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Abstract: Two chiral face-rotating metalla-assembled polyhedra were constructed upon self-assembling
achiral components, i.e., a tritopic ligand based on a truxene core (10,15-dihydro-5H-diindeno
[1,2-a;1′,2′-c]fluorene) and two different hydroxyquinonato–bridged diruthenium complexes.
Both polyhedra were characterized in solution as well as in the solid state by X-ray crystallography.
In both cases, the self-sorting process leading to only two homo-chiral enantiomers was governed by
non-covalent interactions between both truxene units that faced each other.
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1. Introduction

Coordination-driven self-assembly methodology has been extensively used during the last few
decades to construct bi- or tri-dimensional discrete architecture [1–17]. Beyond the challenge of
producing more and more sophisticated compounds, special attention has been given to functional
architectures that are responsive to an external stimulus such as light [18–22], redox [23–31], or the
addition of a chemical [32] in order to target original properties [33–41]. Those systems are generally
achiral and highly symmetric. New synthetic methodologies have therefore been developed to
allow for chiral metalla-assembled architecture [5,42–46]. One of these methodologies consists of
thermodynamically controlling the self-sorting of multiple building blocks [47–49]. In particular, chiral
self-sorting can be spontaneously achieved from a racemic mixture upon metal coordination, leading
either to homochiral [50–56] or heterochiral [50,51,57,58] assemblies.

On the other hand, face-rotating polyhedra constitute a recent class of chiral architecture that can
be constructed from chiral or achiral linkers and face-rotating component [59–65]. The latter can consist
of achiral compounds that exhibit two faces with opposite directionalities such as truxene [62–65],
triazatruxene [59,60], and tetraphenylethylene [61]. In particular, the C3h-symmetric hexa-alkylated
truxene derivatives exhibit both clockwise (C; green) and anti-clockwise (A; red) faces that are defined
by the rotation of the three sp3 methylene bridges along the C3 axis (Figure 1a). Upon self-assembly
with achiral hydroxyquinonato–bridged diruthenium complexes, the formation of sandwich-type
supramolecular cages is expected (Figure 1b). In those cages, the truxene ligands lose their mirror
symmetry, thus resulting in several possible stereoisomers. We herein show that through-space
interactions between both face-rotating ligands guide the self-assembly process toward only the CC/AA
enantiomers couple, whereas the hetero-chiral CA stereoisomer is not observed in this process.
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Figure 1. (a) Truxene-based ligand (X-ray) presenting two rotational faces (clockwise (C), green face, 
and anticlockwise (A), red face) and (b) the three possible metalla-cage structures obtained upon self-
assembling with bis-ruthenium complexes. 

2. Results and Discussion 

The Trux3Pyr ligand was synthetized in two steps from hexabutyl truxene derivative 1 in a good 
yield (Scheme 1) through the adaptation of described procedures [66–68]. Butyl chains were selected 
to ensure the good solubility of the target ligand and to prevent aggregation. The first step consisted 
of the regioselective tri-bromination of the truxene core in the presence of Br2, thus affording 
compound 2 in an 83% yield. The target Trux3pyr ligand was then obtained in a 60% yield after 
purification through a palladium-catalyzed Suzuki–Miyaura cross-coupling reaction with 4-
pyridinylboronic acid (Figures S3–S9). 
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Scheme 1. Synthesis of the Trux3Pyr ligand and the CC-TruxNaph, AA-TruxNaph, CC-TruxTetra, 
and AA-TruxTetra metalla-cages. 

Figure 1. (a) Truxene-based ligand (X-ray) presenting two rotational faces (clockwise (C), green face,
and anticlockwise (A), red face) and (b) the three possible metalla-cage structures obtained upon
self-assembling with bis-ruthenium complexes.

