,d). This mechanism is
operative, regardless of the equatorial or axial sites of nickel(II) coordination environments,
which is different from that of some other copper(II)–radical case regulated with a different
mechanism [48–53] (see Section 1).
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2)–O(2pz)–N(2pz)–
Csp

2(2pz). The Ni ions are (a,c) located on the π* nodal plane and (b,d) dislocated out of the plane. This picture is also
applicable to other conventional organic radical ligands having a well-defined π* nodal plane.

Depending on whether the interaction is antiferro- or ferromagnetic, the molecular
spin state is called HS (the magnetic moments add up) or LS (the magnetic moments
compensate each other). In this review, the local metallic spin states are unchanged;
SNi

2+ = 1 and SCu
2+ = 1/2 in the HS and LS states and throughout possible spin transition.

Five-membered chelate rings seem to have advantage for the planar conformation
over 6-membered ones. A 5-membered chelate has a relatively open bite angle with respect
to ligating atoms and force to flatten the chelate ring. In fact, as Luneau et al. reported [61],
the copper(II) and 2pyIN complex possessed a 5-membered chelate ring and ferromagnetic
coupling with 2J/kB = +420 K, and the planar conformation is indicated with the Cu–N–
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C–Csp
2 torsion (ϕ) of 1.0◦. Here, the exchange coupling parameter J is defined in the

Ĥ = −2JŜ1·Ŝ2 convention. In this regard, we have to stress that 2-azaaryl-NO ligands
would be one of the best candidates for exploring ferromagnetic complexes, because
coordination compounds with 2-azaaryl-NO always involve a 5-membered chelate ring. In
contrast, the corresponding 2pyNN derivative having a 6-membered chelate ring is likely to
undergo out-of-plane distortion and actually displays antiferromagnetic couplings [82,83].
Some exceptions have been reported; the complex from nickel(II) and 4-imidazolyl-NN
exhibited a ferromagnetic coupling of 2J/kB = +85(3) K [84,85]. In that case, the small
imidazole ring may force the O and N bite angle open in the 6-membered ring. Thus,
the relatively planar chelate indicated with the Ni–O–N–Csp

2 torsion angle of 6.3(4)◦ is
reasonably acceptable. A quite similar synthetic strategy has been adopted to the copper(II)
perchlorate and 2-imidazolyl-NN complex, which showed 2J/kB = +216 K [86,87]. The
nickel(II) analogue was also reported to show ferromagnetic coupling [87]. Another type
of exception is found in the nickel(II)-2,2′-bipyridine-6,6′-diylbis(NN) complex [60]. The
highly planar structure may be associated with the presence of three tandem chelate rings,
one of which is a 5-membered ring involving a bpy (2,2′-bipyridine) moiety.

The choice of a geometrical parameter is key to easy comprehension of the mu-
tual spatial arrangement of magnetic orbitals. Based on the above experimental results,
|ϕ (M–O–N–Csp

2)| is chosen as a handy metric [74,88,89]. Here, the torsion angle is de-
fined by a dihedral angle between the M–O–N and O–N–Csp

2 planes, as depicted in the
inset of Figure 4. A plot of J vs. |ϕ| for the octahedral copper(II) and nickel(II) complexes
was drawn, and a distinct correlation appears (Figure 4).
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The ϕ parameter in M–O–N–Csp
2 implies the degree of the out-of-plane dislocation of

M from the π*nodal plane defined by three sp2-hybridized atoms O, N, and adjacent Csp
2

in the ligand. Syn- and antiperiplanar limits correspond to ϕ = 0 and ±180◦, respectively,
as ideal in-plane coordination structures. We can simply call this to be “planar.” The
plus/minus sign of ϕ means a chirality on the torsion. The absolute values are important
in the discussion of the following sections. Eventually, this formalism (Figure 4) entirely
satisfies the exchange mechanism proposed (Figure 3). The critical |ϕC|, where the sign
of J alters from positive to negative, is optimized to 12.8(8)◦ [74,89]. After the data on the
copper(II) and nickel(II) complexes are separated, |ϕ| for the nickel(II) category became
21(1)◦ from the linear fit or 26(3)◦ from the cos(2ϕ) fit [91,92]. Thus, the magnetic coupling
becomes predictable from the molecular structure.

Theoretical background for the magneto-structural relationship is as follows. The
observable exchange interaction comprises ferro- and antiferromagnetic contributions as
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written in Equation (1), according to Kahn’s approach [54]. The JF term arises from the
two-electron exchange integral (Equation (2)), which is always positive. The JAF term
is regulated with the overlap and transfer integrals between the two magnetic orbitals
(Equation (3)), which is negative [93–95].

Jobs = JF + JAF (1)

JF = 2K (2)

JAF = 4βS (3)

An intercept at ϕ = 0 (Figure 4) stands for the JF term as a ferromagnetic limit, and
a decrease accompanied by a slope for the JAF term as an angular dependence. This is
why both ferro- and antiferromagnetic cases can be discussed on the same ground. The
magnitude of orbital overlap is sensitive to the torsional configuration, and antiferromag-
netic contribution is overwhelmingly large in general. As a result, ferromagnetic coupling
would survive only when the magnetic orbitals are arranged in a strictly or very closely
orthogonal manner.

In the following sections, we will describe several kinds of nickel(II)–nitroxide co-
ordination complexes developed by our group. The 3d and 2p spins are correlated
within a molecule, but the molecules are magnetically isolated in a crystal. First, ground
HS molecules are demonstrated as a successful example according to the molecular de-
sign described here. Almost ideal planar coordination structures give a ferromagnetic
limit (Section 2.3). Second, spin-transition (Section 2.4) and unfinished (“pseudo”) spin-
transition molecules (Section 2.5) are elaborated, and a co-ligand dependence on the transi-
tion temperature will be discussed. Finally, ground LS molecules are shown as an almost
ideal antiferromagnetic limit (Sections 2.6 and 2.7).

