
inorganics

Article

Investigation of the Reduction of a Molybdenum/Iron
Molecular Nanocluster Single Source Precursor

Gibran L. Esquenazi 1 and Andrew R. Barron 1,2,3,*
1 Department of Chemistry, Rice University, Houston, TX 77005, USA; gle1@rice.edu
2 Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
3 Energy Safety Research Institute, Swansea University Bay Campus, Swansea SA1 8EN, UK
* Correspondence: arb@rice.edu or a.r.barron@swansea.ac.uk; Tel.: +1-713-348-5610

Received: 15 July 2018; Accepted: 25 September 2018; Published: 27 September 2018
����������
�������

Abstract: The thermolysis of the polyoxometalate cluster [HxPMo12O40⊂H4Mo72Fe30(O2CMe)15O254

(H2O)90−y(EtOH)y] (1) under air, argon, and reducing conditions (5%, 10%, 50% H2 with Ar balance)
has been investigated. The resulting products have been characterized by XRD, SEM, and EDX
analysis. Thermolysis in air at 1100 ◦C yields predominantly Fe2O3, due to sublimation of the
molybdenum component; however, under Ar atmosphere, the mixed metal oxide (Fe2Mo3O8) is
formed along with Mo and MoO2. Introduction of 5% H2 (1100 ◦C) results in the alloy Fe2Mo3 in
addition to Fe2Mo3O8 and Mo; in contrast, reduction at a lower temperature (900 ◦C) yields the
carbide (Fe3Mo3C) and the analogous oxide (Fe3Mo3O), suggesting that these are direct precursors
of Fe2Mo3. Increasing the H2 concentration (10%) promotes carbide rather than oxide formation
(Fe3Mo3C and Mo2C), until alloy formation (Fe7.92Mo5.08) predominates under 50% H2 at 1200 ◦C.
The effect of temperature and H2 concentration on the composition, grain size, and morphology has
been investigated by EDX, SEM, and XRD. The relationship of the composition of 1 (i.e., Fe:Mo = 30:84)
with the product distribution is discussed.

Keywords: mixed metal oxide; polyoxometalate; nanocluster; nanoalloys

1. Introduction

The concept of a single source precursor for materials synthesis evolved in the 1980s as a chemical
route to a range of materials, from oxides to semiconductors [1–3]. Initial approaches involved simply
incorporating the elements required in the product into a molecular species, then decomposing it under
suitable temperature conditions. While successful for many materials, this relied on the formation of
the desired product being thermodynamically favorable. It should be noted that the major advantage
of the single source precursor approach was not necessarily that it contained the desired elements
(because they were always additional unwanted elements, such as carbon and hydrogen) that were
removed upon thermolysis, but it was that starting with a molecule ensured a lower activation barrier
for solid state diffusion than is required by traditional bulk material synthesis [4]. Furthermore, as an
understanding of the mechanistic details increased, it was found to be possible to design single source
precursors to form new or meta stable phases [5,6].

Fe–Mo alloys are used extensively in the steel industry to impart desirable properties, such
as improved hardening, increased melting temperature, improved weldability, enhanced wear
resistance, and improved corrosion resistance [7]. Alloying of molybdenum is typically carried
out by powder metallurgy (PM). In this regard, pre-alloyed powders are of great interest, given
their superior homogeneity in composition, grain structure, and porosity [8]. Currently, the majority
of ferro molybdenum powder is produced via an aluminothermic reaction, where silicon and
aluminum metal are used to reduce a mixture of molybdic oxide and iron oxide in the presence
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of calcium fluoride or lime [9]. This approach produces ferro-molybdenum particles in the typical
size range of microns to millimeters. However, the aluminothermic reaction generates large
amounts of slag and dust, inevitably causing environmental issues [10]. By contrast, the gas–solid
reduction route offers advantages in the versatility of reduction gases (CH4, CO, H2), relatively
low processing temperatures, and production of powders with particle size in the micro and
nano regime [11]. Nanostructured powder materials exhibit several desirable mechanical qualities,
in addition to the desirable PM processing characteristics derived from their inherently high
surface area-to-volume properties, such as relatively lower sintering temperature and reduced
grain sizes [12]. Preparation of Fe–Mo nanoalloys has been demonstrated by several chemical and
physical methods, including thermal decomposition [13], solution phase wet chemical reduction [14],
electrochemical synthesis [15], microwave synthesis [16], sonochemical synthesis [17], chemical vapor
condensation [18], and high-energy ball milling [19]; however, size and stoichiometric control remains
a challenge.

