Supplementary Materials: Design of Molecular Water Oxidation Catalysts Stabilized by Ultrathin Inorganic Overlayers—Is Active Site Protection Necessary?

Laurent Sévery, Sebastian Siol and S. David Tilley

Figure S2. IR spectra of anchored Ru–Cl on meso-TiO₂ without overlayer (black), with 10 cycles (red), 30 cycles (green) and 80 cycles (blue) of ALD-TiO₂. The increasingly large baseline shifts are due to interference within the mesoporous layer.

Figure S3. IR spectra of anchored Ru–Cl on meso-TiO₂ before deposition of ALD-TiO₂ (black), after 10 cycles (red), 30 cycles (green) and 80 cycles (blue).

Figure S4. IR spectra of anchored Ru–Cl on meso-TiO₂ (black) and ALD-protected Ru–Cl on meso-TiO₂ after NaCN treatment with 10 cycles (red), 30 cycles (green) and 80 cycles (blue) of ALD-TiO₂. A reference of catalyst-free meso-TiO₂ with 30 cycles of ALD-TiO₂ after NaCN treatment (gray) is shown.

Figure S5. UV-Vis Spectra of Ru–Cl, Ru–OH₂, Ir–Cl and Ir–OH₂ complexes anchored onto meso-ITO. The spectra were obtained after subtraction of unfunctionalized meso-ITO.

Figure S6. UV-Vis spectra of Ru–Cl, Ru–OH₂, Ir–Cl and Ir–OH₂ anchored on meso-ITO after deposition of 30 cycles ALD-TiO₂. The spectra were obtained after subtraction of unfuntionalized meso-ITO with 30 cycles ALD-TiO₂.

Figure S7. XP spectra of **(A)** Ir–Cl and **(B)** Ir–OH₂ on ITO before and after deposition of 30 cycles ALD-TiO₂. The Ir 4f signals overlap with the Ti 3s signals making interpretation of the Ir 4f signal difficult. For Ir–Cl, comparison with an ALD-TiO₂ reference sample reveals a potential contribution of core level emissions from underlying Ir molecules to the spectrum.

Figure S8. First five consecutive CV scans of meso-ITO + 30cycles ALD-TiO₂ without molecule (**A**), with Ru–Cl (**B**), Ru–OH₂(**C**), Ir–Cl (**D**) and Ir-OH₂ (**E**) in 0.1 H₂SO₄. The large current densities observed on the first scan are dominated by capacitive charging of the mesoporous layer.

Figure S9. Chronoamperometry of Ru–Cl, Ru–OH₂, Ir–Cl and Ir–OH₂ anchored on meso-TiO₂ with 30 cycles ALD-TiO₂. Measurements were performed in 0.1 M H₂SO₄ at 1.95 V vs. RHE over 30 minutes.