2. Results and Discussion

The Trux3Pyr ligand was synthetized in two steps from hexabutyl truxene derivative 1 in a good
yield (Scheme 1) through the adaptation of described procedures [66–68]. Butyl chains were selected to
ensure the good solubility of the target ligand and to prevent aggregation. The first step consisted of
the regioselective tri-bromination of the truxene core in the presence of Br2, thus affording compound
2 in an 83% yield. The target Trux3pyr ligand was then obtained in a 60% yield after purification
through a palladium-catalyzed Suzuki–Miyaura cross-coupling reaction with 4-pyridinylboronic acid
(Figures S3–S9).
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Scheme 1. Synthesis of the Trux3Pyr ligand and the CC-TruxNaph, AA-TruxNaph, CC-TruxTetra, 
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Scheme 1. Synthesis of the Trux3Pyr ligand and the CC-TruxNaph, AA-TruxNaph, CC-TruxTetra,
and AA-TruxTetra metalla-cages.
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Single crystals of the Trux3Pyr ligand that were suitable for X-ray analyses were obtained by the
slow evaporation of a CH2Cl2/n-hexane solution, and the corresponding solid-state crystal structure is
depicted in Figure 2. Thanks to the planar geometry of the central truxene core, the three peripheral
nitrogen were found to be in the same plane. The pyridine moieties are twisted around the Ctrux-CPyr

axis with an average angle of 40.8(1)◦, thus minimizing H–H interactions, as reported for similar
compounds [69]. An angle of 120◦ was found between each pyridine axis in accordance with the C3

symmetry of the Trux3Pyr ligand. It was found that the alkyl chains tend to lie away perpendicularly
to the truxene plane.
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Figure 2. X-ray crystal structure of Trux3Pyr: (a) top view (clockwise face in green) and (b) lateral view
showing both rotating faces (clockwise in green and anticlockwise in red).

The self-assembly processes between the face-rotating Trux3Pyr ligand (two equivalents) and the
bis-ruthenium acceptors (three equivalents), RuNaph or RuTetra, were followed by 1H NMR in MeOD
at C = 3× 10−3 M. These ruthenium complexes were selected for their accessible syntheses, their rigidity,
and their intermetallic distance of ca. 8.3 Å, a value that we considered sufficient for the six alkyl chains to
fit inside the cavity. Note that the reaction of Trux3Pyr with the smaller oxalate bis-ruthenium complex
(Ru–Ru distance: 5.5 Å) [70] did not converge into a discrete species. After one night at 50 ◦C with the
use of RuNaph or RuTetra, the spectra became symmetrical and well-resolved. The resulting products
were then isolated by precipitation with Et2O. For both samples, high-resolution ESI-FTICR-MS
spectrometry experiments were carried out in MeOH at C = 10−4 M (Figure 3). The corresponding
spectra confirmed an M6L2 stoichiometry in both cases, with characteristic multi-charged isotopic
patterns localized at m/z = 789.6516, 1024.3024, and 1415.3877 (main contributions, Figure S16) and at
m/z = 849.6704, 1099.3257, and 1515.4192 (main contributions, Figure S17) for the compounds isolated
from the reaction of Trux3Pyr with RuNaph and with RuTetra, respectively.
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The 1H NMR, 1H COSY NMR and 1H DOSY NMR spectra of both self-assembled cages are shown
in Figure 4 and Figures S10–S15. Both the TruxNaph and TruxTetra 1H DOSY spectra exhibited only
one set of signals, with D values of 2.99 and 2.85 × 10−10 m2

·s−1, respectively, meaning that they had
similar sizes. The corresponding hydrodynamic radii estimated from the Stokes–Einstein equation [71]
were found to be 13 and 14 Å (T = 298 K). As expected, these values were much larger than the one
calculated for the Trux3Pyr ligand (D = 4.78 × 10−10 m2

