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Abstract: The electronic structures of a series of uranium hexahalide and uranyl tetrahalide complexes
were simulated at the density functional theoretical (DFT) level. The resulting electronic structures
were analyzed using a novel application of the Quantum Theory of Atoms in Molecules (QTAIM)
by exploiting the high symmetry of the complexes to determine 5f- and 6d-shell contributions
to bonding via symmetry arguments. This analysis revealed fluoride ligation to result in strong
bonds with a significant covalent character while ligation by chloride and bromide species resulted
in more ionic interactions with little differentiation between the ligands. Fluoride ligands were
also found to be most capable of perturbing an existing electronic structure. 5f contributions to
overlap-driven covalency were found to be larger than 6d contributions for all interactions in all
complexes studied while degeneracy-driven covalent contributions showed significantly greater
variation. σ-contributions to degeneracy-driven covalency were found to be consistently larger
than those of individual π-components while the total π-contribution was, in some cases, larger.
Strong correlations were found between overlap-driven covalent bond contributions, U–O vibrational
frequencies, and energetic stability, which indicates that overlap-driven covalency leads to bond
stabilization in these complexes and that uranyl vibrational frequencies can be used to quantitatively
probe equatorial bond covalency. For uranium hexahalides, degeneracy-driven covalency was found
to anti-correlate with bond stability.
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1. Introduction

The quantification of the covalent contribution to bonding in complexes of the f-elements is an area
of great current research being explored via X-ray absorption [1–11], electron paramagnetic [12–15],
nuclear magnetic resonance [16,17], emission [18,19], and photoelectron [20] spectroscopies as well
as X-ray diffraction [21] and structural studies [22–30]. The latter have often been carried out in
combination with theoretical studies and a wealth of purely theoretical data also exists [31–53].
However, covalency is a phenomenon that is open to significant interpretation. It can manifest due to
(i) the near-degeneracy of energy levels and/or (ii) the spatial overlap of the electronic wave functions
of interacting species and, of these, only the latter leads to the accumulation of electronic charge in
the bonding region and, therefore, the potential for energetic stabilization of the bond. Differentiating
between these two origins of covalent bond character is, in addition to being of fundamental interest,
of significant practical importance. Current European [54] and US [55] strategies for the separation of
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trivalent lanthanides from the highly radioactive minor actinides (Np, Am, and Cm) in spent nuclear
fuel are based on the exploitation of energetic stabilization of complexes of the latter with the origin of
this stability believed to be due to the greater chemical availability of the 5f valence shell.

Recently, several groups have adopted Bader’s Quantum Theory of Atoms in Molecules
(QTAIM) [56] in order to probe covalency from a computational perspective. The QTAIM has the
capacity to differentiate between degeneracy-driven and overlap-driven contributions to bonding
interactions [57]. It is an appealing method of analysis since its results are independent of the
orbital basis used to express the electronic structure, which cannot be unambiguously defined.
This characteristic means that the QTAIM is equally applicable to electronic structures obtained
using any quantum chemical methodology and, since it analyzes the physically observable electron
density, it can be applied to experimentally-determined data [21,58].

Complexes of the f-elements typically exhibit strong relativistic effects, substantial dynamical
electron correlation, and weak crystal fields and these factors combine to produce electronic
structures in which the 5f, 6d, and, to a lesser extent, the 7s valence shells exist at similar energies,
which complicates the role that these shells play in covalent interactions. Recently, we have shown that
the QTAIM can be exploited in systems of high symmetry to differentiate between the roles played
by the 5f and 6d shells [59–61]. In this study, we further extend this approach to distinguish between
σ-components and π-components of covalent bond character. This approach is applied to a series of
homo-halide and hetero-halide complexes of the general form [UO2X2Y2]2− and UX2Y2Z2 where X,
Y, Z ∈ {F, Cl, Br}. These complexes have been selected due to their high symmetry (D2h or higher)
when assuming a trans orientation of like ligands and because they include a number of synthetically
realized species: [UCl6]2− and [UF6]− have both been the subject of recent experimental studies of
U–X bonding [5,21] while the experimentally determined electronic structure of Cs2UO2Cl4 has been
previously analyzed using the QTAIM [58]. Of the remaining complexes, [UO2F4]2− and [UO2Br4]2−

have been observed in the gas and condensed phases, respectively [62,63]. [UF6]− and [UCl6]− have
both been experimentally characterized [64–66] although [UBr6]− remains unreported.