We have previously employed the large molecular cluster, [HxPMo12O40⊂H4Mo72Fe30(O2CMe)15

O254(H2O)98−y(EtOH)y] (1) [20] (Figure 1), as a catalyst precursor for the growth of carbon nanotubes
(CNTs) [21–25]. During our study, we demonstrated that the composition of the catalyst, and the
subsequent ability to grow CNTs, was highly dependent on the activation step, which involved
reduction at elevated temperatures [24]. This, in turn, led to a detailed study of the kinetics of the
reduction from 1 to the active catalyst species [26]. Given that 1 is, by definition, a nano-sized precursor
(~2.5 nm) with a precise metal composition (Fe/Mo = 30:84) it represents a potential single source
precursor for the formation of Fe–Mo alloys.
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Figure 1. Polyhedral representation of 1 with red and green representing FeO6 and MoO6

octahedra, respectively.

2. Materials and Methods

2.1. [HxPMo12O40⊂H4Mo72Fe30(O2CMe)15O254(H2O)90−y(EtOH)y] (1) Synthesis

Compound 1 was synthesized and purified as reported [20,24,25]. In brief, 1.00 g (5.03 mmol) of
iron (II) chloride tetrahydrate was dissolved in 75 mL of Millipore water in a 500 mL round-bottom
flask containing a stir rod. Afterwards, 2.00 g (8.27 mmol) of sodium molybdate dihydrate, 10 mL
(59 mmol) of pure glacial acetic acid, and 2.50 g (1.37 mmol) of phosphomolybdic acid hydrate were
added to the flask. The pH of the solution was then adjusted to 2 using HCl, and subsequently
stirred for 45 min. The solution was then filtered through a fine glass frit and left to crystallize in air.
Afterwards, the crystals were vacuumed filtered and washed with cold DI water. After being dried in
air, the solid was placed into a filter thimble and transferred to a Soxhlet extractor. The product was
refluxed in EtOH for 12 h and a dark green solution was collected.
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2.2. Reduction Experiments

Reduction of 1 was carried out using a TA instruments Q-600 (TMDSC, New Castle, DE, USA)
simultaneous thermogravimetric/differential scanning calorimetry (TGA/DSC) system using a carrier
gas consisting of air, argon, or a reducing atmosphere (5, 10, or 50% hydrogen with an argon balance).
Samples of 1 (ca. 20 mg) were prepared by evaporating 1 mL of a concentrated solution. The samples
were then placed in alumina pans and heated with a linear heating rate of 10 ◦C/min under a carrier
gas flow of 70 mL/min.

2.3. Characterization

The scanning electron microscope (SEM) characterization was conducted on a FEI Quanta
400 high-resolution field emission microscope (Thermo Scientific, Hillsboro, OR, USA) equipped
with an energy dispersive X-ray spectroscopy (EDX) detector. SEM samples were placed on aluminum
SEM stubs, used as received. Images were acquired with a typical operating voltage of 30 kV, with a
working distance of 10 mm, and a spot size of 3, under the high vacuum setting. The EDX spectra
was acquired with a takeoff angle of 35◦, a process time of 7.68 µs, and a 137.5 eV resolution. EDX
analysis was performed using the EDAX-TEAM™ software (AMETEK, Inc., Mahwah, NJ, USA).
XRD measurements were performed on a Rigaku D/Max Ultima II (Rigaku, The Woodlands, TX, USA)
using a Cu Kα radiation source operating at 40 kV and 40 mA. We note that EDX has a detection
depth of ca. 1 µm and, thus, only provides analysis up to this depth. However, in order to provide
representative analysis, samples were ground, and multiple analyses were taken across the sample.
Analysis of the XRD patterns was conducted using Rigaku’s PDXL2 software (Version 2.4.2.0; Rigaku,
The Woodlands, TX, USA). TEM was conducted using a JEOL 1230 high-contrast transmission electron
microscope (JOEL, Peabody, MA USA) at 120 KV equipped with a CCD camera. TEM samples were
prepared by drop-casting a dilute solution of 1 (0.1 µM) onto 400-mesh lacey carbon TEM grids
(Ted Pella, Inc., Product No. 01824, Redding, CA, USA).