·s−1, MeOD, R = 8 Å, Figure S9) and were
in good agreement with the formation of M6L2 self-assemblies. Compared to the Trux3Pyr ligand,
both isolated discrete assemblies showed upfield shifted Hα and Hβ protons after coordination to
the ruthenium complex (Figure 4), with chemical shifts in accordance with reported values [72]. Each
1H NMR spectrum revealed only one set of signals for all Trux3Pyr protons (Hα, Hβ, Ha, Hb and
Hc), this indicating the absence of a mixture of diastereoisomers. Therefore, the reaction between the
Trux3Pyr ligand and the bis-ruthenium complexes afforded either a mixture of D3 symmetric CC and
AA enantiomers or the C3 symmetric CA (or AC) stereoisomer alone. This selectivity suggests that a
through-space communication existed between both facing panels and orientated the self-assembly
process through a chiral self-sorting. This behavior can be compared to what is reported for, e.g., chiral
helicates, for which a strong mechanical coupling between the metal units orientates the self-assembly
process [43,73]. Additional 2D COSY experiments (Figures S11 and S14) allowed for the assignation
of all butyl chains protons. One should note that those located on carbons 1, 2 and 3 of the starting
Trux3Pyr ligand (see Scheme 1) are diastereotopic [74], two different signals being therefore observed
for each methylene group, as illustrated in Figures S1, S3 and S7. In the case of the TruxNaph and
TruxTetra cages, two sets of butyl chains were observed, i.e., those pointing outside the cavity and
those pointing inside, more shielded [8], therefore generating 12 signals for the protons located on
carbons 1, 2 and 3 (Figure 4d).

Single crystals were obtained for both self-assemblies from the slow diffusion of methyl tert-butyl
ether in solutions of TruxNaph and TruxTetra in MeOH. In each case, several crystals were analyzed
and gave the same result (Figure 5). Both complexes crystallized in non-centrosymmetric trigonal
chiral space groups, P3121 and P3221, respectively, for TruxNaph and TruxTetra, and exhibited very
large unit cells volume of ca. 23,500 Å3. Their Flack parameters were of 0.20 and 0.42, which
indicated enantio-enriched crystals. An analysis of the crystal structures gave evidence of chiral
self-sorting along the self-assembly process, since only AA and CC enantiomers were present in the
solid state. Both self-assemblies exhibited a similar geometric arrangement, organized from two
approximatively planar truxene moieties that faced each other. Contrary to what is usually observed
for similar metalla-cages in which the two facing polyaromatic ligands tend to get closer to maximize
the pi–pi interactions and structure compactness thanks to a large tilt of the lateral ruthenium-based
panels [75,76], the six butyl chains present inside the cavity of TruxNaph and TruxTetra maintained,
in this case, both truxene moieties at distances of 7.30 and 7.58 Å, respectively (average value between
mean planes). These values were nevertheless smaller than the Ru–Ru distance (8.30 and 8.33 Å) in the
bis-ruthenium units of TruxNaph and TruxTetra, meaning a tilt of the lateral ruthenium side panels of
ca. 12◦ out of the truxene planes. As a consequence, the trigonal prisms were slightly deformed and
showed average Bailar twist angles of 7.94 and 8.11◦, respectively, (Figure S18) [77]. While the external
butyl chains remained nearly linear, those located inside the polyhedra were bent upon confinement
within the cavity. Their role was of critical importance in the self-sorting process since they allowed for
inter-ligand communication. Indeed, the metalla-prism distortion was minimized when the six butyl
chains pointing inside the cavity were alternated. This was the case only for the AA and CC geometries.
On the other hand, a self-assembly of two opposite faces (e.g., a CA geometry) would necessitate a
much larger tilt of the lateral ruthenium panels in order to preserve the regular alternation, explaining
why only the AA and CC enantiomers were observed.
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See Scheme 1 for 1H NMR assignments. Grey and black assignments correspond to the inner cavity
and cavity protons, respectively. D corresponds to the diffusion coefficient extracted from an 1H DOSY
NMR experiment, and R to the corresponding hydrodynamic radii calculated from the Stokes–Einstein
equation. * Residual Et2O.
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3. Materials and Methods

3.1. Chemicals

Hexa-alkylated truxene 1 [68], as well as the RuNaph [78] and RuTetra [78] complexes, were
synthesized by using procedures described in the literature. All reagents were of commercial reagent
grade and were used without further purification. Silica gel chromatography was performed with a
SIGMA Aldrich Chemistry SiO2 (pore size 60 Ã, 40–63 µm technical grades) (Sigma-Aldrich, Steinheim,
Germany).

