
inorganics

Article

Hydrogenase Biomimetics with Redox-Active Ligands:
Synthesis, Structure, and Electrocatalytic Studies on
[Fe2(CO)4(κ2-dppn)(µ-edt)] (edt = Ethanedithiolate;
dppn = 1,8-bis(Diphenylphosphino)Naphthalene)

Shishir Ghosh 1,2,3,* , Shahed Rana 2, Nathan Hollingsworth 3, Michael G. Richmond 4 ,
Shariff E. Kabir 2 and Graeme Hogarth 1,*

1 Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
2 Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;

srana_ju@yahoo.com (S.R.); skabir_ju@yahoo.com (S.E.K.)
3 Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK;

Nathan.Hollingsworth@infineum.com
4 Department of Chemistry, University of North Texas, 1155 Union Circle, Box 305070, Denton, TX 76203, USA;

cobalt@unt.edu
* Correspondence: sghosh_006@yahoo.com (S.G.); graeme.hogarth@kcl.ac.uk (G.H.)

Received: 28 August 2018; Accepted: 9 November 2018; Published: 20 November 2018
����������
�������

Abstract: Addition of the bulky redox-active diphosphine 1,8-bis(diphenylphosphino)naphthalene
(dppn) to [Fe2(CO)6(µ-edt)] (1) (edt = 1,2-ethanedithiolate) affords [Fe2(CO)4(κ2-dppn)(µ-edt)]
(3) as the major product, together with small amounts of a P–C bond cleavage product
[Fe2(CO)5{κ1-PPh2(1-C10H7)}(µ-edt)] (2). The redox properties of 3 have been examined by cyclic
voltammetry and it has been tested as a proton-reduction catalyst. It undergoes a reversible reduction
at E1/2 = −2.18 V and exhibits two overlapping reversible oxidations at E1/2 = −0.08 V and E1/2
= 0.04 V. DFT calculations show that while the Highest Occupied Molecular Orbital (HOMO) is
metal-centred (Fe–Fe σ-bonding), the Lowest Unoccupied Molecular Orbital (LUMO) is primarily
ligand-based, but also contains an antibonding Fe–Fe contribution, highlighting the redox-active
nature of the diphosphine. It is readily protonated upon addition of strong acids and catalyzes the
electrochemical reduction of protons at Ep = −2.00 V in the presence of CF3CO2H. The catalytic
current indicates that it is one of the most efficient diiron electrocatalysts for the reduction of protons,
albeit operating at quite a negative potential.

Keywords: hydrogenase biomimetics; dithiolate; proton-reduction; dppn; redox-active

1. Introduction

Interest in dithiolate-bridged diiron complexes [1–7] continues since they closely resemble the
two-iron unit of the active site (H-cluster) of [FeFe]-hydrogenases [8,9]. Consequently, over the
past 20 years, the synthesis, structural characterization, and redox properties of a diverse range of
diiron-dithiolate complexes has been studied [1–7,10–13], most focusing on their role as electrocatalysts
for proton-reduction [14,15], but also in hydrogen oxidation [16–22]. Diphosphine complexes,
[Fe2(CO)4(κ2-diphosphine)(µ-dithiolate)], containing a chelating diphosphine are of special interest as
they contain an unsymmetrical, redox-active, diiron centre and normally protonate rapidly to afford the
corresponding hydride-cations, [Fe2(CO)4(µ-H)(κ2-diphosphine)(µ-dithiolate)]+ [10–28]. Incorporation
of redox-active ligands to the diiron center has also recently gained prominence [29–48] since the
two redox systems can (potentially) interact electronically, acting in a cooperative manner [32,34,36],
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thus mimicking the communication relay between diiron and tetrairon sites that regulates
enzyme activity [8,9,36,46–48]. Diphosphines bearing an extended π-system in their backbone,
such as 1,8-bis(diphenylphosphino)naphthalene (dppn) [49] and 2,3-bis(diphenylphosphino)maleic
anhydride (bma) [50], are attractive surrogates of the tetrairon site due to the availability of
a low-lying π*-orbital delocalised over the ligand backbone. Their incorporation may both
lower the reduction potential of the biomimetic by accommodating the incoming electron in
the π*-orbital, while also potentially facilitating electronic communication. Examples of diiron
biomimetics containing these diphosphines are rare. In 2010, Schollhammer and co-workers reported
studies on the bma complex, [Fe2(CO)4(µ-pdt)(κ2-bma)], which has a relatively low reduction
potential (E1/2 = −0.89 V); DFT studies showing that reduction is predominantly ligand-based [33].
Unfortunately, [Fe2(CO)4(µ-pdt)(κ2-bma)] is inactive for proton-reduction, the lack of activity being
attributed to the large gap between the redox potentials of the diiron and diphosphine sub-units,
thus retarding proton-coupled electron-transfer [33]. In 2011, Camara and Rauchfuss reported
the dppn complex, [Fe2(CO)4{µ-(SCH2)2NCH2Ph}(κ2-dppn)], and showed that its radical cation
could catalyze hydrogen oxidation in the presence of an oxidant, being a thousand times faster
than the related trisubstituted derivative, [Fe2(CO)3(PMe3){µ-(SCH2)2NCH2Ph}(κ2-dppv)]+