2.3. High-Spin Molecules

Complex formation of nickel(II) salts with aryl tert-butyl nitroxides afforded a 2p–
3d–2p triad as a discrete molecule. Figure 5 shows the structural formulas of several
2pyNO-based derivatives. A bulky substituent on the Ar ring improves persistency of the
radicals under ambient conditions.
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Figure 6a shows the complex cation portion in [Ni(6bpyNO)2](PF6)2 [96] having
two meridional 6pbyNO ligands. The two ligands are crystallographically independent.
Furthermore, there are two independent molecules in a unit cell. The Ni–O and Ni–N
distances in 2.084(3)–2.100(3) and 1.965(3)–2.086(4) Å, respectively, form an octahedral
environment around the nickel(II) ion, guaranteeing that each nickel ion has SNi

2+ = 1. The
Ni-O–N–Csp

2 torsion angles were 4.8(4), 5.5(5), 4.6(5), and 4.9(5)◦. These small torsion
angles imply the planar structure of the chelate ring. The tandem 5-membered chelates are
supposed to be just suitable for the coplanar coordination structure.
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Society, 2006 and 2007.

The mother ligand 2pyNO is known to be unisolable [98], so that the complexes were
synthesized immediately after the formation of 2pyNO without isolation. The chelate
rings involving 2pyNO in [Ni(2pyNO)2(H2O)2](ClO4)2 [97] are depicted in Figure 6b. A
two-fold axis is located at Ni1. Two water molecules occupy the axial positions, and an
octahedron is characterized with the Ni–O and Ni–N distances of 2.008(2)–2.080(4) Å. The
small Ni1–O1–N2–C1 torsion angle (3.9(3)◦) was recorded. Even a single 5-membered
chelate ring can afford a planar structure, and this finding allows us a variety of chemical
modification on the 2py ring (see below).

The outline on how to comprehend the magnetic behavior is depicted in Figure 7. The
theoretical χmT value, the product of the molar magnetic susceptibility and temperature,
or the Curie constant is calculated from the spin quantum number S according to Equation
(4), where the symbols have the following meanings; NA, the Avogadro constant; µB, the
Bohr magneton; kB, the Boltzmann constant; g, the Landé g factor. The spin-only value with
g = 2 can approximately be rephrased as Equation (5) in the conventional unit of the Curie
constant, cm3 K mol−1 [99–101]. The paramagnetic limit of multi-spin systems, where
each spin center is magnetically isolated, can also be calculated. For example, a molecule
comprising an octahedral nickel(II) ion (3d8; SNi

2+ = 1) and two radicals (Srad = 1/2) has
1.75 cm3 K mol−1 in total. In contrast, the HS Stotal = 2 state displays 3.0 cm3 K mol−1.
When g is deviated from 2, it would be helpful to recall that χmT is proportional to g2.

χmT =
NAg2µ2

BS(S + 1)
3kB

(4)

χmT/cm3 K mol−1 = S(S + 1)/2 (5)
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2+–Srad system. Classification of spin-transition behavior will be referred from
Sections 2.4 and 2.5.

From the magnetic study on these compounds (Figure 6c), the χmT values increased
upon cooling from 300 to 100 K. This finding indicates the presence of intramolecular
ferromagnetic interactions in both compounds, giving the ground spin structures drawn
as ↑-↑↑-↑. The χmT values increased up to 3.2 cm3 K mol−1, which is close to the value
3.0 cm3 K mol−1 for an Stotal = 2 species. At 300 K, the χmT values still exceed the spin-
only paramagnetic limit (1.75 cm3 K mol−1). A symmetrical linear arrayed 3-centered
model (Equation (6)) was applied to the magnetic analysis. Fitting to the resultant van
Vleck equation (equation (7)) [102] afforded the optimized parameters 2J/kB = +318(4) and
+252(6) K for [Ni(6bpyNO)2](PF6)2 and [NiII(2pyNO)2(H2O)2](ClO4)2, respectively, after
possible contribution from intermolecular antiferromagnetic coupling and nickel(II) ion
zero-field-splitting effect are taken into consideration.

Ĥ = −2J
(
Ŝrad1•ŜNi + Ŝrad2•ŜNi

)
(6)

χm =
2NAg2

avgµ2
B

kBT
exp(−2J/kBT) + 1 + 5 exp(2J/kBT)

exp(−4J/kBT) + 3 exp(−2J/kBT) + 3 + 5 exp(2J/kBT)
(7)

Hence, we have clarified the first examples of nickel(II) complexes that possess highly
planar Ar–NO chelate rings and at the same time show considerably strong ferromagnetic
interactions (Figure 6). The exchange mechanism based on the coordination geometry
(Figure 4) is plausible, and molecular design seems to be promising.

There have now been a number of instances of ferromagnetic nickel(II)–radical com-
plexes. We have designed novel paramagnetic ligands phpyNO and meopyNO (Figure 5),
in which Ph and MeO groups are introduced at the “para” position with respect to the
nitroxide group for improving stability of the ligands themselves under ambient condi-
tions. The experimental results using them are entirely compatible with the results and
discussion on the mother 2pyNO complexes. From the X-ray crystallographic analysis of
[NiL2(H2O)2](ClO4)2, the torsion angles are 1.5(3) and 4.2(3)◦ for L = phpyNO (Figure 8a)
and meopyNO (Figure 8b), respectively. From the magnetic study, the metal–radical
ferromagnetic exchange couplings were quantified as 2J/kB = +409(10) and +288(5) K,
respectively [74,88]. In fact, [Ni(phpyNO)2(H2O)2](ClO4)2 enjoys the status of the record
holder for the strongest nickel(II)–radical ferromagnetic coupling [91].
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2)) are indicated. The molecules
possess a two-fold symmetry for (a) and a centrosymmetry for (b). Adapted with permission from [74,88], published by the
American Chemical Society, 2008 and Elsevier, 2009 for (a) and (b), respectively.