3.2. Instrumentation

Characterizations and NMR experiments were carried out on an NMR Bruker Avance III 300
spectrometer or an NMR Bruker Avance III HD 500 spectrometer (Bruker, Wissembourg, France) at
298 K by using perdeuterated solvents. 1H DOSY NMR spectra were analyzed with the MestReNova
software (12.0.1, Mestrelab Research, Santiago de Compostela, Spain). MALDI-TOF-MS spectra were
recorded on a MALDI-TOF Bruker Biflex III instrumentinstrument (Bruker, Wissembourg, France) by
using a positive-ion mode. Very high resolution ESI-FTICR mass spectra were performed in positive
detection mode on a 7T Solarix 2xR (Bruker Daltonics, Wissembourg, France).

3.3. Experimental Procedure and Characterization Data

2,7,12-tribromo-5,5,10,10,15,15-hexabutyl-10,15-dihydro-5H-diindeno[1,2-a:1’,2’-c]fluorene (2)
Compound 2 was synthetized after the modification of a reported procedure [68]. Bromine (0.1 mL,

1.94 mmol, 3.5 equivalents) was added to a stirred suspension of truxene 1 (370 mg, 0.545 mmol) in
dichloromethane (20 mL) over a 5 min period at room temperature with protection from light. After
one night, methanol (50 mL) was added. The resulting precipitate was filtered off and washed with
methanol, diethyl ether, and pentane to give compound 2 (412 mg, 0.445 mmol, 83%) as a pale yellow
solid. 1H NMR (500 MHz, 298 K, CDCl3): δ 8.20 (d, J = 8.3 Hz, 3H), 7.57 (d, J = 2.1 Hz, 3H), 7.52 (dd,
J = 8.3 Hz, J = 2.1 Kz, 3H), 2.89–2.83 (m, 6H), 2.07–2.01 (m, 6H), 0.98–0.81 (m, 12H), 0.58–0.33 (m, 30H).
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13C NMR (126 MHz, CDCl3) δ 155.89, 145.04, 138.87, 137.71, 129.41, 125.99, 125.61, 121.09, 55.93, 36.50,
26.47, 22.76, and 13.80. HRMS: found: 912.2487; calculated: 912.2480.

Trux3Pyr Ligand
An aqueous solution of K2CO3 (0.64 g in 2.5 mL, 4.63 mmol, 20 equivalents) and 4-pyridinylboronic

acid (86 mg, 0.699 mmol, 3.2 equivalents) were added to a stirred suspension of 2 (200 mg, 0.218 mmol)
in toluene (7 mL) and ethanol (3.5 mL). The mixture was degassed by bubbling argon for 30 min.
Then, tetrakis(triphenylphosphine)palladium (0) (70 mg, 0.060 mmol) was added, and the mixture
was vigorously stirred and heated to 90 ◦C. After 48 h, the mixture was cooled to room temperature
and extracted with dichloromethane. The organic extracts were washed with water and dried over
magnesium sulfate, and then the solvent was evaporated. The residue was purified by chromatography
on silica gel by using dichloromethane/ethyl acetate/methanol/triethylamine (from 99/0/0/1 v/v/v/v to
47/47/5/1 v/v/v/v) to give Trux3Pyr (119 mg, 60%) as a pale yellow solid. 1H NMR (300 MHz, CDCl3): δ
8.73 (d, J = 8.7 Hz, 6H), 8.51 (d, J = 8.7 Hz, 3H), 7.77 (s, 3H), 7.75 (d, J = 8.7 Hz, 3H), 7.68 (d, J = 8.7 Hz,
6H), 3.09–2.99 (m, 6H), 2.26–2.17 (m, 6H), 1.00–0.83 (m, 12H), 0.68–0.54 (m, 12H), 0.47 (t, J = 8.7 Hz,
18H). 13C NMR (76 MHz, CDCl3): δ 154.57, 150.29, 148.28, 146.28, 141.17, 138.00, 136.17, 125.32, 125.24,
121.57, 120.54, 55.97, 36.78, 26.60, 22.86, 13.85. HRMS: found: 910.6043; calculated: 909.5961.