2. Results

2.1. Identification of Model Chemistry

The performance of a number of xc-functionals was assessed in order to determine the most
suitable model chemistry for the study. The functionals chosen for this exercise were the GGA
functionals PBE [67] and BLYP [68,69] along with the hybrid-GGA functionals PBE0 [70], B3LYP [71,72],
and BHLYP [73]. A variation of the chosen basis set was not considered since its large size was assumed
to give results sufficiently close to the basis set limit. Additionally, it has recently been shown that the
def2-QZVP basis set used for the ligand ions is sufficient for modeling anions in the absence of diffuse
functions [74]. For these test calculations, two representative systems were considered: [UO2Cl4]2−

and UF6, for which accurate experimental data exists.
Tables 1 and 2 summarize selected structural and vibrational parameters of these systems.

In particular, only frequencies of vibrational stretching modes are reported since these most clearly
relate to bond strength. As expected, hybrid functionals tend to outperform pure GGA functionals.
Of the hybrid functionals, BHLYP (incorporating 50% Hartree-Fock exchange) is outperformed by
both B3LYP and PBE0 (incorporating 20% and 25% Hartree-Fock exchange, respectively) especially
with respect to vibrational frequencies. B3LYP and PBE0 perform comparably well and are in
good to excellent agreement with experimental parameters. B3LYP noticeably outperforms PBE0
in the simulation of U–O bond lengths and vibrational frequencies in [UO2Cl4]2− and was chosen
as the xc-functional used in the remainder of this study. The accuracy of the B3LYP functional
reported in this study is comparable to that previously reported for other simple uranyl coordination
complexes [75] and for f-element hexachlorides (M = U, Ce) [61].
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Table 1. Calculated structural and vibrational parameters of [UO2Cl4]2− calculated with various
exchange-correlation functionals. Values in parenthesis indicate deviations from experimental values.
a ref [76], b ref. [77].

Parameter Exp. a,b BLYP PBE PBE0 B3LYP BHLYP

rUO (Å) 1.774 1.817
(+0.043)

1.800
(+0.026)

1.756
(−0.018)

1.776
(+0.002)

1.735
(−0.039)

rUCl (Å) 2.671 2.765
(+0.094)

2.721
(+0.050)

2.715
(+0.044)

2.749
(+0.078)

2.749
(+0.078)

νUO (cm−1)
834 776

(−58)
803

(−31)
896

(+62)
855

(+21)
953

(+119)

922 862
(−60)

887
(−35)

975
(+53)

939
(+17)

1023
(+101)

νUCl (cm−1)
206 179

(−27)
192

(−14)
199

(−7)
188

(−18)
196

(−10)

236 197
(39)

238
(+2)

216
(−20)

206
(−30)

213
(−23)

267 213
(−54)

226
(−41)

234
(−33)

224
(−43)

232
(−25)

Table 2. Calculated structural and vibrational parameters of UF6 calculated with various
exchange-correlation functionals. Values in parenthesis indicate deviations from experimental values.
a ref [64], b ref. [65].

Parameter Exp. a,b BLYP PBE PBE0 B3LYP BHLYP

rUF (Å) 1.999 2.036
(+0.037)

2.018
(+0.019)

1.990
(−0.009)

2.009
(+0.010)

1.984
(−0.055)

νUF (cm−1)
534

511
(−23)

521
(−13)

543
(+9)

532
(−2)

548
(+14)

626
581

(−45)
596

(−30)
633
(+7)

615
(−11)

648
(+22)

667
613

(−54)
630

(−37)
682

(+15)
660
(+7)

710
(+43)

2.2. Homohalide Complexes of Uranium and Uranyl

In this section, the simulation and analysis of complexes of the form [UO2X4]2− and UX6

(X = F, Cl, Br) is considered. Focusing initially on the uranyl complexes, Table 3 summarizes structural
parameters obtained using the B3LYP xc-functional.

A clear trend of increasing equatorial bond length is found as the halide mass increases, which is
expected with the increasing size of the ligand. There is also, however, a commensurate reduction in
the axial U–O bond length, which suggests a weakening of the equatorial bonds. Although equatorial
bond lengths are found to be greater than the sum of the ionic radii, the difference is least pronounced
for X = F, which again increases as the halide mass increases. This suggests some degree of covalent
bond stabilization for the lighter halides.