2.4. Spin-Transition Molecules

Upon these backgrounds described in Sections 2.1–2.3, we developed a novel spin-
transition behavior in heterospin 2p–3d–2p triads [Ni(phpyNO)2X2]; X = Cl [103], Br [89]).
In this section, the Cl derivative is focused (Figure 9), taking for an example.
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cated. (b) Temperature dependence of torsion angles (|ϕ|) and (c) temperature dependence of χmT for [Ni(phpyNO)2Cl2].
Adapted with permission from [103], published by the American Chemical Society, 2018.

From the crystallographic study on [Ni(phpyNO)2Cl2], the nickel(II) ion forms an
octahedral geometry, indicating SNi

2+ = 1 (Figure 9a). On cooling, the space group P21/c
retained, and the Ni1–O1, Ni1–O2, and other bond lengths were almost unchanged. The
coordination sphere can be characterized by means of the SHAPE analysis [104], and the
continuous shape measures (CShM values) are a sensitive structural indicator in many
conventional one-centered SCO complexes [26,30,105,106]. The CShM values to the ideal
octahedron were 1.749 at 400 K and 1.970 at 85 K for [Ni(phpyNO)2Cl2], indicating that the
crystal field hardly changes. This feature is characteristic of the spin transition materials
of the present type. In contrast, the Ni–O–N–Csp

2 torsions are sensitively enhanced as
a function of temperature (Figure 9b). The Ni–O–N–Csp

2 torsion angles are 13.0(4) and
25.8(3)◦ at 400 K while 29.2(2) and 38.9(2)◦ at 85 K. Namely, these torsions move from the
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“ferromagnetic region” to the “antiferromagnetic region” (Figure 4). The breakdown of the
dσ(Ni)−π*(nitroxide) orthogonal geometry will lead to antiferromagnetic interaction.

Figure 9c displays the magnetic susceptibility result of [Ni(phpyNO)2Cl2]. The χmT
value at 400 K was 2.14 cm3 K mol–1, and the positive slope remained here. The extrapolated
χmT value at the HS limit was 2.38(2) cm3 K mol–1 at 400 K, which is larger than the para-
magnetic limit from one nickel(II) ion and two radicals (2.14 cm3 K mol–1 from gNi

2+ = 2.36
determined from the ESR experiments). This finding implies the ground spin structure
of ↑-↑↑-↑ in the high-temperature phase. On cooling, the χmT value monotonically de-
creased, indicating the presence of strong antiferromagnetic interaction. The temperature
range of this behavior coincides with that of the structural deformation (Figure 9b). The
crystallographic study also rejects possibility of any intermolecular antiferromagnetic
coupling. Below 50 K the specimen was practically diamagnetic (Stotal = 0). The spin
structure becomes ↓-↑↑-↓. Therefore, we can conclude that the intramolecular 3d–2p inter-
actions undergo an exchange-coupling switch. In other words, a spin transition occurs as
the whole [Ni(phpyNO)2Cl2] molecule. The variable-temperature X-band ESR study on
polycrystalline [Ni(phpyNO)2Cl2] clearly supports the spin-transition behavior.

Owing to the molecular structure deformation, the exchange coupling parameter J is
supposed to be a function of temperature. Therefore, the van Vleck analysis with constant
exchange coupling is inappropriate and actually did not work. Although the magnetic
analysis involving temperature-dependent coupling parameter was reported [53,107], no
suitable expression of J(T) is known for the present case. Instead, the magnetic data were
found to perfectly obey the van’t Hoff law (Figure 9c). The observed behavior is best
described as equilibrium in a solid-state chemical reaction.

A question arises here whether the observed structure is an identical geometry or
an average in time or space [108]. As the animated picture deposited as a supporting
information file shows [103], the thermal ellipsoids of the oxygen atoms are normal during
the transition. In the present case, every structure has an identical geometry, and magnetic
properties are associated with each structure. The equilibrium model can be applied to the
two terminal states.

The van’t Hoff analysis is a popular method to quantify SCO behavior [34,54,109].
The original van’t Hoff equation is given by Equation (8). The equilibrium constant is
rewritten by using molar HS and LS fractions, γHS and γLS, respectively (Equation (9)).
Putting Equation (9) into Equation (8) leads to Equation (10). The transition entropy change
is related with Equation (11) because ∆G vanishes at equilibrium. The spin-transition
temperature T1/2 is defined as the temperature satisfying γHS = γLS, and in this treatment
the phase transition temperature TC has the same meaning of T1/2. The χmT data set is
converted to γHS by Equation (12), where C is the Curie constant of the HS species. Thus,
the SCO temperature of [Ni(phpyNO)2Cl2] was calculated as T1/2 = 173.7(8) K. Note that
the error bar seems to be considerably reduced, thanks to many data points from the entire
temperature range used in the statistical analysis.

ln[K(T)] =
−∆G

RT
=
−∆H

RT
+

∆S
R

(8)

K(T) =
γHS

γLS
=

γHS

1− γHS
(9)

γHS =
1

1 + exp[(∆H/R)(1/T − 1/T1/2)]
(10)

∆S = ∆H/T1/2 (11)

χmT = CγHS (12)

