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Abstract: Nickel is an essential cofactor for some pathogen virulence factors. Due to its low
availability in hosts, pathogens must efficiently transport the metal and then balance its ready
intracellular availability for enzyme maturation with metal toxicity concerns. The most notable
virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along
with their associated nickel transporters, storage reservoirs, and maturation enzymes have been
best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel.
Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters,
which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin
into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella
enterica Typhimurium are important in host colonization, while ureases play important roles in both
prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens
associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone
dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important
metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important
for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein.
The potential for pathogenic roles of many new Ni-binding components exists, based on recent
experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
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1. Introduction

Nickel (Ni) is well established as an essential cofactor for some pathogen virulence factors. While
the majority of studies on pathogens’ Ni enzymes relate to human pathogens, a sizable portion of
animal pathogens (Helicobacter hepaticus, Helicobacter mustelae, Ureaplasma diversum, Brucella species,
Campylobacter species) also use Ni-containing virulence factors (Table 1). In contrast, the literature on
Ni-dependent plant pathogens is scarce. This discrepancy reflects a fundamental difference between
plants and mammals: plants use nickel as a cofactor for urease, which they oftentimes make in
abundance, therefore reducing its availability to pathogens. On the other hand, mammals do not
synthesize any (known) Ni-requiring protein(s), hence (host) nickel is likely to be more available for
Ni-utilizing pathogens. Still, the intestinal microflora of mammals is comprised of many Ni-utilizing
members, such as urease-producing lactobacilli and Bifidobacterium species, or gut methanogens relying
on nickel-dependent coenzyme M reductase [1]; those are likely to compete for nickel with pathogens.
Interestingly, there is a strong link between nickel pools in plants (e.g., urease-bound) and mammals
nickel pools, as plants are one of the main dietary sources of nickel for mammals.

The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease,
both of which have been shown to be important for pathogen virulence in various organisms [2–4]. Both
hydrogenase and urease, along with their associated nickel transporters, storage reservoirs, maturation
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enzymes, and nickel-dependent regulators have been best-studied in the gastric pathogen H. pylori, so
much of our review will discuss the nickel-metabolism factors in the gastric pathogen. Nevertheless,
significant progress has been made towards understanding the role of [NiFe] hydrogenases in enteric
pathogens, especially in S. Typhimurium; this microbe will thus be covered in our review as well.
Also, urease enzymes play important roles in eukaryotic pathogens belonging to the Cryptoccoccus
genus, as well as in prokaryotic pathogens such as P. mirabilis and Staphylococcus spp., which are
causative agents of urinary tract infections (UTIs). Since the synthesis, structure, and catalytic activity of
ureases and hydrogenases have been recently presented and discussed in comprehensive reviews [5–9],
these aspects will not be covered in the present review. Likewise, H. pylori hydrogenase and urease
maturation, as well as NikR-mediated gene regulation, have been extensively reviewed by our group
and others [3,10–12], hence they will not be discussed herein.

Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD) [6,13], Ni-superoxide
dismutase (SOD) [14,15], and Ni-glyoxalase I (GloI) [6,16] play important metabolic or detoxifying
roles in a few pathogens; little is known about their contribution to pathogenicity; nevertheless, their
role will be briefly discussed. The hypothetical or demonstrated role of all Ni-enzymes in pathogens is
summarized in Table 1.
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Table 1. List of eukaryotic and prokaryotic pathogens with Ni-enzymes and their putative or demonstrated role in pathogenesis.

Pathogen Ni-Enzyme * Role in Pathogenesis (Reference)

EUKARYOTES

Human fungi
Cryptococcus neoformans Ure Virulence factor in experimental cryptococcosis [17]

Required for microvascular sequestration and mouse brain invasion [18]
Modulates phagolysosomal pH; important for mouse brain infection [19]

Released via extracellular vesicles [20]
Cryptococcus gattii Ure Virulence factor in mice [21]

Coccidioides posadasii Ure Coccidioidomycosis in mice [22,23]
Histoplasma capsulatum Ure Released via extracellular vesicles [24]

Paracoccidioides brasiliensis Ure Up-expressed in mouse infection model [25]
Oomycetes

Pythium insidiosum Ure Putative virulence factor for pythiosis [26]
Protists

Leishmania major Glo-I Important for parasite metabolism: methylglyoxal detoxification [27]
Leishmania donovani Glo-I Essential for growth; suggested as drug target [28]
Trypanosoma cruzi Ard Important for parasite metabolism: methionine salvage pathway

Glo-I Important for parasite metabolism: methylglyoxal detoxification [29]

PROKARYOTES

Actinobacteria
Actinomyces naeslundii Ure Needed in acidic environment; promotes plaque formation [30]

Corynebacterium urealyticum Ure Plays an important role in urinary tract infection [31]
Mycobacterium tuberculosis Hyc Essential for optimal growth [32]

Up-regulated during infection of human macrophage-like cells [33]
Up-expressed in resting and active murine bone marrow macrophages [34]

Ure Important for survival under nitrogen-limited environment [35]
Streptomyces scabies Sod Important against oxidative stress encountered in host (plant)
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Table 1. Cont.

Pathogen Ni-Enzyme * Role in Pathogenesis (Reference)

Firmicutes
Clostridia Glo-I Important for metabolism: methylglyoxal detoxification [36]

Staphylococcus aureus Ure Increased expression of structural and accessory genes in biofilms [37]
Required for acid response and persistent murine kidney infection [38]

Decreased activity in mixed source (S. epidermidis) biofilms [39]
Staphylococcus epidermidis Ure Decreased activity in mixed source (S. aureus) biofilms [39]

Staphylococcus saprophyticus Ure Important for bladder infection and bladder stones in rats [40]
Streptococcus salivarius Ure Important as source of nitrogen and to combat acid stress [41]

Mollicutes
Ureaplasma urealyticum Ure Role in human vaginal infection; used for diagnostic [42]

Ammonia contributes to PMF-driven ATP synthesis [43]
Ammonia generates struvite stone formation in rat bladders [44]

Ureaplasma parvum Ure Role in human vaginal infection; used for diagnostic [42]
Ureaplasma diversum Ure Role in vaginal infection of cattle and small ruminants [45]

Proteobacteria
Alphaproteobacteria

Brucella abortus Ure Needed for intestinal colonization in a murine model [46]
Immunization with B. a. urease protects against B. abortus infection in mice [47]

Brucella melitensis Ure Immunization with B. a. urease protects against B. melitensis in mice [47]
Brucella suis Ure Required for intestinal colonization in a murine model [48]

Immunization with B. a. urease protects against B. suis infection in mice [47]
Betaproteobacteria

Neisseria meningitides Glo-I Important for methylglyoxal detoxification and potassium efflux (hypothesized)
Neisseria gonorrhoeae Glo-I Important for methylglyoxal detoxification and potassium efflux (hypothesized)

Gammaproteobacteria
All γ-proteobacteria Ard Important for metabolism: methionine salvage pathway
All γ-proteobacteria Glo-I Important for methylglyoxal detoxification, potassium efflux

Acinetobacter baumannii Ure Virulence factor in worm and amoeba hosts [49]
Acinetobacter lwoffii Ure Needed to survive in the stomach [50]
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Table 1. Cont.