As with [UO2Cl4]2− (Table 1), the U–O bond length in [UO2Br4]2− is in excellent agreement with
the experimentally reported value of 1.766 Å [63]. However, it should be noted that the experimental
data are derived from XRD studies of condensed-phase structures. No experimentally determined
structural data is available for [UO2F4]2−, which has only been observed in the gas phase [62]. However,
the U–O bond length reported here lies between the computationally-derived gas-phase literature
values of 1.808 and 1.851 Å obtained using PBE and CCSD(T), respectively, [62] and compares well to
that previously obtained using the B3LYP functional [37,78].
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Table 3. B3LYP-calculated structural parameters [UO2X4]2−. R = 6-coordinated Shannon ionic radius.

Complex rUO (Å) rUX (Å) R = RU + RX (Å) rUX – R (Å)

[UO2F4]2− 1.824 2.229 0.73 + 1.33 = 2.06 0.169
[UO2Cl4]2− 1.776 2.749 0.73 + 1.81 = 2.54 0.209
[UO2Br4]2− 1.769 2.922 0.73 + 1.96 = 2.69 0.232

UO2
2+ 1.695 - - -

The U–Cl bond length is overestimated by 0.078 Å but is identical to that reported previously
using the same functional [37] and the U–Br bond length is overestimated by 0.108 Å. The U–F bond
length of 2.229 Å is very similar to that reported from PBE (2.233 Å), B3LYP (2.231 Å), and CCSD(T)
(2.232 Å) simulations [37,62]. The excellent agreement with the CCSD(T) data, in particular, indicates
that the origin of the discrepancies between experimental and calculated values for the chloride and
bromide complexes is due to crystal packing effects.

The calculated structural data for UX6 (Table 4) presents a less clear picture. While the U–X bond
lengths again increase as the halides mass increases, a comparison with the sum of ionic radii gives no
trend. In contrast to the uranyl halides, bond lengths in these species are shorter than the sum of the
ionic radii due to the lack of competition with strongly coordinating terminal oxo ligands. However,
this shortening is identical in the fluoride and bromide complexes and less than that found in UCl6.
The good agreement with the experimental gas-phase U–F bond length (Table 2) is apparently not
replicated in UCl6 where the U–Cl bond is overestimated by 0.050 Å in comparison to the value of
2.42 Å reported experimentally [66]. However, this value is again derived from an XRD study of
a condensed-phase structure and so the discrepancy is comparable to those found for [UO2Cl4]2−

and [UO2Br4]2−. The calculated U–Cl bond length is in excellent agreement with that calculated by
Batista et al. (2.472 Å) using the same xc-functional [79]. There are no experimentally reported simple
bromides of uranium [80], but the value reported in this study is in good agreement with and slightly
shorter than those reported from GGA-based simulations (2.650–2.687 Å) [81], commensurate with the
data presented in Tables 1 and 2. The good agreement with available literature data, therefore, leads us
to tentatively suggest that an interplay of electronic and steric effects serve to mask any simple trend
in UX6 bond lengths when compared to ionic radii.

Table 4. B3LYP-calculated structural parameters UX6. R = 6-coordinated Shannon ionic radius.

Complex rUX (Å) R = RU + RX (Å) rUX – R (Å)

UF6 2.009 0.73 + 1.33 = 2.06 −0.051
UCl6 2.470 0.73 + 1.81 = 2.54 −0.070
UBr6 2.639 0.73 + 1.96 = 2.69 −0.051

Bonding analysis of these complexes was performed using the Quantum Theory of Atoms In
Molecules (QTAIM) [56]. We have recently discussed the merits of this methodology in analyzing the
electronic structure of f-element complexes [57]. In this study, advantage is taken of the high symmetry
of these complexes in order to perform a novel decomposition of a bonding contribution to 5f and 6d
uranium valence shells.