3. Results and Discussion

Synthesis and Characterization of [HxPMo12O40⊂H4Mo72Fe30(O2CMe)15O254(H2O)90−y(EtOH)y] (1)

Compound 1 was synthesized using previously reported method [24,25]. TEM analysis (Figure 2)
confirms the nanocluster morphology. Reduction of 1 was carried out in an alumina pan using a
thermogravimetric/differential scanning calorimetry (TGA/DSC) system using a carrier gas consisting
of 5%, 10%, or 50% hydrogen (Ar balance) with a flow rate of 70 mL/min. The conditions were chosen
in view of our previous results that demonstrated that 1 was completely decomposed under air or Ar
at 1100 ◦C, while CNT growth is observed at 900 ◦C upon decomposition under an atmosphere of 5%
H2 (Ar balance) [24]. Subsequent experiments were aimed at determining the effects of temperature
and hydrogen composition. A summary of the experimental conditions is shown in Table 1.

Decomposition of 1 in air at 1100 ◦C (Air@1100) resulted in the loss of Mo as determined by energy
dispersive electron X-ray spectroscopy (EDX), see Table 2. This is confirmed by X-ray diffraction (XRD,
see Figure 3), which shows the presence of crystalline Fe2O3 as the major product. Both observations are
in line with our previous results [24,26]. The low Mo content is proposed to be due to the preferential
formation of volatile MoO3 in preference to a mixed Fe–Mo oxide [24]. Even though the experimental
temperature (1100 ◦C) is nominally below the sublimation temperature of bulk MoO3 (Tsub = 1155 ◦C),
the high surface area and in situ formation is expected to facilitate volatilization [27]. The XRD also
shows the presence of crystalline Al2O3 and Al(PO4) as minor products (Table 3), which are most likely
incorporated as a result of physical removal of the sample out of the alumina pan. The Al(PO4) is
presumably due to the phosphorous present in the 1 reacting with the alumina of the pan [28].
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Figure 2. Transmission electron microscopy (TEM) image of 1.

Table 1. Summary of experimental conditions and acronym used herein.

Experiment Atmosphere Temperature (◦C) Acronym

1 Air 1100 Air@1100
2 Ar 1100 Ar@1100
3 5% H2 (Ar balance) 900 5@900
4 5% H2 (Ar balance) 1100 5@1100
5 10% H2 (Ar balance) 1100 10@1100
6 50% H2 (Ar balance) 1200 50@1200

Table 2. Summary of elemental composition as determined by EDX a.

Sample Mo (at %) Fe (at %) O (at %) C (at %) P (at %)

Air@1100 0.80 ± 0.36 38.98 ± 4.31 47.81 ± 3.89 8.26 ± 0.83 4.15 ± 0.64
Ar@1100 38.42 ± 6.63 9.03 ± 0.51 50.54 ± 6.79 1.24 ± 0.76 0.77 ± 0.12

5@900 31.18 ± 4.28 26.40 ± 3.75 18.17 ± 2.24 20.27 ± 6.21 3.95 ± 1.06
5@1100 64.64 ± 2.65 15.43 ± 2.51 18.50 ± 4.11 0.36 ± 0.35 18.50 ± 4.11
10@1100 65.59 ± 1.54 34.41 ± 1.54 b b b

50@1200 76.18 ± 3.75 16.27 ± 2.79 6.42 ± 3.35 b 0.84 ± 0.75
a Measured across multiple locations in a single sample. b Not detected.
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Figure 3. X-ray diffraction (XRD) of the product from the thermal decomposition of 1 under air at
1100 ◦C (Air@1100) with crystalline phases (Table 3) indicated: (a) Fe2O3, (b) Al(PO4), and (c) Al2O3.

Table 3. Summary of crystalline phases detected by XRD and crystallite size, determine from the
Scherer equation.

Sample Phase ICDD Crystallite Size (Å)

Air@1100 Fe2O3 04-008-7624 963 ± 240
Al(PO4) 04-015-7505 746 ± 545
Al2O3 01-073-5928 326 ± 45

Ar@1100 Mo 00-004-0809 1160 ± 78
Fe3Mo3O8 04-007-6813 489 ± 99

MoO2 01-086-0135 541 ± 104

5@900 Mo 00-004-0809 347 ± 8
Fe2Mo3O 04-005-2530 525 ± 60
Fe2Mo3C 01-083-3017 357 ± 53