Pathogen Ni-Enzyme * Role in Pathogenesis (Reference)

Actinobacillus Ure Important for swine respiratory tract infection [51,52]
pleuropneumoniae Hyd-1 Important for (PMF-driven) metabolism and motility

Escherichia coli Hyd-2 Important for (PMF-driven) metabolism and motility
Hyc Needed (as part of FHL) to dissipate formic acid-induced acidity [53]

E. coli (Shiga-toxin producing) Ure Needed for colonization in the murine model [54]
Edwardsiella tarda Hyd Hyd. accessory protein Sip2 essential for acid resistance and host infection [55]

Haemophilus influenzae Ure Important for acid resistance, expressed during human pulmonary infection [56]
Klebsiella pneumoniae Ure Required for colonization in murine intestinal model [57]
Morganella morganii Ure Needed for survival at low pH [58,59]

Proteus mirabilis Hyd Important for swarming motility [60]
Ure Role in persistence, urolithiasis, and acute pyelonephritis in a mouse model [61]

Role in extracellular crystal stone cluster formation in the bladder [62]
Induced in polymicrobial biofilms [63]

Providencia stuartii Ure Involved in crystal stones formation; induced in polymicrobial biofilms [59]
Pseudomonas aeruginosa Glo-I Important for methylglyoxal detoxification and potassium efflux (hypothesized)

Salmonella Typhimurium Hyd-1 Important for acid resistance and macrophage colonization [64]
Hyd-2 Most important hydrogenase for gut invasion [65,66]
Hyd-5 Expressed under aerobic conditions and in macrophages [64,67,68]

Hyc Important for anaerobic acid resistance [69]
Shigella flexneri Hyd Important for acid resistance [70]

Vibrio parahaemolyticus Ure Important for pathogenicity [71]
Yersinia enterocolitica Ure Important for survival at low pH [58,72]

Yersinia pestis Glo-I Important for methylglyoxal detoxification and potassium efflux (hypothesized)
Deltaproteobacteria
Bilophila wadsworthia Hyd H2 used as energy source, optimal growth in presence of H2 and taurine [73]

Epsilonproteobacteria
Campylobacter jejuni Hyd Important for chicken cecum colonization [74]

Essential for chicken colonization in absence of formate dehydrogenase [74]
Required for in vitro interaction with human intestinal cells [75]
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Table 1. Cont.

Pathogen Ni-Enzyme * Role in Pathogenesis (Reference)

Campylobacter concisus Hyd Essential for growth under microaerobic conditions [76]
Helicobacter hepaticus Hyd Role in amino-acid transport and causing liver lesions in mice [77]

Ure Promotes hepatic inflammation in mice [78]
Helicobacter mustelae Ure Essential for ferret stomach colonization [79]

Helicobacter pylori Hyd Needed for mouse stomach colonization [80]
Role in CO2 fixation [81]

Role in CagA translocation [82]
Ure Cytotoxic effect on Caco-2 cells [83]

Needed for nude mouse stomach colonization [84]
Essential for gnotobiotic piglet stomach colonization [85]

Activates human phagocytes and macrophages [86,87]
Binds to class II MHC on gastric epithelial cells and induces their apoptosis [88]

Essential for Mongolian gerbil colonization [89,90]
Urease-produced CO2 protects against host peroxynitrite [91]

Urease-produced ammonia disrupts tight cell junction integrity [92]
Dysregulates epithelial tight junctions through myosin activation [93]

Activates blood platelets through a lipoxygenase-mediated pathway [94]
Alters mucin gene expression in human gastric cells [95]

Essential for chronic mouse infection [96]
Role in angiogenesis, endothelial cells and chicken embryo models [97]

Induces blood platelets inflammatory pathways [98]
Non catalytic, oxidative stress-combatting role [99]

* Abreviations: Ard: acireductone dioxygenase; Glo-I: Glyoxalase I; Hyc: H2-evolving hydrogenase; Hyd: H2-uptake hydrogenase; Sod: superoxide dismutase; Ure: urease.
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2. Nickel Availability to Pathogens and Host-Mediated Influences

Nickel, more so than for other required metals, presents both a difficult acquisition and a
homeostasis problem for pathogens, ultimately due to its low availability within the host. Indeed,
nickel is found at less than 5 ppm (µg/g of ash) in most human organs [100]. Compared to other metals,
such as zinc, nickel is far less prevalent in organs: for instance it is found at a level of less than 1% of
the amount of zinc in the brain, heart, lung, or muscle, and the amount of nickel is less than 0.1% of
that of zinc measured in both the human liver and kidney [101].

To limit pathogen growth, animal hosts have developed metal sequestering strategies to abrogate
the invading pathogen [102]. Indeed, this is thought to be a key antibacterial mechanism used to inhibit
initial infection as well as to combat tissue-established ones. Metals are bound by the mammalian host
mucosa (a process termed “nutritional immunity”), and this is known to involve mucosal-associated
metal binding proteins [102,103]. Although we have significant knowledge of iron, zinc, and manganese
sequestering by pathogenic bacteria, and the competition between host and pathogen for these metals is
beginning to be understood [102,104,105], much less is known about these aspects with respect to cobalt,
nickel, and copper [105]. Recruited neutrophils at inflammation sites express metal-binding proteins,
such as calprotectin, lipocalin and lactoferrin. The role of the host defense protein calprotectin in zinc
binding and subsequent pathogen inhibition is well-established [105]; however, a recent study from
Nakashige and colleagues showed that coordination of Ni(II) at the hexahistidine site of calprotectin is
preferred over that for Zn(II) [106]. In agreement with this finding, calprotectin was shown to sequester
nickel away from two pathogens, S. aureus and K. pneumoniae, subsequently inhibiting their respective
urease activity in bacterial culture [106].

Although the antibacterial effects of the multifunctional globular protein lactoferrin are attributed
in part to its iron-binding capacity [107,108], the histidine and tyrosine ligands can bind other metals,
including nickel; therefore, a nickel-sequestering effect of lactoferrin towards pathogens should not
be ruled out. The same thinking might also apply to the peptide hormone hepcidin, a regulator of
host iron homeostasis, which binds both Fe and Ni (II) [109]. While the role of hepcidin in starving
pathogens of nickel has not been investigated, its antimicrobial activity via iron sequestering has been
well established [110]. The list of siderophilic pathogens affected by hepcidin-driven iron chelation
includes E. coli, Staphylococcus spp., including S. epidermidis and S aureus, group B Streptococcus bacteria,
Y. enterocolitica, and Candida albicans. In particular, one demonstrated role of hepcidin is to affect metals
levels within macrophages [111], so nickel availability may also be expected to be impacted for immune
cell-engulfed pathogens. It is well known that macrophages use metal (iron, copper, zinc) sequestration
to starve pathogens of essential metals [112]. Of relevance here is that one of the [Ni–Fe] H2-uptake
hydrogenases of S. Typhimurium (Hya or Hyd-1) is needed for survival within macrophages [64],
an environment in which this hydrogenase, as well as another one, Hyd-5, are greatly up-expressed.
Likewise, the hyc operon in Mycobacterium tuberculosis (encoding for a putative [Ni–Fe] H2-evolving
complex) is upregulated in human macrophage-like cells, as well as in resting or activated murine
bone marrow macrophages [33,34]. Similarly, urease has been shown to be important for survival in
macrophages of several pathogens, for instance that of A. pleuropneumoniae [51,52] or C. neoformans [19].
Thus, nickel starvation would be expected to be an immune cell strategy to attenuate pathogen growth.

Many more aspects of nickel restriction to pathogens by host metabolites need to be studied. For
example, although not specifically studied with regard to Ni(II), the divalent metal ion transporter
NRAMP1 can export metals out of the macrophage phagolysosome, thus restricting the metal availability
to the engulfed or intracellular pathogen [113]. It seems likely that some of the antipathogen affects
attributed to host iron restriction (or other metals starvation) actually employ nickel starvation as
a goal as well. However, host-mediated metal restriction aimed at exacerbating pathogens also
complicates metabolism for the host, as host processes are often metal-dependent as well. For example,
calprotectin-mediated zinc and manganese starvation attenuates S. aureus abscess infection [114], but
at the same time, the metal is needed for host enzymes and for normal immune processes [102].
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Regarding nickel restriction, no major effect on the host metabolism is expected, as the mammalian
hosts do not contain (known) Ni-dependent enzymes. This has caused several research groups to suggest
nickel sequestrations as a possible therapeutic approach to combat Ni-requiring pathogens [10,115,116].
For instance, targeting nickel trafficking pathways to prevent proper maturation of both the H2-uptake
[Ni–Fe] hydrogenase and the urease in the gastric pathogen H. pylori has been proposed by several
groups, including ours [10,116]. Similarly, a recent study identified the nickel requirement for C.
neoformans’s urease as the fungus’s “Achilles’ heels” [117]. However, one has to keep in mind that
hosts also contain Ni-requiring prokaryotic and eukaryotic microorganisms as part of their (healthy)
microbiota [1], thus multiple aspects of host physiology would be affected. Indeed, disruption of
nickel homeostasis in these microflora would be expected to lead to dysbiosis and subsequent health
consequences for the host. In this particular case, Ni-enzymes do not play a direct role in pathogenesis,
but rather they can be considered a “health-related factor” [118].