Two QTAIM metrics are commonly used to characterize bonding in molecular systems. The first
of these is ρBCP(A, B), which is the magnitude of the electronic density at the bond critical point (BCP)
between atoms A and B where the BCP is the saddle point in the electronic density distribution ρ(r)
being a local maximum on the interatomic surface and a local minimum perpendicular to the surface.
A commonly employed rule of thumb is that covalent interactions are characterized by ρBCP > 0.2 a.u.
and closed shell interactions by ρBCP < 0.1 a.u. with intermediate values indicating an increasing
degree of a covalent charter. ρBCP can, therefore, be interpreted as a measure of covalent interaction
manifested by orbital overlap.
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The second QTAIM metric used to characterize bonding is the delocalization index, δ(A, B).
The delocalization index is an integrated property and, for chemical systems described by a single
electronic configuration, can be defined by the equation below:

δ(A, B) = 2 ∑
i,j

Sij(A)Sij(B) (1)

where Sij(X) is the overlap between molecular orbitals (MOs) ϕi(r) and ϕj(r) integrated over the
atomic basin associated with atom X (as defined by QTAIM). δ(A, B) is a measure of the number of
electrons shared between two atoms and, in the absence of bond polarisation, correlates strongly with
a formal bond order. More generally, δ(A, B) can be interpreted as indicating the degree of covalent
interaction manifested by energetic degeneracy since it can be large in the absence of significant
overlap between species. While, typically, large values of ρBCP(A, B) are accompanied by large values
of δ(A, B), the converse is not universally true.

The complexes considered in this study all possess D2h (or higher) symmetry. Since the systems
are closed shell in nature, the electron density possesses the same symmetry as the complex it describes
and, therefore, the atomic basin associated with the central uranium atom also possesses this symmetry
(see Figure 1). The delocalization index between the uranium center and any other atom in the complex
can then be decomposed by the equation below.

δ(U, B) = 2 ∑
Γ

Γ

∑
i,j

Sij(U)Sij(B) (2)

where Γ indexes the irreducible representations (irreps) of the point group and the summation over
MOs is now limited to those orbitals spanning the irrep Γ. This definition is valid since the overlap
integral Sij(U) is only non-zero when the MOs ϕi(r) and ϕj(r) span the same irreducible representation.
We have used a similar, though less developed, approach in considering the contributions to bonding
in a series of actinocenes [60].
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Figure 1. QTAIM derived an atomic basin of U in UCl6, which exhibits the full symmetry of the
molecule. Figures reproduced from Reference [61].

Table 5. Irreducible representations spanned by components of the 5f and 6d valence shells with
respect to the principal molecular axis.

Irrep ( Γ) Ag B1g B2g B3g Au B1u B2u B3u

Component 6dσ, 6dδ 6dδ 6dπ 6dπ 5fδ 5fσ, 5fδ 5fπ, 5fϕ 5fπ, 5fϕ
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In D2h symmetry, the components of the 5f and 6d valence shells that can engage in σ-bonding,
π-bonding, δ-bonding, and ϕ-bonding interactions with ligands lying on the principal axis are
summarized in Table 5. In the systems under consideration here, δ-bonding andϕ-bonding interactions
are not possible (or are, at least, energetically highly unfavorable) and σ-bonding and π-bonding
contributions from the 5f and 6d shell can be decomposed from the total delocalization index.
Similarly, ρBCP can be decomposed into contributions from the 5f and 6d shells even though further
decomposition is not possible since only the σ-bonding contribution is non-zero at the BCP (all other
contributions to ρ(r) contain a nodal plane passing through the BCP). Lastly, it should be noted that,
even though this decomposition is only valid with respect to bonding contributions aligned with the
principal axis of the molecule, in all complexes considered here, the principal axis can be chosen to
align with any U–O or U–X bond while maintaining D2h symmetry and, therefore, the decomposition
can be applied to all bonding interactions.

Figure 2 summarizes the relevant QTAIM metrics for the U–O bond in [UO2X4]2− complexes
(see Supplementary Materials for numerical data). The magnitude of ρBCP deviates most strongly
from that of free uranyl in the case of the fluoride complex, which is indicative of a weakening of the
covalent character of the U–O interaction. As the halide mass increases, so does ρBCP, which implies
that the heavier halides perturb the U–O bond to a lesser extent. This is commensurate with the data
presented in Table 3 where covalent stabilization of the equatorial bonds appears most pronounced
for the fluoride complex. The values of ρBCP reported in this study compare well to those previously
reported for the fluoride and chloride complexes as well as for the free uranyl ion [37].
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Figure 2. Decomposed QTAIM metrics of the U-O bond in [UO2X4]2− complexes (X = F, Cl, Br)
obtained from B3LYP-derived densities. Values from free uranyl are also provided for comparison.
f-shell contributions are given in yellow and d-shell contributions are given in blue.