[dppv = cis-1,2-bis(diphenylphosphino)ethylene] [35]. As far as we are aware,
[Fe2(CO)4{µ-(SCH2)2NCH2Ph}(κ2-dppn)] was not examined for its proton-reduction behaviour;
indeed, no diiron dppn complex has previously been examined in this capacity. Consequently, herein,
we report the preparation and characterisation of the simple dppn complex, [Fe2(CO)4(κ2-dppn)(µ-edt)]
(3), together with an investigation of its proton-reduction ability.

2. Results and Discussion

2.1. Synthesis and Characterization

The Me3NO-initiated reaction between [Fe2(CO)6(µ-edt)] (1) and dppn in boiling MeCN gave two
new diiron complexes: [Fe2(CO)5{κ1-PPh2(1-C10H7)}(µ-edt)] (2) and [Fe2(CO)4(κ2-dppn)(µ-edt)] (3)
in an 8% and 44% yield, respectively (Scheme 1). While 3 was the anticipated product, isolation
of 2 was unexpected since it results in a carbon–phosphorus bond cleavage of dppn, generally
requiring more extreme robust experimental conditions than those employed here. Complex 2 could
be formed via direct reaction between 1 and Ph2PNaph (possibly present as an impurity), however,
we have no evidence of this as the purity of the dppn used was confirmed spectroscopically by
31P{1H} NMR. Dppn activation at di- and polynuclear carbonyl centres has precedent; formation of
diphenyl(1-naphthyl)phosphine {PPh2(1-C10H7)}, being previously reported by us and others [51,52].
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Scheme 1. Reaction of [Fe2(CO)6(µ-edt)] (1) with dppn.