3. Ureases

Ureases, which catalyze the hydrolytic decomposition of urea into bicarbonate and ammonia,
play a dual role: (i) the ammonia produced by the enzyme is an important source of nitrogen for
microorganisms and (ii) both ammonia and bicarbonate can be used to neutralize the pH, thus allowing
urease-containing organisms to survive and even thrive in acidic environments [7]. Indeed, mammalian
pathogens encounter acid in transit through the stomach, on skin, within abscesses, and inside host
cells; the nickel-containing urease activity is thus an enzyme that is critical to many bacteria for
surviving acidic environments, for instance, H. pylori in the stomach. The acidic environment the
pathogen encounters may be while in transit (such as when temporarily residing in the gastric milieu)
whereby the pathogen is “surviving and seeking” a more hospitable host area, or may be encountered
while inside the (acidified) phagolysosome. Before its concentration in the kidneys, urea is present
in the bloodstream, thus in blood-rich organs. It is abundant in the blood, with levels estimated to
range between 2.5 and 7.1 mM; urea is also found in sweat, saliva, and gastric juices [38,119]. Saliva
levels in healthy individuals vary from 3 to 10 mM, albeit they can reach up to 15 mM in patients
with renal disease [120]. Urea is also present at high levels in the lungs (2–4 mM) and can be used by
urease-positive lung pathogens (e.g., H. influenzae, M. tuberculosis, K. pneumoniae, or C. neoformans) as
a nitrogen source and/or as a way to neutralize acidic pH; in fact, urease can be used as breath test
diagnosis of lung pathogens [121].

As stated above, in addition to its acid-neutralizing properties, urease hydrolyzes urea into
ammonium, an important nitrogen source for many pathogens, especially urinary tract pathogens
such as P. stuartii, Morganella spp., Pseudomonas spp., U. urealyticum, Klebsiella spp., P. mirabilis, and
others (see Table 1) [16]. Urea is extremely abundant in human urine; although urea levels fluctuate
widely, the average concentration is around 400 mM [119]. The formation of urinary stones is a
direct result of alkalinization of the urinary tract by these pathogens’ urease activity [63]. In this
case, Ni-related pathogenesis can be viewed as having several notable outcomes. While exacerbating
the host excretory system, the crystalline stones also provide a surface for the pathogen(s) to build
biofilms and augment its (their) growth [63]. Furthermore, synergistic induction of urease activity in
polymicrobial populations (belonging to the species listed above) leads to an increased incidence of
urolithiasis and bacteremia [59]. S. salivarius uses salivary urea both as a source of nitrogen and to
combat acid stress [41]. In S. aureus, a pathogen causing significant morbidity due to both acute and
chronic infections, the transcription of urease-associated (e.g., structural and accessory/maturation)
genes is up-expressed during bacterial biofilm growth [37]. This up-expression is considered to be one
component of its acid response network [37,122].

While most ureases are Ni-enzymes, there are a few exceptions. Interestingly, some gastric
Helicobacter species, such as H. mustelae (ferret), H. felis (big cats) and H. acinonychis (cheetah),
possess two distinct urease gene loci, ureABIEFGH and ureA2B2 [123,124]. The former encodes for a
nickel-containing urease (similar to that found in H. pylori) while the latter encodes for a nickel-free,
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iron-containing isoform [125]. Transcription of the ureABIEFGH operon is induced by the addition
of nickel, whereas transcription of ureA2B2 is upregulated by iron and downregulated by nickel; the
nickel-responsive transcriptional regulator NikR is involved in this dual Ni-dependent control [124].
The role of the iron-containing urease is not clear; however, the fact that it is only present in species
inhabiting the stomach of carnivores may reflect an evolutionary adaptation, according to the authors
of these studies [123–125]. Carnivores encounter an iron-rich, nickel-scarce diet [126] so infection
by these Helicobacter species could be limited if they were to possess only Ni-ureases. The flexibility
to produce either a Ni- or Fe-urease allows these Helicobacter species to colonize the gastric mucosa
regardless of their host’s diets.

We review here the role in pathogenesis of some of the best characterized microbial urease systems,
emphasizing perspectives on the most recently published findings.

3.1. H. pylori

H. pylori must first survive the harsh environment of the human stomach and then survive a
prolonged immune response that includes bombardment with oxidative radicals and oxidizing acids.
The most severe H. pylori-mediated disease is due to long term infection. Urease, which comprises
up to 10% of the total H. pylori proteome [127], is essential for the in vivo survival of H. pylori, as the
buffering molecules from urea hydrolysis are essential to maintain the pathogen’s cytoplasmic pH
close to neutral. The constant production of ammonia in H. pylori-infected patients with cirrhosis
can lead to blood hyperammonemia, which has been linked to a condition named minimal hepatic
encephalopathy (MHE). As expected, anti-H. pylori therapy led to a reduction in blood ammonia
levels, with subsequent improvement in MHE [128]. Besides the well-established acid-combatting role,
many additional roles have been attributed to H. pylori urease over the last 25 years (see Table 1). The
Ni-containing active form of urease is clearly required for initial colonization; however, several studies
suggest that non-neutralizing roles also exist for urease, and those may not even require the Ni-form.
For instance, a urease negative strain was unable to colonize a pH neutral pig stomach [85]. A recent
study from Debowski et al. found that urease is needed for persistence in the mouse gastric mucosa,
where pH approaches neutrality [96]. This is at first puzzling, since the main role of urease (to survive
the low pH) requires considerable expense in terms of number of maturation/accessory enzymes and
energy (in the form of GTP hydrolysis); this expenditure and Ni-drain should not occur (i.e., should
not be needed) when the bacterium occupies neutral pH environments. However, urease-expressing
bacteria are favored for survival/colonization in vivo over long time periods, while the pathogen
resides in the mucosa, so urease seems to be needed for chronic and persistent infection [96]. In
addition, urease is linked to gastric carcinoma incidence via its ability to promote angiogenesis [97];
the enzyme has been shown to induce proinflammatory cytokines, stimulate chemotaxis of neutrophils
and monocytes, and to induce apoptosis in gastric endothelial cells [88,98].

As previously stated, urease (UreAB) is the most abundant enzyme synthesized in H. pylori;
however, it appears most of it is never active as a ureolytic enzyme; this is probably due to limiting
extracellular (host) and intracellular nickel levels. Indeed, a study from Stingl and De Reuse estimated
that the fraction of nickel-activated urease ranged from 2% to 25% depending on growth conditions [129].
Therefore, this observation raises a question: why does H. pylori synthesize so much urease, if the
bulk of it is not activated and therefore is not useful to combat acidity? Perhaps much of the above
can be explained at the molecular level by a study indicating inactive urease plays a large role in
H. pylori survival, due simply to its amino acid residue composition. Indeed, a new role for urease
as an antioxidant or reactive oxygen-combating protein has been recently unveiled [99] (Figure 1).
Catalytically inactive urease was able to protect the pathogen from oxidative damage, via a Met residue
oxidant quenching mechanism. This mechanism does not require nickel, but requires surface Met
residues, that cycle between oxidized and reduced forms, yet it would seem that nickel is important
to facilitate the overall process, as the nickel containing version would be more stable to proteolysis
within the cell, and urease synthesis is up-expressed by nickel [130,131]. The UreAB heterodimer
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contains 25 Met residues; 11 of these are subject to oxidation and subsequent methionine sulfoxide
reductase (MSR) repair through a Met/Met-sulfoxide cycle [99]. In summary, both the catalytic and the
noncatalytic role(s) of urease are important for H. pylori initial infection and long-term persistence in
the host, as depicted in Figure 1.
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Figure 1. Dual role for H. pylori urease. (A) Holo (Ni-bound) urease can convert urea into ammonia and
carbon dioxide (catalytic activity, #1) and can protect against oxidative stress (nonspecific quenching
through Msr-repairable Met, activity #2). (B) Apo-urease (Ni-free) is non ureolytic yet it retains the
nonspecific oxidative stress combatting activity (#2).