The 5f contribution to ρBCP accounts for ~60% of the total value irrespective of the species under
consideration, which indicates that the 5f-shell is more involved in covalent interactions with the oxo
ligand than the 6d-shell. The percentage variations in the 5f and 6d contributions to ρBCP are extremely
similar with values in the fluoride complex being 71% and 73% of the free uranyl values, respectively.

The corresponding δ(U, O) data demonstrate broadly the same trend, but provide further insight.
The total number of electrons shared is substantially lower in the halide complexes than in free
uranyl in agreement with previous work [37], but again increases as the halide mass increases and
the perturbation of the U–O bond is reduced. δ(U, O) is 78% of the free uranyl value in the fluoride
complex but the 5f contribution accounts for 65% of the total, which is greater than the 63% contribution
in free uranyl and indicates a stability of this contribution to the U–O bond with respect to that of
free uranyl. The ratio of 5f/6d contributions is reasonably constant across the halides. For example,
the 5f component is 64% of the total value in the bromide complex. It should be noted that there are
two components of the 5f shell (and likewise for the 6d shell) that can engage in π-interactions with



Inorganics 2018, 6, 88 7 of 19

the oxo ligand and the contributions reported in this paper are the composite of these two distinct
interactions. Therefore, the degree of electron sharing is greater for the σ-component of each bond
than for each of the π-components.

While there is an overall reduction in δ(U, O) upon completion, this reduction is not distributed
evenly among the four bonding components. Taking the fluoride complex as an example,
the 5fσ contribution is largely unchanged and is reduced to 95% of its free value while the
5fπ contribution reduces to 72% of its free value. Corresponding 6d contributions reduce to 80%
and 69%, respectively. This variation can be understood in terms of the availability of these shells to
equatorial bonding interactions: the 5fσ and 6dσ components are orientated along the U-O bond and
are, therefore, relatively unavailable for equatorial interactions while the 5fπ and 6dπ components
are available for equatorial σ-bonding and π-bonding interactions, respectively, and are, therefore,
most significantly affected by the presence of equatorial ligands. Qualitatively similar behavior is
found for the other halide complexes.

More broadly, the quantitative difference in the reduction of ρBCP (which is only sensitive to
σ-interactions) and the σ-contributions to δ(U, O) demonstrate how these metrics provide independent
but related data regarding bonding. This is most obvious for the 5f-shell: the 5f contribution to ρBCP

reduces to 71% of its free value upon equatorial coordination by fluoride while the corresponding
5fσ contribution to δ(U, O) maintains 95% of its free value, i.e., overlap-induced covalency is reduced
while degeneracy-induced covalency is maintained.

Figure 3 summarizes QTAIM metrics for equatorial U-X bonds in [UO2X4]2− and UX6 complexes
(see Supplementary Materials for numerical data). This data was obtained by taking a U–X bond to
define the principal molecular axis and reference to σ-contributions and π-contributions to bonding is
given in this study with respect to the U–X bond. This approach is taken throughout this contribution.

Considering first ρBCP(U, X), overall magnitudes are larger in the UX6 complexes due to the lack
of competition with the strongly coordinating terminal oxo species and the consequently shorter U–X
bonds. The ρBCP(U, X) values are, however, much lower than those of the U–O bond, which indicates,
as expected, significantly reduced covalent contributions to bonding. Nonetheless, ρBCP(U, X) has
a maximum value (0.155 a.u.) in UF6, consistent with substantial covalent bond character. There is
a clear reduction in ρBCP(U, X) in both sets of complexes as the halide mass increases, which shows
a reduction in overlap-induced equatorial covalency. Interestingly, the reduction is significantly
more pronounced for the 5f shell. The 5f contribution to ρBCP is 34% and 38% larger than the
6d contribution in [UO2F4]2− and UF6, respectively, but is just 4% and 7% larger in [UO2Br4]2−

and UBr6, respectively. There is a larger contribution to bonding from the 5f shell in fluoride complexes
while 5f and 6d contributions are comparable for the heavier halides.

The value of ρBCP in UF6 can be indirectly compared to a recent X-ray diffraction study of [UF6]−

in which topological analysis of the experimentally determined electron density gave ρBCP ~0.135 a.u.
for the U–F bond [21]. This is approximately 13% lower than the value reported here, but it should be
borne in mind that uranium is in the +5 oxidation state in [UF6]− as opposed to the +6 oxidation state
in UF6. We have previously investigated the dependence of QTAIM parameters on uranium oxidation
state in uranium hexachloride [61], finding a reduction in ρBCP of 17% when comparing the +6 and +5
oxidation states. These recent experimental findings, therefore, appear to be in accord with the present
study, which suggests a significant decrease in the overlap-driven covalent bond character upon the
reduction of the uranium center in both hexachloride and hexafluoride species.
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contributions are in blue.