The experimental results on the bromide analogue [Ni(phpyNO)2Br2] [89] are similar.
The variable-temperature crystallographic analysis indicates the structural transformation.
The magnetic data obeyed the van’t Hoff model, clarifying T1/2 = 134(1) K. However,
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it is a dissimilar point that the χmT vs. T profile exhibited a monotonic increase to the
paramagnetic limit and not to the high-spin limit on heating. The χmT value was only
1.96 cm3 K mol–1 at 400 K. In short, the HS nature is buried by a possible thermal depopula-
tion from the HS state, even though the spin transition is almost finished. The experimental
χmT value approaches the non-interacting limit. Therefore, we named this behavior an
apparent “incomplete spin transition” (Figure 7). The origin of “incomplete” is differ-
ent from that of typical iron(II) SCO materials; incomplete SCO usually takes place in a
low-temperature phase [1,110]. The theoretical calculation supports this conclusion (see
the next section). Thus, the new scenario of the spin transition based on the solid-phase
equilibrium reaction has been established for the X = Cl and Br compounds.

We have to refer a closely related spin-transition behavior found in the corresponding
copper(II) version. The mechanism includes torsional deformation around the coordination
bond just like the above nickel(II) compounds. The magnetic study of [Cu(phpyNO)2(H2O)2]
(BF4)2 [111] (Figure 10a) revealed the presence of the ferromagnetic coupling on both wings
in a high-temperature region, leading to the spin structure of ↑-↑-↑ (Stotal = 3/2). After
a spin transition at 175 K, the Stotal = 1/2 state appeared. The crystallographic analysis
clarified that an out-of-plane chelate ring deformation occurred around 175 K only on
one side (31.1(3)◦ at 94 K for Cu1–O2–N4–C16), breaking the crystal symmetry: the space
groups P212121 and C2221 in the LS and HS phases, respectively. The spin structure of
the low-temperature phase is not ↑-↓-↑, but ↑-↑-↓. Only one side transition is enough for
minimization of Stotal to 1/2.
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Another example [{Cu2+(2pyNO·)(µ-2pyNO–)}2](BF4
–)2 [112] (Figure 10b) behaved

in a different manner. Despite a 4-centered dimerized structure, the magnetic behavior
can be understood as a 2-centered monomer. A spin transition took place at 64 K. The
spin structures of the low- and high-temperature phases are drawn as ↑-↑ and ↑-↓, respec-
tively, for every spin pair. The space group remains Pbca across the transition, and the
dimeric molecule keeps a centrosymmetry. In this case all the chelate ring deformations are
synchronized, because Stotal could be minimized to 0.

After combining the results on the nickel(II)– and copper(II)–nitroxide compounds,
we obtain a clue to a driving force of this spin transition. The two Ni–O–N–Csp

2 angular
deformations in [Ni(phpyNO)2X2] are synchronized, and both interactions alter from ferro-
to antiferromagnetic on lowering temperature, because the spin multiplicity could reach
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the minimum with Stotal = 0. The present transition seems to be entropy-driven [71,113];
i.e., driven under the control of the change of spin entropy. The paramagnetic ligands play
a crucial role in the motivation of the molecular deformation. It is a feasible experiment to
mask the paramagnetic center by substituting a nitroxide group with a diamagnetic ketone
group. In fact, Ovcharenko’s group has clarified that the copper(II)-nitroxide complex
showed the molecular spin transition while no structural rearrangement took place in the
corresponding ketone analogue [114].

For detailed structural studies, a single-crystal-to-single-crystal-type transformation is
welcomed [115], and such conditions are often realized in the present study. The entropy
change due to the spin multiplicity change is generally small, and the spin entropy regulates
the enthalpy term by Equation (11), leading to minimal atomic dislocation [116,117]. The
plasticity of organic-based crystals is also important in accommodation of such structural
modification.

In theory [35,118,119], the entropy difference of SCO can be calculated as a sum of
contributions of electronic, vibrational, rotational, and translational terms (Equation (13)).
In the solid state, two last terms are excluded. The electronic contribution comes from the
degeneracy of each state as shown in Equation (14). When singlet and quintet states are
involved, the electronic contribution is given as R ln 5 = 13.38 J K−1 mol−1.

∆S = ∆Selec + ∆Svib + ∆Srot + ∆Strans (13)

∆Selec = R ln
2SHS + 1
2SLS + 1

(14)

The experimental ∆S values are 26.3(1) and 24.0(7) J K−1 mol−1 for the Cl and Br
compounds, respectively. These values are somewhat smaller than typical values for the
iron(II) compounds similarly showing S = 0 � 2 SCO [1,120]. The vibrational entropy
contribution for the present compounds is almost negligible because the structural change
is only the torsional deformation. This situation is completely different from that of
the conventional one-centered SCO materials causing the drastic bond length change.
Consequently, the small but substantial spin entropy change of the present compounds
suffices the small enthalpy change of the structural transition.

The combined work from detailed magnetochemistry and structural chemistry af-
forded the evidence for the spin transition observed as an equilibrated solid-state reaction.
Such reactions involve an intersystem-crossing nature and usually accompany the struc-
tural isomerization where the internal atomic geometries struggle to satisfy the spin state
of each species.

2.5. Unfinished Spin-Transition Molecules

The stabilization of HS states raises T1/2 while that of LS states lowers T1/2 (Figure 1).
The study on the chemical modification varying T1/2 is important not only for exploring
new materials but also for checking the validity of the molecular design and discussing the
steric and electronic substituent effects which regulates the energy level of each state. The
purpose of this section is to explain what happens in the pseudohalide case: X = NCS [121]
and NCO [122]. The topic is focused on [Ni(phpyNO)2(NCO)2] (Figure 11).
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The torsion angles around Ni–O–N–Csp
2 in [Ni(phpyNO)2(NCO)2] are 25.7(10) and

32.3(11)◦ at 400 K, indicating appreciable overlaps of the magnetic orbitals even at such
a high temperature. On cooling, the torsion was enhanced as indicated with 33.5(5) and
36.2(4)◦ at 100 K (Figure 11a). However, the variation width is relatively narrow (Figure 11b),
in comparison with those of the Cl and Br analogues (Section 2.4). All the observed torsion
values 25.7(10)–36.2(4)◦ fell in the “antiferromagnetic region” in Figure 4.