3.2. S. aureus

S. aureus is both a commensal bacterium and a human pathogen. It colonizes approximately 30%
of the population asymptomatically; however, it can also cause infections ranging from mild skin and
soft tissue infections to invasive infections, including sepsis and pneumonia [132]. A recent study
by Zhou and coworkers examined the S. aureus urease response and its roles in host persistence [38].
The authors note that S. aureus combats many different host environments, and urease may have
very different roles in different pH conditions, in part due to the largely underappreciated differing
mode of action of strong versus weak acids on the cells. For example, weak acids such as acetate
enter the cytoplasm more easily than strong acids that fully dissociate in water. Therefore, the weak
acids cause macromolecular damage via intracellular proton release. Using a mutant strain analysis
approach, it was concluded that urease activity is important to cell viability under weak acid stress
conditions [38]. Kidney colonization was compared in a mouse bacteremia model; kidneys infected
with the S. aureus ∆ure mutant strain had significantly lower bacterial burden in the longer term (12 and
19-day) infections than did the wild type strain. The host immune response, as assessed by leukocyte
populations, did not differ between the two infected groups, so the absence of urease did not seem
to influence the immune response (i.e., to augment clearance). These authors postulate that urease
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is important for host skin survival, where S. aureus resides; indeed, human skin is a major reservoir
of this pathogen (for instance in sweat glands and hair follicles) and the authors reported that sweat
contains 22 mM urea and the skin pH ranges from 4 to 6.

Biofilms are a significant contributor to host colonization and subsequent virulence by many
pathogens, including S. aureus. Interestingly, a study from Resch et al. found increased expression of
some of the urease structural and accessory genes (in correlation with increased urease activity) in
biofilm-embedded S. aureus cells compared to planktonic cells of the same strain [37]. Connections
between staphylococcal biofilms, urease production, and antibiotic resistance were further analyzed
in a recent study [39]. When mixed biofilms composed of two species of Staphyloccoccus (S. aureus
and S. epidermidis) were compared to monospecies biofilms, the urease subunit genes as well as the
accessory protein genes were downexpressed in the mixed source. Since each species did not influence
survival of the other, and the initial ratios used in biofilm formation were maintained, it was therefore
determined that the cospecies influence on urease gene expression was specific to biofilm cultures [39].
According to the authors, S. epidermidis inhibits metabolic activity of S. aureus, leading to less acid
production. As a consequence, less urease activity is required to compensate for low pH. Importantly,
the two species used, S. epidermis and S. aureus, are oftentimes coisolated from biofilms on indwelling
medical devices [133].

3.3. P. mirabilis

P. mirabilis is a major cause of urinary stones and it also forms resilient crystalline biofilms on
catheters [63]. The initial formation of large clusters of the bacteria in the bladder lumen may be the
etiology of stone formation [62], and urease is considered to be one of the two most important virulence
factors in the initiation of cluster development [62,134]. In catheter-associated UTIs, urease-produced
ammonium and carbon dioxide bind with Mg2+ and Ca2+, respectively, found in the urine. These
minerals precipitate, forming crystalline deposits on catheters or/and aggregates that evolve into
macroscopic stones within the urinary system [135]. Adherent bacteria grow and the crystalline biofilm
enlarges, so that bacteria and crystals become tightly associated [134]. Later, bacteria can become
dissociated and begin the crystallization process elsewhere. P. mirabilis mutant strains that lack urease
are unable to form crystalline biofilms [134]. Note that the urea level in human urine is reportedly about
400 mM [119], the average nickel level is approximately 1.7 µg/L (ranging from 0.1 to 20 µg/L) [136]
and that the urease activity of P. mirabilis is especially robust.

Not much is known about P. mirabilis’ ability to import and sequester nickel. Based on
genome sequence analysis, P. mirabilis has two predicted Ni-transporters (nikAB and yntABCD); both
transcriptional units are induced in experimentally-infected mice compared with laboratory-grown
cells [63]. While it does not contain Ni-storage proteins, such as the ones found in H. pylori (Hpn,
Hpn-like and HspA); nevertheless, P. mirabilis contains two His-rich accessory proteins: UreE, a
putative urease accessory protein, contains a His-rich C-terminus domain (eight His residues out of
nine residues); HypB, a putative hydrogenase accessory protein, is unusually His-rich, as it contains
17% His; almost all His residues are located in the N-terminus part of PmHypB, bringing the percentage
of His residues to an astonishing 39% (Figure 2). It is possible HypB plays a dual role in both
hydrogenase and urease maturation in P. mirabilis, as previously demonstrated for both H. pylori [137]
and H. hepaticus [138]. In addition, the maturation accessory factor could serve as nickel storage or as a
sensor of Ni homeostasis status for the urinary tract pathogen but this remains to be shown.
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Figure 2. The P. mirabilis HypB hydrogenase accessory protein is exceptionally His-rich. The sequence
shown was translated from the hypB nucleotide sequence, as found in genome sequence of P. mirabilis
strain HI4320 [139]. His residues are shown in red. The His-rich sequence suggests PmHypB might play
additional roles in Ni-enzyme maturation and/or Ni-storage besides its expected role as hydrogenase
accessory protein.

The extracellular cluster of urease-containing P. mirabilis in the bladder lumen leads to a robust
immune response [62]. Adjacent to the P. mirabilis clusters at the bacteria–bladder interface in the
mouse model of UTI, neutrophil marker characteristics consistent with antimicrobial peptides in
neutrophil extracellular traps/webs and phagocytosed bacteria were all observed. Therefore, the
bacterium is likely to be subjected to significant oxidative stress in vivo, and it seems thus conceivable
that alternative roles of urease (such as the one recently described for H. pylori urease [99]), could occur
at these sites.

3.4. Ureaplasma spp.

Ureaplasma spp. include U. urealyticum, U. parvum, and U. diversum. The first two species are
responsible for vaginal infections in humans while the later species cause urogenital tract infection in
cattle and small ruminants [42,45]. As the name implies, Ureaplasma species are urease positive, to the
extent that the enzyme is actually used as genus-specific diagnostic [42]. At least in U. urealyticum, and
probably in other members of this Mollicute class, urease fulfils several roles: (i) the ammonia released
in the cytosol contributes to PMF-driven ATP synthesis [43]; (ii) the ammonia also increases the urinary
pH, leading to Mg precipitation and subsequent struvite stone formation, as shown in rat bladders [44].

3.5. Eukaryotic Pathogens

In contrast to metals such as copper, zinc, and iron, little is known of the roles of nickel in fungal
pathogenesis. Still, ureases play important roles in fungal pathogens, for example in C. neoformans and
in C. immitis (Table 1) [140]. In C. neoformans (responsible for human meningoencephalitis), Ni-urease
is an important factor for brain invasion, as shown in several independent studies [18,19]. The enzyme
can be found in extracellular vesicles, apparently used by the fungus to colonize host tissues [20].
Urease maturation components, sometimes referred to as accessory proteins or maturation chaperones,
largely resemble their bacterial counterparts [141]. Although the cryptococcal genome lacks ureE
and ureG homologs, one accessory protein, named Ure7, combines the nickel incorporation functions
normally assigned to both UreE and UreG [141]. In C. posadasii, the causative agent of San Joaqin Valley
fever, the extracellular ammonia generated (by urease) at sites of pulmonary infection contributes to
severity of the respiratory disease [23], and urease mutants are less virulent in a mouse intranasal
challenge [22]. A nickel permease homolog is present in the Aspergillus fumigatus genome, but the role
it plays is not known [140]. It is worth noting, however, that many fungal pathogens apparently have
no need for nickel, relying instead on a non-Ni, biotin-requiring urease to metabolize urea.

4. Hydrogenases

Hydrogenases are found in bacteria, archaea, and in some eukarya. They catalyze the conversion
of molecular hydrogen (H2) into protons and electrons and the reverse reaction, the generation of
H2 [142]. Three classes of hydrogenases have been defined, based on the metallic content of their
active site: [NiFe], [FeFe], and [Fe] hydrogenases. Several [NiFe] hydrogenases, (especially of the
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H2-uptake type) have been shown to be key to colonization and virulence in various organisms such
as H. pylori [80] or S. Typhimurium [143]. We review here the major findings on [NiFe]-mediated H2

use by pathogenic bacteria.

4.1. H. pylori

H2-uptake hydrogenase activity was first measured in whole cells of microaerobically grown H.
pylori, using an amperometric assay and various artificial and natural electron acceptors, including
oxygen [144]. The activity was subsequently shown to be specifically associated with membrane
fractions and within these membranes, the hydrogenase enzyme was shown to be poised at a redox
potential to oxidize H2 rather than to evolve the gas [144]. Based on genome sequence analysis, H.
pylori contains only one hydrogenase, of the H2-uptake type (hydABCDE operon). Transcription of the
hyd operon is controlled by various regulatory proteins in response to distinct stimuli (iron, nickel,
pH, H2); for instance, hyd genes are transcriptionally repressed by the apo (iron-free) form of Fur, the
ferric uptake regulator [145]. Furthermore, the transcription of each of the hydABC structural genes is
repressed in wild-type cells grown in nickel-supplemented medium; however, this repression is not
observed in a ∆nikR mutant [146,147]. Finally, H2 supplementation increases both hydA transcription
and H2-uptake hydrogenase activity in H. pylori [80]; however, neither the H2-sensing mechanism, the
H2-responding regulatory mechanism, nor the global H2-responsive proteome, has been characterized
in H. pylori.