Variation in δ(U, X) is markedly different in the two sets of complexes. For UX6 species, an overall
increase is found as the halide mass increases, which opposes the trend in ρBCP and shows the danger
of attempting to use δ as an indicator of bond order in the presence of bond polarization. 5f components
of δ(U, X) are consistently higher than 6d contributions with the 5fσ contribution dominating the
fluoride complex and all components increasing as the halide mass increases. This behavior again
opposes that exhibited by ρBCP and demonstrates that overlap-induced and degeneracy-induced
covalency can (i) manifest independently and (ii) both be identified by the methodology employed
here. For [UO2X4]2− species, the trend in 5fσ, 5fπ, and 6dπ components mirrors that of ρBCP

while the variation in 6dσ strongly opposes this trend and results in the overall magnitude of
δ(U, X) remaining largely unchanged with the 6dσ component overtaking 5fσ as the dominant
contribution when the halide mass increases. The qualitative difference in δ(U, X) between the
two sets of complexes presumably reflects the strong influence of the axial oxo species on (formally)
uranium-based energy levels.

2.3. Heterohalide Complexes

In this section, complexes of the form [UO2X2Y2]2− and UX2Y2Z2 (where X, Y, Z ∈ {F, Cl, Br}) are
considered. Again, these complexes possess D2h symmetry or higher, which implies that like ligands
are oriented trans to each other and allows for the equivalent analysis to that reported in Section 2.2
to be performed. In the case of the UX2Y2Z2 complexes, only the “axial” U–X bond is considered
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since the permutation of the ligands means that each of the bonding interactions in the 10 possible
complexes is thus included.

Figure 4 summarizes calculated ρBCP values of the axial bond (numerical values are presented in
the Supplementary Materials). Focusing initially on the uranyl halides, the characteristics identified in
Section 2.2 are maintained, i.e., that equatorial ligand sets including the lighter, more electronegative
halides perturb the axial U–O bond more with the 5f and 6d contributions being approximately equally
affected. The effect of altering the equatorial ligand set in the uranium halides is less pronounced,
presumably due to the more ionic nature of the interactions. ρBCP attains a maximum value 0.160 a.u.
for the U–F bond with an equatorial ligand set comprised of Cl and/or Br. This is, however, just 3%
larger than the value found in UF6. Broadly speaking, there is a modest perturbation to ρBCP when the
equatorial ligand set includes F while calculated metrics are almost completely insensitive to replacing
Cl by Br.
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Figure 4. ρBCP values of axial U–O and U–X (X = F, Cl, Br) bonds in [UO2X2Y2]2− and UX2Y2Z2

complexes derived from B3LYP-generated densities. All values are in a.u.

Delocalization indices exhibit more variation (See Figure 5: numerical values presented in
Supplementary Materials). δ(U, O) exhibits the same variation as reported in Section 2.2 with larger
values found when the halide mass increases. The 5fσ contribution is, in all cases, close to the value for
free uranyl and insensitive to the equatorial ligand set. Other contributions vary in accordance with
the total value, with the 6dπ component exhibiting the greatest sensitivity. As previously discussed,
this component of the 6d shell is also able to engage in equatorial π-bonding interactions and the
variation seen here is indicative of the formation of such bonding interactions even though this should
be interpreted in the context of degeneracy-driven covalency.

All UX2Y2Z2 complexes exhibit qualitatively similar trends. Total values of δ(U, X) are largely
insensitive to the equatorial environment, which increases slightly as the equatorial ligands become
heavier and less electronegative. A trend is also exhibited by the 5fπ and 6dσ contributions.
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The 5fσ contribution decreases as the halide mass increases, but, in contrast, the 6dπ component
increases by a greater magnitude. Since both the 5fσ and 6dπ components are available for equatorial
π-bonding interactions, the variation in δ(U, X) can, therefore, be attributed to increased equatorial
π-interactions with the 6d shell, which is partially balanced by a reduction in such interactions with
the 5f shell. This is indicative of closer energetic matching of fluorine 2p and uranium 5f levels and of
bromine 4p and uranium 6d levels.
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2.4. Covalency and Bond Stabilization

Lastly, the relationship between equatorial bond covalency and bond stability is considered.
For uranyl, the binding energy of the equatorial ligand set is defined by the equation below.