TruxNaph Self-Assembly
A mixture of Trux3Pyr (10 mg, 11 µmol, 2 equivalents) and the RuNaph complex (15.78 mg,

16.5 µmol, 3 equivalents) in methanol (2 mL) was stirred overnight at 50 ◦C. Then, diethyl ether
(5 mL) was added, and the resulting suspension was centrifuged and washed two times with diethyl
ether to give TruxNaph (21 mg, 4.5 µmol, 81%) as a dark solid. 1H NMR (300 MHz, MeOD): δ 8.47
(d, J = 6.3 Hz, 12H), 8.33 (d, J = 8.4 Hz, 6H), 7.83 (d, J = 6.3 Hz, 12H), 7.79 (m, 12H), 7.30 (s, 12H),
5.87 (d, J = 6.1 Hz, 12H), 5.64 (d, J = 6.1 Hz, 12H), 2.91–2.82 (m, 12H), 2.54–2.44 (m, 12H), 2.13 (s,
18H), 1.99–2.08 (m, 12H), 1.37 (d, J = 6.9 Hz, 36H), 0.86–0.74 (m, 12H), 0.48–0.03 (m, 30H), 0.35 (t,
J = 7.3 Hz, 18H), −0.14 (t, J = 7.0 Hz, 18H), −0.24–(−0.34) (m, 6H). 1H DOSY NMR (300 MHz, MeOD)
D = 2.99 × 10−10 m2

·s−1. FTICR-HRMS (m/z), [TruxNaph–3TfO−]3+: found: 1415.38771; calculated
1415.38762, [TruxNaph–4TfO−]4+: found: 1024.30249; calculated 1024.30257, [TruxNaph–5TfO−]5+:
found: 789.65157; calculated 789.65155.

TruxTetra Self-Assembly
A mixture of Trux3Pyr (13 mg, 14.3 µmol, 2 equivalents) and the RuTetra complex (22.66 mg,

21.4 µmol, 3 equivalents) in methanol (2.5 mL) was stirred overnight at 50 ◦C. Then, diethyl ether
(5 mL) was added, and the resulting suspension was centrifuged and washed two times with diethyl
ether to give TruxTetra (22 mg, 4.4 µmol, 85%) as a dark solid. 1H NMR (300 MHz, MeOD) δ 8.83–8.79
(m, 12H), 8.59 (d, J = 6.2 Hz, 12H), 8.21 (d, J = 8.4 Hz, 6H), 8.04–7.98 (m, 12H), 7.74 (d, J = 6.2 Hz, 12H),
7.68 (d, J = 8.4 Hz, 6H), 7.63 (s, 6H), 6.04–6.01 (m, 12H), 5.80–5.78 (m, 12H), 3.01–2.92 (m, 6H), 2.80–2.70
(m, 6H), 2.38–2.28 (m, 6H), 2.23 (s, 18H), 2.01–1.82 (m, 12H), 1.37 (d, J = 6.9 Hz, 36H), 0.85–0.64 (m,
12H), 0.30 (t, J = 7.3 Hz, 18H), 0.28–0.11 (m, 18H), 0.02–(−0.15) (m, 12H), −0.36 (t, J = 7.1 Hz, 18H),
(−0.34)–(−0.40) (m, 6H). 1H DOSY NMR (300 MHz, MeOD) D = 2.85 × 10−10 m2

·s−1. FTICR-HRMS
(m/z), [TruxTetra–3TfO−]3+: found: 1515.41921; calculated 1515.41892, [TruxTetra–4TfO−]4+: found:
1099.32576; calculated 1099.32605, [TruxTetra–5TfO−]5+: found: 849.67041; calculated 849.67033.

3.4. X-Ray Crystallographic Analysis

X-ray single-crystal diffraction data were collected at 150 K on an Agilent SuperNova diffractometer
equipped with an Atlas CCD detector and micro-focus Cu Kα radiation (λ = 1.54184 Å). The structures
were solved by direct methods, expanded, and refined on F2 by full matrix least-squares techniques
by using SHELX (G.M. Sheldrick, 2008–2016) package. All non-hydrogen atoms were anisotropically
refined, and the H atoms were included in the calculation without refinement. Multiscan empirical
absorption was corrected with the CrysAlisPro program (CrysAlisPro 1.171.38.41r, Rigaku Oxford
Diffraction, 2015).
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The three structure refinements showed disordered electron density that could not be reliably
modeled, and the program PLATON/SQUEEZE was used to remove the corresponding scattering
contribution from the intensity data. This electron density can be attributed to solvent molecules
(n-hexane for Trux3pyr, methanol for TruxNaph and TruxTetra) and missing triflate molecules (CF3SO3

anions for TruxNaph and TruxTetra). The assumed solvent composition and missing anion molecules
were included in the calculation of the empirical formula, formula weight, density, linear absorption
coefficient, and F(000).