A unique particularity of nickel trafficking in H. pylori is the interplay between the urease and
hydrogenase maturation pathways. Indeed, Olson et al. found that two of the hydrogenase accessory
enzymes, HypA and HypB, are required not only for hydrogenase maturation, but also for urease
maturation [137]. Additional studies from various groups (including ours) provided further evidence
of the interconnectivity between both maturation pathways. Indeed, HypA was shown to physically
interact with the urease accessory protein UreE [148,149], and a HypA-(UreE)2 heterotrimeric complex
able to bind nickel has been characterized [150]. Furthermore, nickel transfer between both proteins
(from HypA to UreE) was demonstrated [151]. Finally, HypB was also found to be physically associated
with another urease maturation protein, UreG [152].

Since the H. pylori hydrogenase Km for H2 is approximately 1.8 µM and the concentration of
dissolved H2 in animal and human stomachs is in the high micromolar-low millimolar range, the
enzyme is predicted to be chronically saturated with H2 [80,153,154]. The [Ni–Fe] hydrogenase is
important for virulence: the hydB mutant colonized only 24% of mouse stomachs, while 100% of
stomachs inoculated with the parent strain were colonized [80]. Recent studies have showed that
the energy (proton motive force, PMF) derived from H2 respiration can drive various important
cellular mechanisms in H. pylori. Firstly, a link between H2 utilization and CO2 fixation (in the form
of HCO3

−) was established in H. pylori [81]. It is interesting to note that this H2-stimulated CO2

fixation (also referred to as “H2-stimulated mixotrophy”) is a growth mode that has never been
described for a human pathogen [81]. Secondly, the hydrogenase-mediated H2 respiration can fuel
CagA (cytotoxin-associated gene A) translocation into host cells. CagA-positive strains have increased
adenocarcinoma incidence [155]. A carcinogenic derivative strain that had greater ability to translocate
CagA was found to have higher hydrogenase activity than its noncarcinogenic parent strain [82]. In
agreement with this result, a H. pylori ∆hyd hydrogenase deletion mutant was unable to translocate
CagA into human gastric epithelial AGS cells and the strain did not induce gastric cancer in gerbils [82].
By contrast, 50% of gerbils infected with the wild-type strain (hydrogenase positive, CagA translocating)
developed gastric cancers [82]. Finally, albeit a limited strain set was studied, a significantly higher
hydrogenase activity was measured in H. pylori strains isolated from cancer patients, compared to
those measured in strains isolated from gastritis patients [82]. Taken together, these results suggest a
correlation between the H. pylori Ni-hydrogenase and (CagA-mediated) cancer.
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4.2. H. hepaticus

H. hepaticus has been shown to induce liver disease in mice, as well as colitis, colorectal cancer,
inflammatory bowel disease (IBD), and prostate cancer [156,157]. Based on genome sequence, H.
hepaticus possesses only one [NiFe] H2-uptake membrane-bound hydrogenase [158]. Similar to what
was reported in H. pylori, hyp hydrogenase accessory genes are present, and mutations in either hypA
or hypB abolish both the hydrogenase and the urease activities [138]. Whole cells of H. hepaticus are
able to couple H2 oxidation to O2 uptake [159]. H2 concentrations measured in the livers of live
adult mice are above 50 µM, which means that H. hepaticus hydrogenase, with an apparent Km of
approximately 2.5 µM, is saturated with H2 [159]. Mehta and colleagues showed that the energy
derived from H2-oxidation can be used for amino acid uptake, eventually enhancing cell growth; this
dual phenotype was observed with the WT strain but not in a ∆hyaB mutant strain [77]. While there
was no significant difference in bacterial count numbers between WT and ∆hyaB mutant strains in the
liver or cecum of mice, various liver lesions were observed with the WT but not with the mutant [77].
To summarize, the H. hepaticus [NiFe] hydrogenase provides energy (in the form of PMF) to the cell,
aiding amino acid transport, bolstering growth and eventually contributing to liver pathogenesis, at
least in the established murine model.

4.3. S. Typhimurium

Similar to E. coli, the enteric pathogen S. Typhimurium contains four different [Ni–Fe] hydrogenases:
Hya (Hyd-1), Hyb (Hyd-2), Hyc (Hyd-3), and Hyd (Hyd-5) [67]. However, in contrast to E. coli
that contains two H2-uptake and two H2-evolving hydrogenases, S. Typhimurium possesses three
respiratory (H2-uptake) enzymes (Hya, Hyb, and Hyd) and only one H2-synthesizing enzyme (Hyc);
the latter forms the formate-hydrogen-lyase (FHL) system together with the formate dehydrogenase-H
(FDH-H), coupling H2 production to formate oxidation, similar to what has been described in E.coli [160].
Each of the three respiratory hydrogenases is coupled to a respiratory pathway that can use O2 as
the terminal electron acceptor [143,161]. However, S. Typhimurium can use many terminal acceptors
and it can be expected that they could all be coupled to H2 oxidation. The role of each respiratory
enzyme as well as their specific expression in various environments (murine macrophages, human
polymorphonuclear leukocyte (PMN)-like cells, and mice) was studied using a mutagenesis approach,
combined with RIVET (Resolvase In Vivo Expression Technology) [64]. The hya mutant was expressed
at low levels in all (mouse) locations tested (e.g., the ileum, the liver and the spleen) and its survival
in macrophages was decreased (compared to the WT), a phenotype attributed to the higher acid
sensitivity observed for this mutant [64]. The hyd (Hyd-5) gene was found to be highly expressed in
the liver and spleen, and weakly expressed in the ileum, at early stages of infection. In the late stages
of infection, hyd was expressed at high levels in all organs tested [64]. Expression of the hyb (Hyd-2)
gene could not be studied, due to a lack of stability of the hyb RIVET construct.

The role of each enzyme in physiology and virulence was assessed by constructing a series of
markerless mutants and testing them using the typhoid fever-mouse model [143]. Double-mutant
strains expressing only Hya (∆hyb ∆hyd) or only Hyd (∆hya ∆hyb) had lower virulence compared
to the WT. In contrast, the ∆hya ∆hyd double mutant strain retaining Hyb activity was almost as
virulent as the WT strain, suggesting Hyb is the most important hydrogenase for S. Typhimurium
virulence [66,162]. Interestingly, the triple mutant (∆hya ∆hyb ∆hyd) was found to be avirulent (100%
survival in the typhoid fever mouse model) [143]. This was confirmed by an independent study [163].

Based on the analysis of the S. enterica Typhi genome sequence, it appears the causative agent
of typhoid fever in humans has the same set of hydrogenases as S. Typhimurium. Given the results
of mouse studies with S. Typhimurium, it is expected that one or several of the [Ni–Fe] respiratory
hydrogenases of S. Typhi could play an important role in the pathogenicity of typhoid fever in humans.
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4.4. C. jejuni

C. jejuni, a leading cause of human diarrheal disease, is a microaerophilic bacterium that possesses a
unique, energy-conserving, membrane-bound [Ni–Fe] uptake-type hydrogenase [74,164]. The enzyme
is important for both C. jejuni’s growth and virulence. Indeed, in addition to carbon sources formate
and fumarate, the respiratory reductant H2 has been found to enhance growth of C. jejuni [74,165].
Disruption of the hydB gene led to abolition of hydrogenase activity, as expected, and the ∆hydB mutant
showed severe colonization deficiency of the chicken cecum (compared to the WT) but only in the
context of a ∆fdhA (formate dehydrogenase) mutant background [74]. Both ∆fdhA and ∆hydB single
mutants showed only modest reduced colonization compared to WT. Finally, the C. jejuni ∆hydB is
impaired in cell division (scanning electron microscopy revealed a filamentous phenotype) and is
unable to interact with either human intestinal cell lines (INT-407) or with primary chicken intestinal
epithelial cells [75]. Thus, similar to what has been observed in H. pylori (which belongs to the same
phylogenetic group, the ε-proteobacteria), the [NiFe] H2-uptake hydrogenase plays an important role
in C. jejuni metabolism and pathogenesis.