5@1100 Mo 00-004-0809 460 ± 21
Fe2Mo3O8 01-070-1726 271 ± 161

Fe2Mo3 00-041-1000 365 ± 166

10@1100 Mo 00-004-0809 533 ± 20
Fe3Mo3C 04-005-3925 605 ± 164

Mo2C 04-016-3694 521 ± 141

50@1200 Mo 00-004-0809 620 ± 20
Mo5.08Fe7.92 04-003-7152 333 ± 147

In contrast to decomposition in air, thermolysis under Ar at 1100 ◦C results in a Mo-rich product,
as determined by EDX (Table 2). The Mo/Fe ratio, as measured by EDX, is higher than in the starting 1,
see Figure 4. The XRD shows metallic Mo as the major crystalline phase, with Mo3Fe3O8 and MoO2

as minor phases (Figure 5), consistent with the elemental composition. The average crystallite size
for Mo is 1160 Å, while the other phases are significantly smaller (Table 3). Since iron oxides are not
volatile, and the acetates tend to decompose into oxides, hence the high Mo content. The range of
composition, as determined by EDX (Figure 4), is consistent with a level of compositional inhomogeneity
in the samples [29].
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Figure 5. X-ray diffraction (XRD) of the products from the thermal decomposition of 1 under Ar at
1100 ◦C (Ar@1100) with crystalline phases (Table 3) indicated: (a) Mo, (b) Mo3Fe3O8, and (c) MoO2.

As noted above, decomposition of 1 at 900 ◦C is the lowest temperature for CNT growth under an
atmosphere of 5% H2 (Ar balance) [24] and, thus, the product represents an active catalyst composition.
Based upon EDX analysis (Figure 4 and Table 2) the product (5@900) is Mo deficient as compared to 1,
but not as much as the Air@1100. This observation is consistent with the thermolysis temperature being
significantly lower than the sublimation temperature of MoO3, suggesting only a small amount of Mo
is lost during thermolysis. Elemental Mo represents the majority of crystalline components (Table 3).
Although minor components of Fe3Mo3C and Fe3Mo3O are observed (Figure 6) the remaining Fe
must be associated with non-crystalline material (presumably Fe3Mo3E, where E = O, C). Previously,
Fe3Mo3C has previously been synthesized by annealing 9 nm sized elemental powders at 700 ◦C
for 70 h, suggesting that crystalline phase formation is slow, even for nm scale composition [30].
SEM analysis shows a relatively smooth morphology composed of fused particulates <1 µm in diameter
(Figure 7a,d). The associated EDX map shows a uniform distribution of Mo and Fe (Figure 7a–c),
which suggests the crystalline phases are embedded within a Fe–Mo carbide/oxide matrix. It should be
noted that 5@900 contains P that is also uniformly distributed through the sample, possibly consistent
with the retention of the Keggin core structure of 1.
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Mo3Fe3O.
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Figure 7. SEM images (a,b) of the product from thermolysis of 1 at 900 ◦C under an atmosphere of 5%
H2 (Ar balance), along with the (c) Fe and (d) Mo EDX maps associated with the SEM image (a). Scale
bar: (a) 100 µm, (b) 2 µm, and (c,d) 50 µm.

Increasing the thermolysis temperature to 1100 ◦C of the Fe–Mo–C system has previously resulted
in the formation of MoOC and Fe2C [29]. This is not observed for 5@1100. Instead, a Mo-rich
composition is formed (Figure 4 and Table 2), whose morphology at higher magnification (Figure 8)
is highly porous, and similar to the intermetallic compound Fe2Mo formed by the H2 reduction of
Fe2MoO4 [31] despite the composition being closer to Mo/Fe = 4:1. The crystallinity is dominated
by elemental Mo with only low intensity peaks consistent with Fe2Mo3O8 (Kamiokite) and, possibly,
the intermetallic Fe2Mo3 (Figure 9). Certainly, the phases are consistent with the overall Mo-rich
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composition, as compared to the precursor (1). The EDX map shows a uniform distribution across
the sample. As would be expected, the increase in annealing temperature results in an increase in the
crystallite size, especially of Mo, as compared to that seen for 5@900 (Table 3).
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Figure 9. X-ray diffraction (XRD) of the products from the thermal decomposition of 1 under 5%
H2 (Ar balance) at 1100 ◦C, with crystalline phases (Table 3) indicated: (a) Mo, (b) Mo2Fe3O8,
and (c) Fe2Mo3.

Increasing the H2 composition to 10% (i.e., 10@1100) results in a sample comprising of fused
particles approximately 0.5 µm in diameter (Figure 10), which is comparable to the crystallite sizes as
determined from XRD (Table 3). Interestingly, use of a higher H2 composition resulted in the formation
of crystalline intermetallic carbide (Fe3Mo3C) and Mo2C, in addition to elemental Mo (Figure 11).
The Mo-rich crystalline phases are consistent with the overall composition being close to Mo2Fe
(Table 2), although this is lower than the precursor (1). Despite the crystalline formation of the carbides,
the C content is below the reliable detection limit of EDX.