Structural characterization of both 2 and 3 was made on the basis of the crystal structure as shown
in Figures 1 and 2, respectively. The former contains a diiron core coordinated by five carbonyls,
a PPh2(1-C10H7), and a bridging edt ligand. The phosphine occupies an axial site, the Fe–P bond
distance of 2.2442(6) Å being very similar to those reported for other [Fe2(CO)5(phosphine)(µ-edt)]
complexes [26]. The Fe–Fe bond distance [2.5036(4) Å] is not affected by the phosphine substitution,
being the same (within experimental error) as that in the parent hexacarbonyl 1 [2.5032(5) Å] [53].
Spectroscopic data indicate that the solid-state structure persists in solution. The carbonyl region of
the IR spectrum shows a characteristic absorptions pattern for [Fe2(CO)5(phosphine)(µ-dithiolate)]
complexes, while the 31P{1H} NMR spectrum displays a singlet at 61.1 ppm. The 1H NMR spectrum is
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not very informative, but shows two multiplets centred at 1.58 and 0.65 ppm (each integrating to two
protons) attributed to the methylene protons of the edt-bridge, in addition to naphthyl and phenyl
proton resonances in the aromatic region.
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Figure 1. Molecular structure of [Fe2(CO)5{κ1-PPh2(1-C10H7)}(µ-edt)] (2) showing 50% probability
thermal ellipsoids. Hydrogen atoms are omitted for clarity. [Selected bond distances (Å) and angles (◦):
Fe(1)–Fe(2) 2.5036(4), Fe(1)–P(1) 2.2442(6), Fe(1)–S(1) 2.2501(6), Fe(1)–S(2) 2.2611(6), Fe(2)–S(1) 2.2520(6),
Fe(2)–S(2) 2.2470(6); P(1)–Fe(1)–Fe(2) 155.755(18), P(1)–Fe(1)–S(1) 107.76(2), P(1)–Fe(1)–S(2) 106.08(2),
P(1)–Fe(1)–C(1) 96.08(6), P(1)–Fe(1)–C(2) 95.55(6)].
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Figure 2. Molecular structure of one independent molecule of [Fe2(CO)4(κ2-dppn)(µ-edt)] (3)
showing 50% probability thermal ellipsoids. Hydrogen atoms are omitted for clarity. [Selected bond
distances (Å) and angles (◦): Fe(1)–Fe(2) 2.5377(8), Fe(1)–P(1) 2.1756(9), Fe(1)–P(2) 2.1970(9), Fe(1)–S(1)
2.2478(9), Fe(1)–S(2) 2.2475(9), Fe(2)–S(1) 2.2526(9), Fe(2)–S(2) 2.2575(9); P(1)–Fe(1)–Fe(2) 155.21(3),
P(2)–Fe(1)–Fe(2) 109.71(3), P(1)–Fe(1)–P(2) 88.14(3), P(1)–Fe(1)–S(1) 105.86(4), P(1)–Fe(1)–S(2) 107.90(3),
P(1)–Fe(1)–C(1) 95.91(10)].

The molecular structure of 3 is complicated by the existence of two independent molecules in the
asymmetric unit linked via π-interactions of the naphthalene backbones [C(39)–C(40) and C(76)–C(77)
C···C 3.271–3.633 Å]. Both independent molecules are similar (bond lengths and angles do not differ
significantly), consisting of a diiron framework coordinated by four carbonyls, a chelating dppn, and an
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edt ligand, which bridges the diiron centre. The Fe(1)–Fe(2) bond distance [2.5377(8) Å] is slightly
elongated as compared to that of the parent hexacarbonyl 1 [2.5032(5) Å] [53], probably to minimize
the steric strain that accompanies dppn chelation. The dppn ligand is bound to Fe(1) occupying
the apical and one of the basal coordination sites in the solid-state with a bite angle of 88.14(3)◦.
The Fe–P bond distances [Fe(1)–P(1) 2.1756(9) and Fe(1)–P(2) 2.1970(9) Å] are slightly shorter than that
observed in 2, but are within the range reported for related [Fe2(CO)4(κ2-diphosphine)(µ-dithiolate)]
complexes [16–27,33]. Solution spectroscopic data of 3 are consistent with the solid-state structure.
The IR spectrum shows three absorptions at 2021 s, 1950 m, and 1901 w cm−1 for the carbonyls,
while the 31P{1H} NMR spectrum displays only a singlet at 68.4 ppm. The latter is associated with
the well-studied interconversion of apical-basal and dibasal isomers [19,20,22,41]. The 1H NMR
spectrum shows two doublets at 1.87 and 1.29 (J 7.8 Hz) ppm, each of which integrated for two protons,
for the methylene protons of the edt-bridge in addition to naphthyl and phenyl proton resonances
in the aromatic region. The 13C{1H} NMR spectrum at room temperature shows a broad resonance
at 206.8 ppm attributed to the three carbonyls on the unsubstituted iron centre, and a sharp triplet at
220.3 ppm (JP–C 19 Hz) for the fourth carbonyl. Upon cooling to −50 ◦C, the broad resonance splits
into two sharp singlets at 215.7 and 206.6 ppm (ratio 2:1) consistent with freezing out of the trigonal
rotation of the Fe(CO)3 moiety. No change is seen to the other carbonyl resonance and the 31P{1H}
NMR spectrum broadens only slightly at −50 ◦C showing that interconversion of axial and equatorial
phosphorus sites remains rapid even at this temperature.