4.5. C. concisus

C. concisus has been found throughout the entire human oral-gastrointestinal tract. The bacterium
is associated with various ailments and diseases, such as gingivitis, periodontitis, inflammatory
bowel disease, including Crohn’s disease [166]. C. concisus contains genes encoding for two distinct
Ni-containing hydrogenase complexes: a H2-uptake type hydrogenase (“Hyd”) similar to those found
in other pathogenic ε-proteobacteriae (such as H. pylori or C. jejuni) and a H2-evolving type hydrogenase
similar to Hyd-3 (Hyc) and Hyd-4 (Hyf) complexes found in E. coli [167]. The former appears essential,
as it is possible to disrupt components of the Hyf complex (hyfB), whereas attempts to generate hyd
mutants were unsuccessful [167]. Furthermore, C. concisus has the highest H2-uptake hydrogenase
activity reported so far among pathogenic bacteria [167]. In agreement with these observations, H2 was
found to be needed for optimal growth under anaerobic conditions, and required for growth under
microaerobic conditions, highlighting the importance of the H2-uptake hydrogenase in the pathogen’s
metabolism [76,168].

4.6. S. flexneri

Shigella spp. including S. flexneri, S. boydii, S. sonnei, and S. dysenteriae, cause shigellosis (also
called bacillary dysentery). Shigella spp. are responsible for approximately 165 million illness episodes
worldwide, leading to an estimated 164,000 diarrhoeal deaths annually [169]. Based on genome
sequences, Shigella spp. have four predicted unidirectional hydrogenases: two H2-uptake enzymes,
Hya and Hyb, and two H2-evolving enzymes, Hyc and Hyf, although the role of the latter remains
elusive. McNorton and Maier used a targeted mutagenesis approach to address each enzyme’s
respective role in S. flexneri [70]. Both H2-uptake hydrogenases in S. flexneri, and more specifically
Hya, can combat severe acid stress through generation of abundant periplasmic proton pools that are
hypothesized to act as a barrier against proton influx from the outside [70]. Based on mutant strain
analysis, much of the H2 oxidation was attributed to the Hya hydrogenase: its activity was three-fold
activated within minutes of acid exposure. This acid activation phenomena has clear pathogen survival
consequences, as the Hya enzyme is the hydrogenase shown (in S. Typhimurium) to combat or to resist
phagolysosome killing, and a primary method of such killing by immune cells is acidification [170].

5. Other Ni-Dependent Enzymes

Besides urease and hydrogenase, three other Ni-dependent enzymes can be found in a few
pathogens: these are the Ni-activated forms of acireductone dioxygenase (ARD) [6,13], glyoxalase I
(GloI) [16], and superoxide dismutase (SOD) [15]. Although it could be argued that neither of these
three enzymes directly contributes to pathogenesis, the first two (ARD and GloI) play important
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roles in metabolism of their respective host, while the third (SOD) is a key contributor to oxidative
stress resistance in bacteria. Thus, all three Ni-enzymes are expected to play (to a certain degree) a
role in metabolism, growth, and virulence of their bacterial hosts. In support of this, heterozygous
glo-I mutants of L. donovani (causative agent of visceral leishmaniasis) were found to exhibit reduced
methylglyoxal detoxification, and glo-I null mutants were not viable, illustrating the importance of
Ni-GloI for this parasite [28].

5.1. Acireductone Dioxygenase (ARD)

The ARD enzyme has two different activities depending on whether it uses Fe2+ or Ni2+ as
cofactor [6,13]. The enzyme, which is part of the methionine salvage pathway, uses the same substrates
(1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and O2) regardless of the bound metal
(Fe2+ or Ni2+); however formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate
are produced in presence of Fe2+, whereas methylthiopropionate, carbon monoxide and formate are
produced in presence of Ni2+ [13]. Based on genome sequence analysis, the Ni-containing form of
ARD is expected to be found in all pathogenic γ-proteobacteriaceae, as well as in A. baumannii, P.
aeruginosa, and S. pneumoniae (Table 1). There is no known Ni-ARD in eukaryotes. The structure of the
K. pneumoniae Ni-ARD was revealed by Pochapsky and coworkers, using NMR and X-ray absorption
spectroscopy [171].

5.2. Ni-Glyoxalase I

The glyoxalase I (Glo1) enzyme, also called lactoylglutathione lyase, is part of a three-component
system aimed at detoxifying methylglyoxal, a chemical that forms adducts with DNA; besides GloI,
the system involves the thioesterase glyoxalase II (GloII) and reduced glutathione (GSH), the final
product of the detoxification pathway being d-lactate [6,16]. There are two distinct classes of GloI: a
Zn2+-dependent class and a Co2+/Ni2+-dependent class, both of which can be found in a variety of
eukaryotic and prokaryotic organisms [16]. The former (Zn-GloI) includes Homo sapiens, Saccharomyces
cerevisiae, and Pseudomonas putida, while the latter (Ni-GloI) was originally described in E. coli [172].
Since then, nickel has been shown to be the preferred cofactor of GloI in various prokaryotic pathogens
such as P. aeruginosa, N. meningitidis, and Y. pestis [173]. In addition, Clostridium acetobutylicum GloI
co-crystallized with nickel [36]. Based on sequence analysis, the authors of the study hypothesize
other clostridial GloI to be also Ni-activated, including those of pathogenic C. botulinum, C. perfringens,
and C. tetani [36]. Since S-lactoylglutathione, a product of GloI, has been shown to play an important
role in potassium efflux in E. coli [174], a similar role can be expected for pathogenic E. coli species,
as well as for the (Ni) GloI-containing bacteria cited above. In fact, based on genome sequence
analysis, the Ni-containing isoform of GloI is widespread among bacterial species. For instance, all
Enterobacteriaceae (including E. coli, Enterobacter spp., Klebsiella spp., Morganella spp., Proteus spp.,
Providencia spp., Serratia spp., Salmonella spp) are expected to have the Ni-GloI type. Finally, Ni-GloI
can also be found in protozoan parasites [175], including L. major [27] and T. cruzi [29]. Likewise,
the GloI homolog from L. donovani is also expected to be Ni-dependent, based on genome sequence
analysis. As stated above, the gloI gene is essential in L. donovani, leading the authors to identify GloI
as a potential drug target [28].

5.3. Ni-Superoxide Dismutase (Ni-SOD)

Superoxide dismutases (SOD), which catalyze the dismutation of superoxide radicals (O2
•−) into

molecular oxygen (O2) or hydrogen peroxide (H2O2), can be found in all domains of life. Three distinct
groups of SODs have been defined, based on amino acid sequence homology and preferred metallic
cofactors: Cu-Zn-SOD, Fe-SOD and Mn-SOD, and Ni-SOD [15]. The Ni-SOD are seldom encountered;
they were first described in a few species of the genus Streptomyces [176], including phytopathogenic
species such as S. scabies, S. acidiscabies, and other related species. More recently, the Ni-SOD gene (sodN)
has been found in cyanobacteria, marine γ-proteobacteria species, and in a marine eukaryote [177].
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6. Nickel Transport and Nickel Metallophores

Pathogens must provide soluble Ni(II) [15] to mobilize the metal into the key nickel enzymes
amongst an environment where this metal is in low availability (~0.5 nM) in the host [178]. A number
of Ni-binding strategies are used by the pathogens, and the transporters vary in subunit composition, in
Ni-binding affinity, and in chelating mechanism and chemistry. Several recent reviews have extensively
covered nickel import by bacteria, including in human pathogens [11,179,180]. Therefore, we will only
present the latest findings on nickel transport, and limit this to pathogens.

Like other transition metals, nickel needs to be first scavenged and imported from the extracellular
environment. These so-called “nickelophores” (by analogy to iron siderophores) are small molecules
which can chelate nickel ions before delivering it to specific transporters. Several recent studies have
deciphered the structure and the specificity of these metallophores. In the case of nickel, L-His and its
derivatives could play such roles [11,179]: for instance, in E. coli, a Ni–(L-His)2 complex with NikA
has been revealed by X-ray crystallography [181]. Likewise, S. aureus produces a nicotianamine-like
metallophore called staphylopine (StP) to acquire metals under metal-limited conditions [182]. At first,
StP was thought to be mostly zinc specific, but recent studies have demonstrated that it can also bind
nickel [183,184]. In P. aeruginosa, an organism best known for its high affinity siderophores pyochelin
and pyoverdin (the latter being a virulence factor), a recent study from Lhospice et al. has shown
that a staphylopine-like metallophore named pseudopaline is able to import nickel in metal scarce
environment [185].