The χmT value of [Ni(phpyNO)2(NCO)2] was practically null below ca. 100 K and
gradually increased to 1.04 cm3 K mol−1 on heating to 400 K (Figure 11c). A van’t Hoff
analysis was satisfactory like the X = Cl and Br derivatives, but T1/2 was estimated as high
as� 400 K. The relatively large error of T1/2 is unavoidable because it was derived only
from the onset χmT data (the solid line in Figure 11c). Though T1/2 seems to be somewhat
overestimated, owing to a depopulation effect, [Ni(phpyNO)2(NCO)2] would undergo a
possible spin transition at T1/2 � 400 K.

The parallel experiment and analysis on the NCS derivative, [Ni(phpyNO)2(NCS)2],
indicated a spin transition with T1/2 = 530(20) K [121]. The molecule crystallizes in an
orthorhombic Pbca with Z = 8, but the space group was changed to a monoclinic P21/n with
Z = 8 in the low-temperature phase. The molecules are differentiated into two morphs on
cooling. Such an order-disorder-type structural transition [123–125] as well as a molecular
packing motif change [111,126] might certify the substantial spin transition.

It is convincing that the low-temperature phase is diamagnetic, but one may wonder
if the high-temperature phase has the ground state of Stotal = 2 or 1. The following notices
strongly suggest that the ground state should be Stotal = 2 in the high-temperature phase:
(1) The driving force is needed for structural modification on both wings. (2) The estimated
χmT value of the high-temperature phase was close to the Stotal = 2 limit value.

To check the structure-dependence of the exchange coupling, the density functional
theory (DFT) calculation was performed in Gaussian16 [127], using the determined atomic
coordinates of [Ni(phpyNO)2(NCO)2]. The self-consistent field energies were calculated on
the 100, 200, 300, and 400 K structures with the unrestricted B3LYP (Beck three-parameter
hybrid functional combined with Lee–Yang–Parr correlation functional [128–130]) protocol
and 6-311+G(2d,p) basis set. The B3LYP functional has been well-established for calculation
of exchange couplings [131,132]. The broken symmetry method [133–135] was applied.
According to this method, the ground state of the 100 K structure (Figure 11a) was singlet.
The highest one was quintet with the singlet-quintet gap of −2196 K. Two triplet states,
↓-↑↑-↑ and ↑-↑↑-↓, intervene them. The ground state remained singlet at 400 K, but the
gap was decreased. At the same time, the gap between the ground and first excited
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triplet states also became as narrow as the thermal energy of the temperatures of magnetic
measurements. All the calculation results are compatible with the experiments.

Full geometry optimization calculation provided a strong support for the exchange-
coupling switch. The optimization on the diamagnetic LS and Stotal = 2 HS states was
conducted with the same protocol except for the 6-31+G(d) basis for organic elements.
A model ligand methyl 2-pyridyl nitroxide (abbreviated as L’) was introduced to reduce
calculation cost. As Figure 12a,b shows, the Ni–O–N–Csp

2 torsion angles of diamagnetic
[NiL’2(NCO)2] are 32.7◦, and those of the Stotal = 2 state are decreased to 11.9◦. The
calculation on the diamagnetic phase well reproduced the experimental values at 100 K,
but the value of 11.9◦ was not found even at 400 K. This finding is acceptable by thinking
that the 400 K form is transient toward the HS form.

Another calculation was performed on a model [NiL’2Cl2] for the spin-transition
compound [Ni(phpyNO)2Cl2] [103] (Section 2.4). The geometries of the diamagnetic
and Stotal = 2 states were optimized on the same approximation and calculation level
(Figure 12c,d, respectively). The former has ϕ = 35.4 and −27.2◦, while the latter has
ϕ = −9.3◦. The calculation well reproduced the experimental LS geometries (38.9(2) and
–29.2(2) at 85 K, Figure 9b) but still left a discrepancy from the experimental HS values
(25.8(3) and 13.0(4) at 400 K, Figure 9b). The 400 K structure is a nearly but not ideal
HS form.
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Figure 13a summarizes the DFT calculation results of the energy gaps on the X = NCO
and NCS derivatives (this section) together with those of the X = Cl and Br analogues
(Section 2.4). The singlet-quintet energy gaps were +102 and +141 K for the Cl and Br
derivatives, respectively. In sharp contrast to the results on the NCO and NCS derivatives,
the ground spin state of the Cl and Br ones was calculated as HS at 400 K.
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Overall, the four compounds are described in a common phase diagram (Figure 13b).
The Cl and Br compounds undergo the energy level crossing, but the NCS and NCO
compounds do not. The X = NCO and NCS derivatives are assumed to be a “pseudo
spin-transition” material [52], or more correctly an “unfinished spin-transition” material, as
a result of T1/2 located beyond the upper limit of the experimental temperature (Figure 7).
The spin transition is registered but unfinished to give a small HS fraction value. As for
the Cl and Br compounds, T1/2 is located inside the experimental temperature window,
and “genuine spin-transition” compounds are materialized. In any case, when heated
above T1/2, the experimental susceptibility hardly reached the theoretical HS value but
approached the paramagnetic one, due to the depopulation effect pronounced in high
temperatures. We have to stress that a single-point X-ray crystallographic analysis could
not reveal such a hidden structural transition.