2.2. Protonation

Addition of a slight excess of HBF4·Et2O to a CH2Cl2 solution of 3 resulted in the immediate
consumption of the latter as shown by IR spectroscopy. The appearance of new bands relating to two
cationic hydrides was apparent as identified as dibasal [Fe2(CO)4(µ-H)(κ2-dppn)(µ-edt)][BF4] (3bb)
(2081 s, 2021 vs, 1950 m, 1898 w cm−1) and apical-basal [Fe2(CO)4(µ-H)(κ2-dppn)(µ-edt)][BF4] (3ab)
(2097 vs, 2040 s, 1981 m, 1890 w cm−1). Over time, absorptions associated with 3bb diminished with
concomitant growth of the υ(CO) bands for 3ab being associated with the well-known isomerization
of the kinetically formed hydride isomer to that which is thermodynamically more stable [16–22].
The rate of isomerization was dependent on acid concentration, being slower at low concentrations.
With ca. 5 stoichiometric amounts of acid, immediate removal of excess acid and volatiles followed by
washing in Et2O allowed a clean IR spectrum of 3bb to be obtained. Attempts to observe the cationic
hydrides via NMR spectroscopy were unsuccessful, but it is clear from the IR data that they are formed
rapidly and cleanly.

2.3. Electrochemistry

Complex 3 has been investigated by cyclic voltammetry (CV) in MeCN, which shows a reversible
reduction wave at E1/2 = −2.18 V (∆E = 80 mV) and two overlapping reversible oxidative waves
at E1/2 = −0.08 V (∆E = 80 mV) and E1/2 = 0.04 V (∆E = 60 mV) (Figure 3). The CV does not
show any discernable change when the scan rate is varied (Figure S1). The reduction wave also
shows good chemical reversibility (ipox

/ipred = ~0.85), and plots of reductive and oxidative peak
currents of this reversible process against the square root of the scan rate give straight lines in
support of a diffusion-controlled process on the CV time scale (Figure S2). The current function
(ip/
√
ν) associated with reduction deviates from linearity only at slow scan rates (<0.05 V/s),

indicating that more than one electron may be involved in reduction at longer time scales
(Figure S3); otherwise, reduction of 3 is a one-electron process in MeCN. It is reduced at a similar
potential to related [Fe2(CO)4(κ2-diphosphine)(µ-dithiolate)] complexes containing non redox inactive
diphosphines [21,22,25], which suggests that reduction is diiron-centered (as confirmed by DFT).
Overlap of the two oxidative waves indicates that either the electrons are coming from separate parts
of the same molecule, otherwise, a considerable gap would be seen between the two oxidation peaks,
or 3 undergoes solvolysis after first oxidation to form probably [Fe2(CO)3(MeCN)(κ2-dppn)(µ-edt)]+,
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which reduces at the second oxidation potential. We can rule out the solvolysis because it would
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Figure 3. Cyclic Voltammogram (CV) of [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) in MeCN (1 mM solution,
supporting electrolyte [NBu4][PF6], scan rate 0.1 V·s−1, glassy carbon electrode, potential vs. Fc+/Fc).

The nature of the HOMO and LUMO in 3 (Figure 4) was evaluated by DFT in order to better
understand the role the dppn ligand plays, if any, in the observed reduction of proton to H2