EB = E
(

UO2
2+

)
+ 2E

(
X−

)
+ 2E

(
Y−

)
− E([UO2X2Y2]

2−) (3)
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Figure 6. Correlation between QTAIM parameters of the U–O bond, U–O stretching vibrational
frequencies, and the binding energy of the equatorial ligand set in [UO2X2Y2]2− complexes.
(a) correlates νUO and ρBCP, (b) correlates νUO and δ(U, O), (c) correlates EB and ρBCP, (d) correlates EB

and δ(U, O).

Figure 6 reports correlations between QTAIM parameters of the UO bond, U–O stretching
vibrational frequencies (νUO), and the binding energy (EB) of the equatorial ligand set
(see Supplementary Materials for numerical data). Extremely strong correlations are found between
vibrational frequencies and both ρBCP and δ(U, O) (Figures 6a and 6b, respectively), which indicates
that the covalency of the U–O bond is strongly stabilizing. We have previously reported similar strong
correlations with a more varied ligand set [75]. Perhaps more interestingly, strong anti-correlations
are also found between these topological parameters and binding energies, which is defined in
Equation (3). These anti-correlations (Figure 6c,d) illustrate the perturbation of the U-O bond covalency
by the presence of the equatorial ligands, which suggests that U-O bond vibrations can be used as
a quantitative probe of equatorial ligand stability.

It might be expected that binding energies would also correlate with QTAIM parameters of the
axial bonds. Figure 7 summarizes these relationships (see Supplementary Materials for numerical data).
Note that since both homoleptic and heteroleptic complexes are considered, averaged topological
values are reported. We have taken this approach previously and found strong correlations between
averaged values and binding energies [75].

Figure 7a illustrates an extremely strong correlation between ρBCP and EB, which provides further
justification for considering these averaged values. Conversely, no correlation is found between δ

and EB (Figure 7b). This can be rationalized if one considers the aspects of covalency that ρBCP and
δ probe [57]: ρBCP identifies overlap-driven covalency, i.e., charge accumulation in the bonding region,
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which might be expected to have a stabilizing effect on the interaction. δ, on the other hand, can be
considered a measure of degeneracy-driven covalency for which no energetic stabilization of the bond
is necessarily manifested. The absence of correlation presented in Figure 7b is, therefore, indicative of
the fact that, in these complexes, degeneracy-driven covalency has no clearly-defined energetic effect.
It should also be noted that variation in δ is rather modest with maximum deviations less than 2%
from the mean value. In contrast, maximum ρBCP deviations are ~40% from the mean.
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Since νUO correlated strongly with EB and EB itself correlated strongly with ρBCP for the
equatorial bonds, the direct relationship between νUO and equatorial bond parameters was considered
(see Figures 7c and 7d). As expected, a very strong (albeit slightly weaker) anticorrelation was found
with ρBCP while correlation with δ was not identified. The anti-correlation with ρBCP lends further
support to our previous assertion that νUO could be used to probe equatorial bond covalency [75].

The success of correlating the averaged equatorial ρBCP values with binding energies in uranyl
halides suggested that a similar approach might be applicable to the uranium hexahalides considered
in this study where the average would be with respect to all coordinating species. The binding energy
is defined by the equation below.

EB = E
(

U6+
)
+ 2E

(
X−

)
+ 2E

(
Y−

)
+ 2E

(
Z−

)
− E(UX2Y2Z2). (4)

Figure 8 presents the results of correlating EB with ρBCP and δ (See Supplementary Materials for
numerical data). As seen for the uranyl halides, ρBCP exhibits an excellent correlation with EB and
again demonstrates that ρBCP quantitatively measures stabilizing covalent interactions in these species.
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Remarkably, δ shows a very strong anti-correlation with EB, i.e., as degeneracy-driven covalency
increases, bond stability reduces.Inorganics 2018, 6, x FOR PEER REVIEW  13 of 18 
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3. Computational Details