In comparison among the four [Ni(phpyNO)2X2] derivatives, the order is summarized
as T1/2(Br) < T1/2(Cl) < T1/2(NCS) < T1/2(NCO) (Figure 13b). The van der Waals radii of
Br, Cl, and N have an inverse order [136], suggesting that the ligating atom mainly affects
the steric congestion. Bulky coligands cannot accommodate out-of-plane displacement of
the adjacent chelate ring atoms, so that bulkiness stabilizes the HS state and consequently
reduces T1/2.

2.6. Low-Spin Molecules

As noted in Section 2.2, nickel(II)-2pyNN complexes usually display a nonplanar
6-membered chelate ring and antiferromagnetic coupling. This hypothesis is tested with
the following examples. The M/L = 1/1 compound [Ni(2pyNN)(hfac)2] showed anti-
ferromagnetic coupling with 2J/kB = −488 K and ϕ(Ni–O–N–Csp

2) = 43.0◦ [83], where
hfac stands for 1,1,1,5,5,5-hexafluoropentane- 2,4-dionate. This ϕ value belongs to the
antiferromagnetic category according to the magneto-structural relationship (Figure 4). The
2-pyrazinyl-, 2-quinozalinyl-, 2-pyrimidinyl-, and 4-pyrimidinyl-substituted NN radicals
are known, and to the best of our knowledge, their copper(II) and nickel(II) chelate com-
plexes have been reported to exhibit all antiferromagnetic coupling [137–140], except for
those involving the axial coordination to the copper(II) ion. The observation of ferromag-
netic interaction in the radical copper wheels [CuX2(4PMNN)]6 (4PMNN = 4-pyrimidinyl
NN; X = Cl, Br) [141,142] is rationalized because the chelate ring has the radical oxygen
atom located at the axial site of the copper(II) coordination sphere.

The following will be of interest from the viewpoint of supramolecular chemistry.
Another ground-low-spin example is relatively rare M/L = 3/6 compounds, [Ni3(pzNN)6]



Inorganics 2021, 9, 10 16 of 28

and [Ni3(pzIN)6] [143], where HpzNN and HpzIN are 3-pyrazolyl NN and 3-pyrazolyl
IN, respectively (Figure 14a,b). A meso-helicate [144,145] (or mesocate [146]) structure is
characterized. Namely, the opposite chirality around the inversion center at the central ion
leads to a meso-helical symmetry as the whole molecule. For the pzNN compound, a half
molecule is a crystallographically independent in a monoclinic P21/n space group. The
averaged ϕ(Ni–O–N–Csp

2) was 35.0(7)◦. For the pzIN compound, the IN oxygen atom is
ligated to the nickel ion, giving a 6-membered chelate structure. There are two polymorphs.
One morph has an intrinsic three-fold symmetry with respect to the molecular long axis
in a cubic Pa3 space group. A sixth molecule is crystallographically independent, and the
unique ϕ was 38.0(5)◦. The other morph is practically isomorphous to the pzNN derivative.
The averaged ϕ was 43(5)◦.

The magnetic susceptibility data (Figure 14c) were analyzed after inter-site interaction
was approximately introduced as a mean-field approximation, giving the 3d–2p couplings,
2J/kB = −80(2) and −106(6) K, for the pzNN and pzIN compounds, respectively. The
χmT vs. T profiles show a considerable convex, being consistent with the relatively small
antiferromagnetic couplings. The stronger exchange interaction is observed in the latter
than in the former, in good agreement with the larger ϕ of the latter. The finding is again
reasonable, according to the magneto-structural relationship (Figure 4).
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dination structures. Taking a model complex of phNO (Figure 5) for example, a large an-
gular torsion is expected from the steric repulsion between the nickel(II) ion and adjacent 
phenyl ortho–CH group (Figure 15a). A problem occurs in the stability of coordination 
compounds consisting of a monodentate ligand as well as the ligand itself. To solve these 
issues, we have employed a biradical ligand, tbpbNO (Figure 5), known as a ground tri-
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Figure 14. Molecular structures of (a) [Ni3(pzNN)6] and (b) [Ni3(pzIN)6] (Pa3 phase) with thermal ellipsoids at the 50%
probability level. Solvent molecules and hydrogen atoms are omitted. Selected atomic numberings are indicated. The
structural formulas of paramagnetic ligands are also shown. (c) Temperature dependence of χmT for the two compounds.
The solid lines represent calculated curves. Adapted with permission from [143], published by the Royal Society of
Chemistry, 2006.
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This supramolecular architecture was reproduced after replacing paramagnetic lig-
ands with diamagnetic ones [114,147–149]. This method simplifies the magnetic analysis.
Using a diamagnetic ligand HpzNTR (N-tert-butyl-α-3-pyrazolylnitrone), the trinuclear
nickel(II,II,II) as well as iron(II,III,II) compounds were prepared, and their magnetic prop-
erties including triply pyrazolate-bridged superexchange interaction were investigated in
detail [150].