In Gram-negative bacteria, the TonB/ExbB/ExbD machinery is needed to energize TonB-dependent
transporters, allowing them to transport metals, including nickel, across the outer membrane (OM).
For instance, the TonB-dependent FrpB4 protein has been shown to transport nickel through the OM in
H. pylori [186].

Two main types of high affinity transporters are used by bacteria to transport Ni(II) across
the cytoplasmic membrane. These are the ATP-binding cassette (ABC)-type transporters and the
“secondary” nickel/cobalt NiCoT transporters [180]. In addition, a subclass of ABC transporters has
been identified: the energy-coupling factor (ECF) transporter, which also requires ATP but uses a
membrane-embedded solute binding protein; instead, ABC transporters rely on a soluble periplasmic
binding protein (reviewed in [187]). So far, nine nickel ABC importers have been experimentally shown
to import nickel in vivo, and only three nickel-binding proteins from human pathogens have been
characterized: these are the C. jejuni NikZ, the B. suis NikA and the Y. pestis YntA [179].

Most prokaryotic pathogens mentioned in this review use both types of Ni-transporters.
For instance, H. pylori possess both the NiUBDE transporter (ABC-type) and the NixA
(NiCoT-type) [188,189]. Both NiuBDE and NixA function as nickel transporters independently of each
other, and they are the sole nickel transporters [189]. Although both NiuBDE and NixA participate in
nickel acquisition for urease activation, NiuBDE is the only transporter that can operate at both acidic
and neutral pH. Furthermore, NiuBDE is also able to transport cobalt or bismuth (this is important, as
bismuth is currently used in H. pylori eradication therapy), whereas NixA only transports nickel [189].
Finally, H. pylori nixA mutants retained some colonization ability in two different murine models, in
contrast to niuBDE mutants. The latter strains are unable to colonize mouse stomachs, indicating that
NiuBDE is required in vivo, but NixA is not [189,190].

In S. aureus, there are three distinct nickel transporters; however, they also fall into the two classes
discussed above. Indeed, S. aureus possesses two canonical ABC-importers, the NikABCDE and the
(recently discovered) CntABCDF systems, as well as the NixA system that belongs to the NiCoT
family [191–193]. The Nik system functions in metal-replete medium and is required for urease activity
as well as for urinary tract colonization [192]. In contrast to Nik, the multi-cation transporter Cnt
is expressed under zinc-depleted conditions. However Cnt also plays an essential role in S. aureus
virulence, as it contributes to colonization of the bladder and kidneys in an ascending urinary tract
infection model, as well as in systemic infections in mice [193]. Extracytoplasmic nickel-binding
components for the Nik and the Cnt ABC-type systems are SaNikA and SaCntA, respectively. A recent
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study, combining crystallography and mass spectrometry approaches, defined each protein’s substrate
specificity: SaNikA is able to bind either a Ni–(L-His)2 complex or a Ni–(L-His) (2-methyl-thiazolidine
dicarboxylate) complex (depending on their availability), while SaCntA binds Ni(II) via a different
histidine-dependent chelator; however, it cannot bind Ni–(L-His)2 [194].

In E. coli and other enterobacteria, only the ABC-type transporter Nik system is present. As
stated above, a Ni–(L-His)2:NikA complex was identified a few year ago [181]. It is worth noting
however that transport of Ni–(L-His)2 in E. coli is not a TonB-dependent process, since E. coli ∆tonB
mutants are still able to transport it inside the cell [195]. Interestingly, the nikABCDE gene cluster
of uropathogenic E. coli (UPEC) is up-expressed in urine samples isolated from UTI patients, as
compared to the same UPEC strain cultured in urine from healthy volunteers or grown in lysogeny
broth, suggesting that nickel transport is a key fitness factor for the bacteria during human UTI [196].
In agreement with this hypothesis, ∆nik mutants were shown to be compromised in fitness in the
mouse model of UTI [196]. Even though enterobacteria do not possess the second Ni-transport system
(NiCoT-type), it seems they have developed alternate strategies to import metals, including nickel.
Indeed, enterobacteria that encode the Yersinia high pathogenicity island (HPI), including strains of E.
coli, Klebsiella, and Y. pestis, secrete the metallophore Yersiniabactin (Ybt). Originally shown to chelate
iron ions during infection, Ybt can also bind extracellular nickel in UPEC [197]. Ni-Ybt complexes are
internalized, then metal-free Ybt is recycled outside the cell while the captured nickel is liberated for
use by Ni-requiring enzymes (i.e., hydrogenases and/or urease depending upon the bacterial species).
The authors hypothesize the Ybt system can chelate nickel ions that appear to be otherwise inaccessible
to the NikABCDE permease [197]. In Mycobacterium avium subsp. paratuberculosis, expression of the
dppA gene encoding for a Nickel/dipeptide transporter (ABC type) increased during early infection in
an epithelium-macrophage co-culture system [198].

Finally, while nickel importers play a major role in providing Ni-requiring enzymes with the
metallic cofactor, nickel exporters are equally important, as they ensure that intracellular nickel levels
do not reach toxic concentration. Several nickel export systems have been characterized. For instance,
the CznABC (cobalt zinc nickel) export pump of H. pylori was shown to play a critical role in both
nickel homeostasis and in vivo stomach colonization: czn mutants had higher urease activities, yet
they were unable to colonize in a Mongolian gerbil stomach animal model [199]. Likewise, a P. mirabilis
putative nickel export transporter (PMI1518) was found to be essential for CAUTI, in single-species
kidney colonization as well as in bladder and kidney colonization coinfection with P. stuartii [200].

7. Nickel Storage, Toxicity, and Metabolism

Among bacterial pathogens, mechanisms used to sequester and store nickel, as well as to remove
it due to its toxic properties on macromolecules, are best known for the gastric pathogen H. pylori.
This is not surprising as this bacterium contains two nickel enzymes (see above) that are key to the
pathogen’s in vivo survival. As such, its demand for nickel is great, but along with the high demand
necessarily goes risk for potential toxicity. Much of the bacterium’s regulatory mechanisms are based
on sensing nickel levels, thus on nickel-binding proteins. Nickel overload inside the cell is countered
by efflux mechanisms and by repression of nickel transport factors, while intracellular levels as well as
storage of the metal for later use in Ni-enzyme manufacture is mediated by proteins known within
the field as nickel storage proteins. The latter system involves two histidine-rich proteins (termed
Hpn and Hpn-like) as well as at least one chaperone (HspA) that plays multiple roles. Most likely, the
multiple Ni-binding proteins needed for eventual Ni-enzyme maturation have caused this bacterium
to develop complex and unique mechanisms for dealing with nickel. The physiological challenge
for the bacterium must then include requirements that minimally must encompass a critical need to
discriminately deliver nickel to at least two Ni-enzymes and probably to other proteins, dealing with
a very high nickel demand, recognizing nickel amongst a variety of (sometimes competing) metal
cations, and balancing metal need with toxicity due to the fluctuating reservoirs of the metal both
intracellularly and extracellularly.
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7.1. Hpn and Hpn-Like Proteins

H. pylori possess two proteins with remarkably high histidine content. These small His-rich
proteins, named Hpn and Hpn-like (referred to herein as Hpnl), contain 47% and 25% His, respectively.
Interestingly, both are confined to the gastric colonizing types of Helicobacters [201]. However, Hpn is
present in every gastric Helicobacter species, and Hpnl is restricted to H. pylori and its closely related
species H. acinonychis, originally isolated from cheetah [202].