(vide infra). The structure of 3 was optimized, and the geometry-optimized structure (not shown)
revealed excellent agreement with the experimentally determined structure depicted in Figure 2.
The HOMO for 3 (left) is localized over the two iron centers and is best viewed as an in-phase
Fe–Fe bond. The LUMO for 3 (right) exhibits the expected antibonding Fe–Fe interaction found
in related derivatives along with a significant orbital contribution from the naphthalene π system,
whose π* nodal properties are evident. The composition of the LUMO is best described as ligand-based
that contains an antibonding Fe–Fe contribution. The nodal pattern of the naphthalene π* in the
LUMO of 3 is comparable to the LUMO computed for the cluster [Fe4(CO)10(κ2-dppn)(µ4-O)] [54].
The dppn π* system makes a much smaller contribution to the LUMO in the Fe4 cluster relative
to the antibonding metallic core. The enhanced catalytic behavior exhibited by 3, vis-à-vis related
derivatives of [Fe2(CO)4(κ2-diphosphine)(µ-dithiolate)] whose ancillary diphosphine ligand does not
contribute to the LUMO, signals the importance of the redox-active dppn ligand in promoting effective
proton reduction.
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Figure 4. Plots of the HOMO (left) and LUMO (right) of [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) as computed
by DFT. Both plots were printed at an isovalue of 0.06. For the M06-optimized structure of 3, we have
utilized the Stuttgart-Dresden effective core potential and SDD basis set for the iron atoms and a
6-31G(d’) basis set for the remaining non-metal atoms.
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2.4. Catalysis

Complex 3 was tested as a proton reduction catalyst in the presence of CF3CO2H in MeCN solvent
(Figure 5 and Figure S4). Selected CVs recorded upon sequential addition of 1–7 molar equivalents of
acid are shown in Figure 5. Two new reduction peaks at Ep =−2.00 and−2.11 V are seen after addition
of one molar equivalent of CF3CO2H. The reduction potential shows ca. 0.2 V positive shift after
addition of CF3CO2H, suggesting the generation of cationic hydride. A small peak is also observed at
the reduction potential of 3 at a very low acid concentration (≤1 equivalent), which disappears at higher
acid concentrations (≥2 equivalents). Since CF3CO2H (pKa = 12.6 in MeCN) is a much weaker acid than
HBF4·Et2O (pKa = −0.1 in MeCN) [55], the latter is used for the protonation studies, which protonate
3 instantaneously, and we assume that protonation of 3 is slow at low CF3CO2H concentration.
The height of the peaks at Ep =−2.00 and−2.11 V increase with acid concentration and is characteristic
of electrocatalytic proton reduction by this complex at these potentials. It appears that 3 enters
into the catalytic cycle via a chemical step (protonation), followed by an electrochemical reduction,
which generates the neutral 35-electron complex [Fe2(CO)4(µ-H)(κ2-dppn)(µ-edt)]. This neutral
hydride can either protonate or undergo a further reduction before a second protonation to liberate
hydrogen. The CVs also show curve-crossing i.e., build-up of reduction current on the return scan
(ca.−1.80 V), in the presence of acid. This indicates that a more easily reducible product or intermediate
is formed during catalysis, most probably via a slow chemical reaction [56–60]. This product or
intermediate is sufficiently stable and its concentration increases as the concentration of acid is
increased and it diffuses back to the electrode to undergo reduction at a more positive potential [56–60].
A plot of the catalytic current/noncatalytic current ratio (icat/ip) against the concentration of acid
is shown in Figure 6 for the first catalytic wave. The icat/ip value increases to 20 after addition
of 10 equivalents of CF3CO2H. To our knowledge, very few biomimetic diiron systems developed
as models of the active site of [FeFe]-hydrogenases show such a high icat/ip value [14,30,31,61].
For example, [Fe2(CO)5(κ1-IMes)(µ-pdt)] [IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene],
which undergoes a two-electron reduction at −1.90 V vs. SCE, shows an icat/ip value of ~4 after
addition of 10 molar equivalents of CH3CO2H [61,62]. The icat/ip value serves as a measure of
the catalyst efficiency [61,63], and the values observed for 3 indicate that it is very efficient for the
reduction of protons to H2, although it operates at a very negative potential (−2.00 V). The highest
icat/ip value observed to date for electrocatalytic proton reduction is 38, shown by the nickel complex
[(PPh

2NPh)Ni]2+ (PPh
2NPh = 1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane) [64].
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Figure 5. CVs of [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) in the absence of acid and in the presence of 1–7
equivalents of CF3CO2H (in MeCN, 1 mM solution, supporting electrolyte [NBu4][PF6], scan rate
0.1 V·s−1, glassy carbon electrode, potential vs. Fc+/Fc). Response of 10 equivalents of CF3CO2H alone
is shown with the red dotted line.
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Figure 6. Dependence of icat/ip on CF3CO2H concentration for [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) at
potentials of the first catalytic wave (in MeCN, 1 mM solution, 1–10 equivalents of CF3CO2H,
supporting electrolyte [NBu4][PF6], scan rate 0.1 V·s−1, glassy carbon electrode).