2.7. Diamagnetic Molecules

Non-chelatable ligands are available, which would give rise to further twisted co-
ordination structures. Taking a model complex of phNO (Figure 5) for example, a large
angular torsion is expected from the steric repulsion between the nickel(II) ion and adjacent
phenyl ortho–CH group (Figure 15a). A problem occurs in the stability of coordination
compounds consisting of a monodentate ligand as well as the ligand itself. To solve these
issues, we have employed a biradical ligand, tbpbNO (Figure 5), known as a ground triplet
molecule [151]. The novelty of this work is that [{Ni(µ-tbpbNO)(hfac)2}2] showed a record
strong exchange coupling [152], though the molecular skeleton is already known for the
manganese(II) [153,154] and cobalt(II) complexes [155]. The hfac coligand was utilized
because of a powerful accepting nature capable of coordinating the nitroxide oxygen atom.
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Two biradical ligands doubly bridge two octahedral nickel ions, constructing a 16-
membered macrocycle (Figure 15b). The radical oxygen atoms are located at a cis position
of each nickel(II) ion. The ϕ(Ni–O–N–Csp

2) angles are extremely large: 83.9(4), 90.2(3),
−80.1(4), and −95.5(4)◦. Note that the right angle is ideal for the overlapped arrangement
of the metal dσ and radical π* magnetic orbitals. As Figure 15c displays, the magnetic study
clarified the almost diamagnetic nature. The experimental χmT value was essentially null
below 300 K and reached to a 5.6% level of the theoretical spin-only value (3.50 cm3 K mol−1

from two SNi
2+ and four Srad centers) at 400 K.

For estimation of J, a simple extrapolation in Figure 4 is risky because the slope is
related with a bonding contribution due to the magnetic orbital overlap, partly regu-
lated by a cos(2ϕ) law [91]. Instead, a simulation work was performed. Each magnetic
exchange coupling constant was estimated by means of DFT calculation [127] on the
UB3LYP/6-311+G(2d,p) level. A simulated χmT vs. T curve was drawn on the MAGPACK
program [156], using the spin Hamiltonian defined as a 6-centered macrocyclic model
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(Equation (15)). The simulation curve approximately reproduced the experimental data,
indicating 2JNi-rad/kB = ca. −1300 to −1400 K.

Ĥ = −2JNi1−O1ŜNi1•ŜO1 − 2JO1−O2ŜO1•ŜO2 − 2JNi2−O2ŜNi2•ŜO2

−2JNi2−O4ŜNi2•ŜO4 − 2JO3−O4ŜO3•ŜO4 − 2JNi1−O3ŜNi1•ŜO3
(15)

Thus, we have found the largest-class torsion angles and antiferromagnetic coupling
parameters in [{Ni(µ-tbpbNO)(hfac)2}2]. As described in Section 2.2, antiferromagnetic
contribution in Equation (1) is overwhelmingly large in general. From Figures 14 and 15,
the nickel(II)–nitroxide compounds showing moderate to very strong antiferromagnetic
coupling can be realized according to the common logic as depicted in Figures 3 and 4. The
open ligation (non-chelate) compounds are good examples for testing an antiferromagnetic
extreme case. When the coupling is antiferromagnetic, a ferrimagnetic approach would be
promising by using large and small spins.

2.8. Miscellaneous

Nitroxide radicals are well-known to mediate redox reactions and in particular cat-
alyze oxidation reactions in the presence of suitable oxidants [157–159]. Hydroxylamines
possess an acidic proton [160], and the corresponding deprotonated forms, aminoxylates,
can serve as a ligand; the bridging ligand in [{Cu2+(2pyNO·)(µ-2pyNO–)}2](BF4

–)2 [112]
(Figure 10b) is typical. However, a single-electron transfer to a nitroxide can afford an
aminoxylate as well. Here the nickel(II) complexes having reduced anionic ligands will be
described.

We attempted to prepare the iodide analogue [Ni(phpyNO)2I2], but the characterized
products were only [Ni(phpyNO)2] and [Ni(phpyNO)2]I3, as shown in Figure 16a,b and
Supplementary Materials. The N–O bond length is a fingerprint of the oxidation states
of the N–O group, namely, >N+ = O, >N–O·, and >N–O–. The N–O bond length in
[Ni(phpyNO)2] is 1.397(2) Å, and those in [Ni(phpyNO)2]I3 are 1.353(3) and 1.366(3) Å,
being much longer than a typical N–O length of nitroxides (1.29 Å in a free ligand; 1.30 Å in
coordination compounds [74]) but very close to that of aminoxylates (1.40–1.42 Å [161–165]).
Consequently, the present compounds can be assigned to a reduced form (i.e., phpyNO–).

The nickel(II) ion in [Ni(phpyNO)2] is square planar. The valence of the nickel ion
in [Ni(phpyNO)2]I3 is suggested to be +3.25 from the bond valence sum analysis [166],
and accordingly, the charge balance is satisfied as [Ni3+(phpyNO–)2]I3

–. At this stage, it is
concluded that the nitroxide ligands can be reduced with iodide according to Equation (16).
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(16)

When tfpyNO [167] carrying a trifluoromethyl group (Figure 5) was applied, the
reaction with nickel(II) chloride gave [Ni(tfpyNO)2] (Figure 16c). The N–O bond length
is 1.394(8) Å, which is close to that of [Ni(phpyNO)2] and characterized to be anionic.
Even after the purge of a reductant iodide, the electron-accepting trifluoromethyl group
facilitates the reduction of the nitroxide group.
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Figure 16. X-Ray crystal structures of (a) [Ni(phpyNO)2], (b) [Ni(phpyNO)2]I3, (c) [Ni(tfpyNO2)] with thermal ellipsoids at
the 50% probability level. Hydrogen atoms are omitted. Selected atomic numbering is also shown. A half of molecule is
crystallographically independent for (a) and (c).

The redox ability of the tert-butyl pyridyl nitroxides has been well investigated [161–165]
and actually confirmed here. Charge-transfer-triggered switching materials, like valence–
tautomeric cobalt(II)-SQ compounds [71–73] would be a next target of interest. It will be more
promising to use manganese(II) instead of cobalt(II). Redox active Mn2+–nitroxide complexes
of this type have recently been described [168,169], but such properties have not yet been
found for cobalt(II)-nitroxides, possibly because the value of the Mn2+/3+ redox potential is
more suitable for converting nitroxides into aminoxylates than that of Co2+/3+.