These small proteins have apparently redundant functions to one another regarding roles in
nickel storage for urease manufacture. Recombinant Hpn exists primarily as a 20-mer with each
monomer binding five Ni (II) with a Kd of 7.1 µM [203]. Hpnl monomers bind two Ni (II) with a
Kd of 3.8 µM, but it also forms multimeric structures of more than 20 subunits [204]. While the His
residues are directly involved in nickel binding, as expected, the additional multiple Gln residues (in
Hpnl) are thought to improve stability of the metal complexes [205]. Strains carrying mutations in
hpn and hpnl are more sensitive to nickel toxicity, and they influence active urease maturation in a
nickel-dependent manner [206]. Nickel release from Hpn and Hpnl is observed under acidic conditions,
suggesting that these proteins may supply nickel when urease is also needed (e.g., to combat acidity,
see [207]). Expression of the storage proteins confers nickel resistance to E. coli, confirming their ability
to sequester excess nickel [201]. Based on studies with pure proteins or on H. pylori mutant strain
in-lab phenotypes, the initial suggestions that these proteins might play nickel storage roles in vivo
was supported by use of mice maintained under strict nickel-limited conditions [208] or NMRI-specific
pathogen-free mice [202]. H. pylori mutant strains lacking either Hpn, or Hpnl, or both storage proteins,
were poorer colonizers than their wild type counterparts, when the hosts (C57/Bl6 mice) were subjected
to nickel-deficient diets [208].

Purified Hpn was shown to interact with the UreA subunit of urease, while Hpnl interacted
most strongly uniquely with the HypA and HypB hydrogenase maturation proteins [202]. Also, Hpn
and Hpnl together impact intracellular nickel trafficking, and influence urease activity. However, the
authors of the study concluded that Hpn is the primary nickel sequestering reservoir, and that the
two storage proteins compete for nickel under low nickel conditions [202]. The result in low nickel
is “restricted activation” or basal levels of urease. In high nickel, where both storage proteins are
saturated, their nickel delivery roles would ensure Ni-activated levels of urease. In the suggested
model, Hpnl would thus not play a nickel detoxification role, due to its more limited capacity to bind
nickel and its lower abundance [202].

In contrast to the rather limited roles assigned to the two storage proteins by Vinella et al. [202],
the most recent work on the two nickel storage proteins [207] indicates they both play a much broader
role than previously reported. Considering their importance in virulence, it seemed reasonable they
may play roles in nickel-sensing, regulation, or delivery of nickel; this would likely require many
protein–protein interactions. An affinity pulldown approach was used, whereby cross-linking to
each storage protein was followed by a Ni-based purification/enrichment; the results indicate the
storage proteins interact with a wide array of proteins [207]. The storage proteins interacted with
known nickel delivery systems involved in urease and hydrogenase maturation, and hydrogenase
activity was severely diminished in a ∆hpn ∆hpnl double mutant strain when nickel was limited.
Interestingly, both storage proteins play roles in ammonia production independent of urease activity,
i.e., via amide hydrolysis. Indeed, Hpn and Hpnl were shown to synergistically suppress aliphatic
amidase (AmiE) activity [207]. This role makes sense from a physiological view, as the complementary
ammonia-producing enzyme (urease) is known to be made in large amounts when cells are provided
with nickel [130,131], and the aliphatic amidase AmiE plays a role in acid resistance especially in the
absence of urease [209]. In addition, interactions between Hpn and the aminopeptidase PepA were
observed [207]. PepA can accept a variety of divalent cations for its activation, and the study implicates
the storage proteins role in peptide salvage processes. The interactions between Hpn and Hpnl and
AmiE or PepA, respectively, were further confirmed by using purified proteins and a tryptophan (Trp)
fluorescence-based method, taking advantage of the concomitant presence of Trp residues in both
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AmiE and PepA and the lack of Trp in both storage proteins [210] (Figure 3). As expected, neither Hpn
nor Hpnl had measurable fluorescence, while both AmiE and PepA, as pure proteins, had observable
fluorescence profiles (Figure 3). The maximum fluorescence for both AmiE and PepA fell within the
previously established range for Trp fluorescence maxima [211]. Upon addition of either purified
Hpn or purified Hpnl, the fluorescence profile of AmiE and PepA shifted markedly (Figure 3). The
observed shift suggests that the storage proteins have either altered the microenvironment of the Trp
residues within the peptidase and amidase, or that they have caused conformational changes in the
target proteins that altered their fluorescence profiles [212]. Bovine serum albumin (BSA), a protein
that contains three Trp residues, was used as a negative control. Incubation of either Hpn or Hpnl had
no effect on the fluorescence profile of BSA (data not shown), confirming the specificity of the (AmiE
and PepA) interactions described above [210].
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Tryptophan fluorescence was recorded on a BioTek SynergyMx spectrophotometer (excitation at 295 nm
and emission at 315–415 nm). Samples were normalized against their respective (buffer-only) controls
and plotted as relative fluorescence against wavelength. See [210].

Ni-acquisition and peptide salvage, maturation of Ni-enzymes, and oxidative stress-combating
enzymes are some of the enzymes that may be impacted by interaction with the storage proteins
(199). Whether or not nickel delivery to or from these enzymes is involved is not known, and only a
few interactions were characterized [207]. Still, the cross-linking results supported that each protein
transiently but intimately interacts with perhaps 100 or more proteins. This may at first seems to be
a gross overestimate, but considering that (i) nickel metabolism plays a central role in H. pylori; (ii)
both storage proteins can bind other metals; (iii) both proteins apparently represent the major nickel
reservoirs in the cell; thus, a variety of sensing and delivery roles for Hpn and Hpnl seems more
possible. We must also remember that metal binding proteins may comprise a much larger fraction of
the total bacterial proteomes than previously appreciated [213].

7.2. HspA

HspA is a nickel-binding protein that has homology to the highly-conserved and essential heat
shock protein GroES. However, the H. pylori version has a unique His-rich C-terminus that binds nickel.
Although a strain lacking HspA is not recoverable (i.e., lethal), a strain lacking only the C-terminal
extension of HspA is viable, and it has been tested for virulence, i.e., mouse colonization capacity [214].
Although the strain had diminished hydrogenase activity and low tolerance to exogenous nickel,
the strain was normal in colonization capacity. Of course, this strain still had other nickel-binding
proteins. It would be interesting to perform the colonization assays in mice that have reduced nickel
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levels, to assess HspA’s role in nickel storage when the metal is limiting. Also, comparing a strain
lacking both the C-terminus His-rich extension of HspA as well as Hpn and Hpnl, to a strain lacking
only the two storage proteins could be an approach to evaluate the (additive) role of HspA in the
overall Ni-storage budget. HspA has long been considered to be a candidate for use as anti-H. pylori
vaccine. Partial protection against H. pylori in mice was observed after intranasal administration of
HspA [215]), while the interesting goal of expressing HpHspA in a probiotic bacterium (Lactococcus
lactis) was unfortunately not successful [216].

8. Conclusions

As a required cofactor for some key enzymes, most notably hydrogenase and urease, nickel clearly
plays roles in microbial pathogenesis. Still, new information on the role of the metal in pathogens that
have other Ni-enzymes is needed, and it is hypothesized that more proteins that use nickel, or respond
to fluctuating nickel levels, will be identified. In addition to uncovering the molecular mechanisms
of nickel trafficking and homeostasis in the Ni-requiring pathogens, large gaps in our knowledge on
nickel in vivo availability exist. These include understanding the dietary nickel sources, host metabolic
factors that modulate accessibility of nickel to the pathogens and how nickel availability in the host
is impacted by the (Ni-utilizing) host intestinal microbiota composition. These represent just some
research areas that are in need of development. Availability of the metal within the host certainly varies,
and it is important that we know how generally accessible the metal is within specific host organs,
specific tissue types, and within specific host cell (e.g., epithelial cell, immune cell, blood cell) types.
Finally, one promising avenue for future nickel-related research is the fact that numerous mammalian
pathogens (at least 39 prokaryotes and nine eukaryotes) require the metal (for various enzymes, e.g.,
Ni-ARD, Ni-GloI, [Fe-Ni] hydrogenase, urease, and Ni-SOD), while their host do not; this presents
an opportunity to specifically target pathogens via nickel sequestration. It seems such sequestration
naturally occurs in higher plants, since plants use nickel (in the form of Ni-urease), while at the same
time, the number of nickel-utilizing plant pathogens is very limited: indeed, only S. scabies and a few
other related Streptomyces species are known plant pathogens that contain a Ni-enzyme (Ni-SOD).
This interesting two-kingdom conundrum (plants use nickel/few Ni-requiring pathogens; mammals
do not require nickel/many Ni-utilizing pathogens) not only gives us insights on the evolution of
host/pathogens competition for nickel, but can perhaps provide us with a roadmap for future projects
aimed at inhibiting or eradicating the nickel-requiring human or mammal pathogens.
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