All calculations were performed using version 6.6 of the TURBOMOLE quantum chemistry
code [82,83] using scalar-relativistic density functional theory (DFT). Several exchange-correlation (xc-)
functionals were considered in order to identify which was most suitable for these simulations and,
as reported above, the hybrid-GGA B3LYP functional [71,72] was found to give the best agreement
with experimental data in test systems. There are numerous examples in the literature demonstrating
the suitability of B3LYP in the study or U(VI) coordination complexes [34,37,75,78]. All simulations
were performed using the Ahlrichs def2-QZVP basis sets [84] of polarized quadruple-ζ quality for
light atoms (O, F, Cl, Br). The small-core pseudopotential of Dolg and co-workers [85], along with
the corresponding (14s13p10d8f6g)/[10s9p5d4f3g] basis set [86], was used to model the uranium
center by incorporating scalar relativistic effects. This pseudopotential is constructed from calculations
employing the Wood-Boring equation (which may be derived directly from the Dirac equation) and
includes both a mass-velocity and a Darwin term. The effects of the spin-orbit coupling have not been
considered in these closed shell, formally 5f06d0 species. De Jong et al. have shown that the effects
of spin-orbit coupling are rather moderate in the high energy valence region of uranyl but becomes
more pronounced when considering the pseudo core 6p-shell [87]. However, we have recently shown
that the impact of the 6p-shell on QTAIM metrics is modest [88]. We would also expect the degree of
SO-coupling to be comparable in analogous systems and, therefore, have little impact on the trends
reported here.

Geometry optimizations were performed in the gas-phase using default convergence criteria and
local energetic minima were identified using analytical frequency analysis. In order to decompose
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bonding into contributions from different electronic shells, all optimizations were constrained to the
D2h point group. Topological and integrated properties of the electron density were evaluated using
version 3.3.9 of the Multiwfn code [89].

4. Summary and Conclusions

The electronic structures of a series of uranium hexahalide and uranyl tetrahalide complexes
were simulated at the density functional theoretical (DFT) level. A comparison with previous
experimental structural and vibrational data indicated that the B3LYP exchange-correlation functional
was best able to accurately simulate these complexes. B3LYP-derived electronic structures were
subsequently analyzed using a novel application of the Quantum Theory of Atoms in Molecules
(QTAIM). This approach exploited the high (D2h or greater) symmetry of the complexes to determine
5f-shell and 6d-shell contributions to bonding through symmetry arguments. The analysis also allowed
differentiation between overlap-driven and degeneracy-driven contributions to covalency and, for the
latter, to further differentiate between σ-type and π-type interactions. This analysis revealed that,
of the halogen ligands considered (X = F, Cl, Br), fluoride ligation resulted in the strongest bonds
with the most significant covalent character and with values of the density at the U-F bond critical
point, ρBCP, as high as 0.16 a.u. As a reference, ρBCP ≥ 0.20 a.u. is often taken to be an indicator of
a predominantly covalent interaction. Ligation by chloride and bromide species resulted in more ionic
interactions with little differentiation between the ligands. Fluoride ligands were also found to be most
capable of perturbing the electronic structure of other bonds in the complex. Taking [UO2F4]2− as an
example, QTAIM metrics of the U–O bond were reduced to ~75% of the values for free uranyl.

The QTAIM analysis allows for the distinction to be made between covalent bond contributions
whose origin lies in either orbital overlap or energy degeneracy. Analysis of the complexes considered
here showed that 5f contributions to overlap-driven covalency were larger than 6d contributions
for all interactions in all complexes studied while degeneracy-driven covalent contributions showed
significantly greater variation. σ-contributions to degeneracy-driven covalency were found to be
consistently larger than those of each individual π-component even though the total π-contribution
was, in some cases, larger.

We have previously reported on strong correlations between uranyl stretching vibrational
frequencies and equatorial bond covalency [75]. In this study, strong correlations were found between
overlap-driven covalent bond contributions, U–O vibrational frequencies, and energetic stability,
which indicates that overlap-driven covalency leads to bond stabilization in these complexes and
that uranyl vibrational frequencies can be used to quantitatively probe equatorial bond covalency.
For uranium hexahalides, overlap-driven covalency was shown to strongly correlate with bond
stability while degeneracy-driven covalency was found to strongly anti-correlate. This anti-correlation
illustrates the care that must be taken to differentiate between overlap-driven and degeneracy-driven
covalent contributions to bond character when employing such analysis to rationalize experimental
data. This work demonstrates that the QTAIM can be used to provide a highly detailed characterization
of bonding interactions, which distinguishes between the different origins of covalent contributions
and provides quantitative data with which to rationalize observable phenomena.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/3/88/s1.
Tables S1–S10: numerical data using which graphs and figures have been generated.
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