Finally, a variety of the Ar–NO type ligands are briefly noted for possible applications
in many directions. The 2py substituents can be replaced with diazaaromatic rings, and
paramagnetic bridging ligands were designed and actually synthesized. Pyrimidine-4,6-
bis(NO) (Figure 17) was proven to be a ground triplet molecule and applied to a linear
trinuclear prototype for metal organic frameworks [170]. 4-X-Substituted pyridine-2,6-
bis(NO) was a ground triplet molecule with 2J/kB � +300 K (X = mesityl [171], 9-anthryl,
tert-butoxy [172]). A bulky stabilizing substituent X is required to be treated under ambient
conditions. The pyridine bridge can be elongated with bi- and terpyridines, thus giving
tetradentate bpy-bis(NO) [173,174] and pentadentate tpy-bis(NO) [175]. By using these
paramagnetic ligands as a host, an exchange-coupling switch has been investigated with
diamagnetic as well as paramagnetic guest ions. For pursuing ground triplet bridges, one
of isomeric bpy-bis(NO) ligands, 3,4′-bipyridine-6,2′-diyl bis(tert-butyl nitroxide) (34bpy-
bis(NO)), was synthesized [176]. The spin polarization mechanism [8,115,116,177–180]
seems to hold for azaaromatic- and oligopyridine-bis(NO) systems.
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Lahti et al. have exploited benzimidazole- and benzothiazole-based isolable tert-
butyl nitroxide compounds, bzimNO [181] and bzthNO [182], respectively, thanks to the
stabilization from the electron delocalization. The imidazole and thiazole rings are smaller
than the pyridine ring. This feature seems to be attracting, because, on chelate formation,
the N and O bite angle of bzimNO and bzthNO might be open, being favorable for
strong 3d–2p ferromagnetic coupling. Very recently, Luneau explained the spin-transition
phenomenon of [CuL2(ClO4)2] (L = 2-imidazolyl-NN) [87] in terms of a magnetic coupling
switch accompanied by the coordination structure modification [169]. This mechanism is
quite similar to the present one and in particular to that of [Cu(phpyNO)2(H2O)2](BF4)2
(Figure 10a) [111]. The small aromatic substituent seems to be beneficial for approaching
the energy levels of the HS and LS states each other (see Section 2.2), even though it has a
six-membered chelate ring.

3. Concluding Remarks

We have described a number of nickel(II)–nitroxide coordination complexes which show
a broad spectrum from the ground HS molecules (Section 2.3) to the ground LS molecules
(Sections 2.6 and 2.7) via the transient spin-transition molecules (Sections 2.4 and 2.5). Further-
more, the extensive researches on the ligand modification are concisely summarized (Section 2.8).

Molecular design must be provided on the basis of the reliable magneto-structural
relationship, and the proposed relationship has been established by the cautious structural
characterization and physical property analysis. The selection of a torsion angle ϕ (M–
O–N–Csp

2) is key to comprehend the geometry, propose a relationship, predict physical
properties, and apply to molecular/crystal design and material production strategy. The
torsion angle table is usually listed up in a crystallographic information file (.cif), and
no recalculation is needed to assess ϕ. The ϕ parameter is handy, so that the plot of J
vs. ϕ has also been applied to 4f–2p heterospin systems; for example, the Gd– [183–192],
Tb– [193,194], and Dy–nitroxide compounds [195,196].

The ground HS (LS) molecules with a wide energy gap are characterized to be HS
(LS) in the experimental temperature window. When the two energy levels are acci-
dentally nearly degenerate, there is a chance of level crossing. The present structural
transition or structural crossover originates in the equilibrated system regulated with the
spin entropy. We almost always encountered the single-crystal-to-single-crystal structural
transition/crossover in this project, thanks to the small atomic dislocation as well as the soft
character of organic-based crystalline materials [197]. Though the structural change is small,
the exchange coupling change is substantial because of the sensitive structure dependence.
The single-point X-ray diffraction study cannot reveal a hidden transition. Combining
work from magnetochemistry and structural chemistry as well as computational chemistry
can tackle these problems.
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The novelty of the present spin-transition mechanism lies in the ferro-/antiferromagnetic
exchange-coupling switch, which is fully understood in terms of an equilibrated system
(Figure 1). The spin state is determined by antiferro-/ferromagnetic contribution balance
in multi-centered systems, in place of the aufbau/Hund balance in the conventional one-
centered systems. In a molecular orbital picture, the aufbau principle works in gapped
d-orbitals perturbed by a ligand field. Similarly, the aufbau principle also is operative in
gapped bonding and antibonding orbitals caused by an orbital interaction. The HS electron
configuration is favored under the control of Hund’s rule in the one-centered SCO. This
effect is also called intra-site ferromagnetic interaction or potential exchange [135,198,199].
The present spin-transition phenomena can be regarded as a multi-centered SCO.

As stated in the Introduction section, an advantage of our system is the use of strong
ferromagnetic coupling, often stronger than the order of 300 K. It has been realized accord-
ing to an appropriate molecular design based on the magneto-structural relationship. The
large spin density at the ligating atom plays a crucial role to enhance the exchange coupling
and sensitize the structural dependence of the exchange coupling, thus leading to the devel-
opment of the multi-centered SCO materials. The structure-sensitive magnetic coupling is
noticeable by referring a ferromagnetic limit (2J/kB = +409 K [74]) to an antiferromagnetic
extreme (2J/kB ≈ –1400 K [152]). For future work, this potential will be adopted to tuning
of exchange coupling in 3d–2p heterospin materials by means of external stimulus.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-674
0/9/2/10/s1. The CIF and the checkCIF output files are included in the Supplementary Materials.
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