3. Experimental

3.1. General Procedures

All reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques.
Reagent grade solvents were dried by the standard procedures and were freshly distilled prior to
use. [Fe2(CO)6(µ-edt)] (1) was synthesized according to the literature procedure [65]. IR spectra were
recorded on a Shimadzu FTIR 8101 spectrophotometer (Shimadzu Corporation, Kyoto, Japan) while
the NMR spectra were recorded on a Bruker DPX 400 instrument (Billerica, MA, USA). The chemical
shifts were referenced to residual solvent resonances or external 85% H3PO4 in 1H and 31P spectra,
respectively. Elemental analyses were performed in the Microanalytical Laboratories of Wazed Miah
Science Research Centre at Jahangirnagar University (Dhaka, Bangladesh). Preparative thin layer
chromatography was carried out on 1 mm plates prepared from silica gel GF254 (type 60, E. Merck) at
Jahangirnagar University.

3.2. Synthesis

Me3NO (21 mg, 0.279 mmol) was added to a MeCN solution (15 mL) of 1 (100 mg, 0.269 mmol)
and dppn (134 mg, 0.270 mmol), and the mixture was heated to reflux for 1.5 h. After cooling to room
temperature, volatiles were removed under reduced pressure and the residue chromatographed by
Thin Layer Chromatography (TLC) on silica gel. Elution with hexane/CH2Cl2 (4:1, v/v) developed
three bands. The faster-moving band was unreacted 1 (trace). The second and third bands yielded
[Fe2(CO)5{κ1-PPh2(1-C10H7)}(µ-edt)] (2) (14 mg, 8%) as red crystals and [Fe2(CO)4(κ2-dppn)(µ-edt)]
(3) (97 mg, 44%) as green crystals, respectively, after recrystallization from hexane/CH2Cl2 at 4 ◦C.
Data for 2: Anal. Calcd. for C29H21Fe2O5PS2: C, 53.07; H, 3.23. Found: C, 53.81; H, 3.36%. IR (υ(CO),
CH2Cl2): 2047 s, 1985 s, 1933 w cm−1. 1H NMR (CDCl3): δ 8.11 (d, J 8.4, 1H), 7.89 (m, 2H), 7.72 (m, 4H),
7.53 (t, J 7.6, 1H), 7.44 (m, 6H), 7.21 (m, 2H), 6.94 (dd, J 12.5, 7.6, 1H), 1.58 (m, 2H), 0.65 (m, 2H). 31P{1H}
NMR (CDCl3): δ 61.1 (s). Data for 3: Anal. Calcd. for C40H30Fe2O4P2S2: C, 59.13; H, 3.72. Found: C,
60.01; H, 3.86%. IR (υ(CO), CH2Cl2): 2021 s, 1950 m, 1901 w cm−1. 1H NMR (CD2Cl2, 273 K): δ 8.11
(d, J 7.1, 2H), 7.65 (d, J 7.1, 8H), 7.38 (d, J 7.1, 6H), 7.31 (s, 2H), 7.17 (s, 8H), 1.87 (d, J 7.8, 2H), 1.29 (d, J
7.8, 2H). 31P{1H} NMR (CD2Cl2): δ 68.4 (s). 13C{1H} NMR (CD2Cl2, 233 K): δ 220.2 (t, J 19, CO), 215.7 (s,
2CO), 206.6 (s, CO), 141.1 (t, J 21), 137.2 (t, J 14), 135.9 (s), 135.7 (d, J 9), 135.0 (s), 133.4 (d, 30), 132.7 (s),
131.8 (t, J 19), 130.5 (d, J 23), 129.4 (s), 128.0 (s), 127.6 (s), 124.8 (s), 35.1 (s, Me). (CD2Cl2, 298 K) 220.3 (t,
J 19, CO), 206.8 (br, 3CO). Other resonances were not affected by temperature.
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3.3. Protonation Experiments

To a CH2Cl2 solution (ca. 2 mL) of 3 (made by dissolving 4.5 mg, 0.005 mmol), 2 molar equivalents
of HBF4·Et2O were added. The resultant acid-containing solution was immediately transferred to an
IR cell and monitored over time.