Inorganics 2018, 6, 104 9 of 12

Inorganics 2018, 6, x FOR PEER REVIEW  9 of 12 

 

 

Figure 10. SEM images of the product from thermolysis of 1 at 1100 °C under an atmosphere of 10% 

H2 (Ar balance). Scale bar: (a) 100 μm and (b) 2 μm. 

 

Figure 11. X‐ray diffraction (XRD) of the products from the thermal decomposition of 1 under 10% H2 

(Ar balance) at 1100 °C with crystalline phases (Table 3) indicated: (a) Mo, (b) Mo3Fe3C, and (c) Mo2C. 

Thermolysis of 1 at 1200 °C under an atmosphere of 50% H2 (Ar balance) results in an overall 

composition close to Mo5Fe (Figure 4 and Table 2). The XRD shows the intermetallic Mo5.08Fe7.92 as a 

minor component in addition to elemental Mo (Figure 12). As befits the higher temperature, the 

crystallite size for the Mo is increased over that observed for 10@1100 (Table 3). Consideration of the 

Fe–Mo phase diagram [31] suggests that reduction of 1 at 1200 °C under a highly reducing 

atmosphere should result in the formation of a composition FexMo1−x (x = 0.26) with a melting point 

of 1240 °C, which upon cooling, would form a mixture of Mo and Mo0.39Fe0.61. 

Figure 10. SEM images of the product from thermolysis of 1 at 1100 ◦C under an atmosphere of 10%
H2 (Ar balance). Scale bar: (a) 100 µm and (b) 2 µm.

Inorganics 2018, 6, x FOR PEER REVIEW  9 of 12 

 

 

Figure 10. SEM images of the product from thermolysis of 1 at 1100 °C under an atmosphere of 10% 

H2 (Ar balance). Scale bar: (a) 100 μm and (b) 2 μm. 

 

Figure 11. X‐ray diffraction (XRD) of the products from the thermal decomposition of 1 under 10% H2 

(Ar balance) at 1100 °C with crystalline phases (Table 3) indicated: (a) Mo, (b) Mo3Fe3C, and (c) Mo2C. 

Thermolysis of 1 at 1200 °C under an atmosphere of 50% H2 (Ar balance) results in an overall 

composition close to Mo5Fe (Figure 4 and Table 2). The XRD shows the intermetallic Mo5.08Fe7.92 as a 

minor component in addition to elemental Mo (Figure 12). As befits the higher temperature, the 

crystallite size for the Mo is increased over that observed for 10@1100 (Table 3). Consideration of the 

Fe–Mo phase diagram [31] suggests that reduction of 1 at 1200 °C under a highly reducing 

atmosphere should result in the formation of a composition FexMo1−x (x = 0.26) with a melting point 

of 1240 °C, which upon cooling, would form a mixture of Mo and Mo0.39Fe0.61. 

Figure 11. X-ray diffraction (XRD) of the products from the thermal decomposition of 1 under 10% H2

(Ar balance) at 1100 ◦C with crystalline phases (Table 3) indicated: (a) Mo, (b) Mo3Fe3C, and (c) Mo2C.

Thermolysis of 1 at 1200 ◦C under an atmosphere of 50% H2 (Ar balance) results in an overall
composition close to Mo5Fe (Figure 4 and Table 2). The XRD shows the intermetallic Mo5.08Fe7.92

as a minor component in addition to elemental Mo (Figure 12). As befits the higher temperature,
the crystallite size for the Mo is increased over that observed for 10@1100 (Table 3). Consideration
of the Fe–Mo phase diagram [31] suggests that reduction of 1 at 1200 ◦C under a highly reducing
atmosphere should result in the formation of a composition FexMo1−x (x = 0.26) with a melting point
of 1240 ◦C, which upon cooling, would form a mixture of Mo and Mo0.39Fe0.61.
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4. Conclusions

Our results indicate that while compound 1 would appear to be an ideal molecular single source
precursor for MoFe alloys, given that it has a defined composition and size, thermolysis under
different conditions show that the product elemental and phase composition are highly dependent
on the atmosphere and the temperature. These results are in line with our previous results [24,26].
Unfortunately, 1 forms a wide range of compositions during decomposition, with metallic Mo as
the major crystalline phase in all samples under reducing atmospheres, probably a consequence of
the high overall Mo/Fe ratio. In future, if polyoxometalates (POMs) are to be employed as catalyst
precursors for chiral specific CNT growth, then it is important that upon thermolysis, the structure
and composition that cannot alter on thermolysis or, alternatively, form a highly stable phase.
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