Crystallographic data for Trux3pyr: C138H164N6, M = 1906.75, colorless prism, 0.203 × 0.192 ×
0.047 mm3, monoclinic, space group Pn, a = 11.7717(4) Å, b = 28.966(1) Å, c = 16.9134(4) Å,β = 91.318(2)◦,
V = 5765.6(3) Å3, Z = 2, ρcalc = 1.098 g/cm3, µ = 0.470 mm−1, F(000) = 2068, θmin = 3.03◦, θmax = 76.65◦,
25,637 reflections collected, 15,430 unique (Rint = 0.0459), parameters/restraints = 1247/4, R1 = 0.0759
and wR2 = 0.2084 using 12,872 reflections with I > 2σ(I), R1 = 0.0869 and wR2 = 0.2305 using all data,
GOF = 1.058, absolute structure parameter = 0.1(8), −0.275 < ∆ρ < 0.454 e.Å−3. CCDC 1956952.

Crystallographic data for TruxNaph: C268H418F18N6O70Ru6S6, M = 5984.84, black prism, 0.262
× 0.201 × 0.157 mm3, trigonal, space group P3121, a = 25.1943(5) Å, b = 25.1943(5) Å, c = 42.5843(7)
Å, α = 90◦, β = 90◦, γ = 120◦, V = 23409(1) Å3, Z = 3, ρcalc = 1.274 g/cm3, µ = 3.364 mm−1, F(000)
= 9450, θmin = 2.90◦, θmax = 72.812◦, 124745 reflections collected, 30645 unique (Rint = 0.0277),
parameters/restraints = 1107/45, R1 = 0.0503 and wR2 = 0.1546 using 15,980 reflections with I > 2σ(I),
R1 = 0.0771 and wR2 = 0.1904 using all data, GOF = 0.945, absolute structure parameter = 0.447(9),
−0.233 < ∆ρ < 0.200 e.Å−3. CCDC 1956951.

Crystallographic data for TruxTetra: C292H418F18N6O70Ru6S6, M = 6273.10, black prism, 0.35
× 0.34 × 0.31 mm3, trigonal, space group P3221, a = 25.0842(6) Å, b = 25.0842(6) Å, c = 43.3591(10)
Å, α = 90◦, β = 90◦, γ = 120◦, V = 23627(1) Å3, Z = 3, ρcalc = 1.323 g/cm3, µ = 3.360 mm−1, F(000)
= 9882, θmin = 2.27◦, θmax = 72.88◦, 1,250,008 reflections collected, 30,698 unique (Rint = 0.0493),
parameters/restraints = 1203/39, R1 = 0.0605 and wR2 = 0.1777 using 19,178 reflections with I > 2σ(I),
R1 = 0.0762 and wR2 = 0.1956 using all data, GOF = 0.965, absolute structure parameter = 0.204(7),
−0.387 < ∆ρ < 0.469 e.Å−3. CCDC 1956958.

4. Conclusions

In summary, two metalla-cages were synthetized from a hexa-alkylated truxene ligand and
hydroxyquinonato–bridged diruthenium complexes. While all starting components were achiral,
the resulting TruxNaph and TruxTetra ruthenium based self-assemblies were chiral. Remarkably,
only the homo-directional CC and AA enantiomers were observed in solution and in the solid state,
an observation which is explained by the combination of the space filling between both facing alkylated
truxene units and the tilt value of the lateral ruthenium panels. Work is now under progress to extend
this approach toward interlocked supramolecular systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/8/1/1/s1, NMR
spectra, cif files and check cif files of Trux3pyr, TruxNaph and TruxTetra.
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