3.4. X-Ray Crystallography

Single crystals of 2 and 3 suitable for X-ray diffraction were grown by slow diffusion of hexane
into a CH2Cl2 solution at 4 ◦C. All geometric and crystallographic data were collected at 150(2) K on a
Bruker SMART APEX CCD diffractometer (Billerica, MA, USA) using Mo-Kα radiation (λ = 0.71073
Ǻ) [66]. Data reduction and integration were carried out with SAINT+ [67], and absorption corrections
were applied using the program SADABS [68]. The structures were solved by direct methods and
refined by full-matrix least squares on F2 [69]. All non-hydrogen atoms were refined anisotropically.
The hydrogen atoms were placed in the calculated positions and their thermal parameters were linked
to those of the atoms to which they were attached (riding model). The SHELXTL PLUS V6.10 program
package was used for structure solution and refinement [69]. Final difference maps did not show any
residual electron density of stereochemical significance. The details of the data collection and structure
refinement are given in Table A1.

3.5. Electrochemical Studies

Electrochemistry was carried out in deoxygenated MeCN with 0.1 M TBAPF6 as the supporting
electrolyte. The working electrode was a 3 mm diameter glassy carbon electrode that was polished with
0.3 µm alumina slurry prior to each scan. The counter electrode was a Pt wire and the quasi-reference
electrode was a silver wire. All CVs were referenced to the Fc+/Fc redox couple. An Autolab potentiostat
(EcoChemie, Utrecht, Netherlands) was used for all electrochemical measurements. Catalysis studies
were carried out by adding equivalents of CF3CO2H (Sigma-Aldrich, St. Louis, MO, USA).

3.6. Computational Methodology and Modeling Details

The DFT calculations were performed with the hybrid meta exchange-correlation functional
M06 [70], as implemented by the Gaussian 09 program package [71]. The Fe [72] atoms were described
by Stuttgart-Dresden effective core potentials (ecp) and an Stuttgart-Dresden (SDD) basis set, while a
6-31G(d’) basis set was employed for all second row elements, and a 6-31G* basis set utilized for third
row elements. The computed DFT structure for 3 represents a fully optimized ground state based on
the positive eigenvalues displayed by the analytical Hessian.

4. Conclusions

The diiron-dithiolate [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) containing a chelating dppn ligand has
been synthesized from the reaction between [Fe2(CO)6(µ-edt)] (1) and dppn, together with a side
product [Fe2(CO)5{κ1-PPh2(1-C10H7)}(µ-edt)] (2) resulting from P–C bond cleavage. Both 2 and
3 have been characterized by single-crystal X-ray diffraction analysis and structural features are
unexceptional. DFT calculations on 3 show that while the HOMO is based exclusively at the diiron
centre, the LUMO has a significant contribution from the naphthalene π-system, showing that the
dppn ligand is an integral part of the redox system. Cyclic voltammetry reveals that it undergoes
a reversible part ligand based reduction and displays two overlapping reversible metal-centred
oxidations in MeCN. Control experiments confirm that 3 is readily protonated to give the cationic
hydrides tentatively identified as dibasal [Fe2(CO)4(µ-H)(κ2-dppn)(µ-edt)][BF4] (3bb) and apical-basal
[Fe2(CO)4(µ-H)(κ2-dppn)(µ-edt)][BF4] (3ab); the former hydride is less stable and transforms into the
latter hydride over time. Complex 3 has been examined as an electrocatalyst for proton-reduction.
Analysis of electrocatalytic data indicates that it operates at a very negative potential (ca. −2 V),
showing that even after protonation, reduction is primarily ligand based. However, that it is an active
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catalyst shows that there must be electronic communication between the dppn and diiron centres.
Indeed, 3 is one of the most efficient diiron biomimetics reported to date and thus intramolecular
electron-transfer within the cationic dihydride must be efficient. Thus, the redox-active dppn ligand
plays a critical role in the observed electrochemical proton-reduction. The exact nature of this remains
unknown and in future work we will aim to better understand and exploit this electron coupling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/4/122/s1,
Figure S1: CVs of [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) at various scan rates as shown in the legend (in MeCN,
1 mM solution, supporting electrolyte [NBu4][PF6], scan rate 0.1 V·s−1, glassy carbon electrode, potential
vs Fc+/Fc), Figure S2: Scan rate dependence of the cathodic and anodic peak currents for the reduction of
[Fe2(CO)4(κ2-dppn)(µ-edt)] (3) in MeCN (1 mM solution, supporting electrolyte [NBu4][PF6], glassy carbon
electrode, potential vs Fc+/Fc). Lines show best linear fit of data, Figure S3: Scan rate (ν) dependence
of the current function (ip/

√
ν) for the reduction of [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) (1 mM solution in

MeCN, supporting electrolyte [NBu4][PF6], glassy carbon electrode, potential vs Fc+/Fc), Figure S4: CVs of
[Fe2(CO)4(κ2-dppn)(µ-edt)] (3) in the absence of acid and in the presence of 1–10 equivalents of CF3CO2H
(in MeCN, 1 mM solution, supporting electrolyte [NBu4][PF6], scan rate 0.1 V·s−1, glassy carbon electrode,
potential vs Fc+/Fc).
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Appendix

CCDC 1861465 (for 2) and CCDC 1861466 (for 3) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table A1. Crystal data and structure refinement details.

Complex 2 3

Empirical formula C29H21Fe2O5PS2 C41H32Fe2O4P2S2
Formula weight 656.25 897.33
Temperature (K) 150(2) 150(2)
Wavelength (Å) 0.71073 0.71073
Crystal system orthorhombic triclinic
Space group Pbca P-1
Unit cell dimensions
a (Å) 17.2973(10) 14.310(3)
b (Å) 15.6070(9) 16.653(4)
c (Å) 20.9270(12) 18.478(4)
α (◦) 90 115.075(3)
β (◦) 90 94.809(4)
γ (◦) 90 99.124(3)
Volume (Å3) 5649.4(6) 3881.2(14)
Z 8 4
Density (calculated) (Mg/m3) 1.543 1.536
Absorption coefficient (mm−1) 1.269 1.117
F(000) 2672 1832
Crystal size (mm3) 0.26 × 0.13 × 0.13 0.28 × 0.26 × 0.08
θ range for data collection (◦) 2.79 to 28.30 2.48 to 28.34

http://www.mdpi.com/2304-6740/6/4/122/s1
www.ccdc.cam.ac.uk/data_request/cif
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Table A1. Cont.

Complex 2 3

Index ranges −22 ≤ h ≤ 22, −18 ≤ h ≤ 18,
−20 ≤ k ≤ 20, −21 ≤ k ≤ 21,
−27 ≤ l ≤ 26 −23 ≤ l ≤ 23

Reflections collected 46753 32780
Independent reflections [Rint] 6896 [Rint = 0.0427] 17593 [Rint = 0.0379]
Max. and min. transmission 0.8524 and 0.7338 0.9159 and 0.7450
Data/restraints/parameters 6896/0/352 17593/0/955
Goodness of fit on F2 1.056 1.022
Final R indices [I > 2σ(I)] R1 = 0.0378, R1 = 0.0512,

wR2 = 0.0837 wR2 = 0.1339
R indices (all data) R1 = 0.0501, R1 = 0.0740,

wR2 = 0.0879 wR2 = 0.1484
Largest diff. peak and hole (e·Å−3) 0.479 and −0.276 1.378 and −0.821
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