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Abstract: The sterically bulky Ga(III) and In(III) (IPr*)MMe3 adducts (1 and 2) and (SItBu)MMe3

adducts (3 and 4) (M = Ga, In; IPr* = 1,3-bis{2,6-bis(diphenylmethyl)-4-methylphenyl}-1,3-dihydro-
imidazol-2-ylidene; SItBu = 1,3-bis(1,1-dimethylethyl)-imidazolidin-2-ylidene) were prepared and
structurally characterized, allowing an estimation of the steric hindrance of such Lewis pairs (yields in
1–4: 92%, 90%, 73%, and 42%, respectively). While the IPr* adducts 1 and 2 are robust species, the more
severely congested SItBu adducts 3 and 4 are more reactive and exhibit a limited stability in solution.
Adduct (SItBu)GaMe3 (3) reacts quickly with H2 at room temperature to afford the corresponding
aminal product, 1,3-di-tert-butylimidazolidine (5), along with free GaMe3. Such Frustrated Lewis
Pair (FLP) reactivity constitutes the first instance of a H2 activation involving a simple trialkyl
GaR3 species. Adduct 3 also mediates the ring-opening polymerization (ROP) of rac-lactide at room
temperature to afford cyclic polylactide (PLA).
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1. Introduction

Thanks to their exceptional σ-donating properties and steric tunability, N-heterocyclic carbenes
(NHCs) constitute a privileged class of supporting ligands for the stabilization of various metal
complexes [1–5]. This has led to the widespread use of NHC-supported metal species in numerous
research fields, notably in metal-based homogeneous catalysis and for the characterization of unusual
organometallic motifs [6,7].

The coordination (and related reactivity studies) of NHCs to oxophilic and high-oxidation-state
metal centers such as group 13 metals M(III) (M = Al, Ga, In) is currently attracting growing attention [8].
For the most part, this is due to the potential usefulness of the derived Lewis adducts for novel reactivity
and/or small molecule activation, in particular through Frustrated Lewis Pair (FLP) reactivity [9].
FLP reactivity has attracted tremendous attention over the past few years thanks to the ability of
sterically hindered Lewis pairs and FLPs to activate numerous polar/unsaturated substrates, including
H2 and CO2 [9–11]. In the area of group 13 metal species, we and others have shown that sterically
bulky group 13 metal Lewis adducts may display limited stability and readily isomerize to their
“abnormal” counterparts for steric relief of (NHC)MMe3 (Scheme 1, taking the example of adducts
(ItBu)MMe3) [12–14].

In the case of the bulky adduct (ItBu)AlMe3, steric hindrance may also promote an unusual
deprotonation of the AlMe3 moiety by ItBu in the presence of Al2Me6 [15]. The ItBu/Al(iBu)3 FLP
system was also shown to activate H2 at room temperature [13]. The reactivity of lower group 13
metal Ga(III)–/In(III)–NHC Lewis pairs has been less studied, though recent studies have detailed
FLP activation of various polar substrates with an NHC/GaR3 mixture (R = alkyl, carbyl) [16,17].
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We herein report the synthesis and structural characterization of such adducts and their 
reactivity with H2, leading, as described below, to the first instance of H2 activation by a simple 
NHC/GaMe3 system. Preliminary results on the use of such compounds as lactide ring-opening 
polymerization catalysts are also discussed. 

2. Results 

2.1. Adducts (IPr*)MMe3 (1, M = Ga; 2, M = In) 

The superbulky NHC carbene IPr*, first reported by Marko and co-workers in 2010 [18], is 
frequently referred to as an “exceptionally bulky NHC with some flexible sterics” in several reports, 
and thus appeared to be a suitable candidate for our studies [19]. While a number of IPr*-supported 
complexes of late transition metals are known, the coordination of IPr* to oxophilic metal centers is 
thus far unreported.  

The reaction of IPr*, which was prepared according to literature procedures, with a 
stoichiometric amount of MMe3 (room temperature, toluene, 2 h) led to the quantitative formation of 
corresponding (IPr*)MMe3 adducts (1, M = Ga; 2, M = In; Scheme 2), isolated in high yield as colorless 
solids (90% and 92% yield, respectively) [18,19]. The NMR data for 1 and 2 are consistent with the 
coordination of IPr* to the M(III) centers. In particular, the 13C NMR Ccarbene chemical shifts (δ 183.4 
and 185.8 ppm for 1 and 2, respectively) lie in the expected range for NHC–Ga and NHC–In species 
and are significantly upfield shifted versus that of free IPr* (δ 220.0 ppm). Somewhat surprisingly 
given the steric properties of IPr*, adducts 1 and 2 are stable species in solution at room temperature, 
including in a coordinative solvent such as THF. Likewise, as monitored by 1H NMR, species 1 and 2 
are thermally robust and retain their integrity upon prolonged heating (C6D6, 48 h, 80 °C). The latter 
observations sharply contrast with the instability of their (ItBu)MMe3 counterparts (Scheme 1). 

Scheme 1. Isomerization of N-heterocyclic carbene (NHC) adducts of group 13 metal complexes.

To further probe the structural features and reactivity of sterically hindered Ga(III) and
In(III) of the type NHC–MR3 (R = alkyl, carbyl), the use of bulky NHCs IPr* and SItBu (IPr* =
1, 3-bis{2,6-bis(diphenylmethyl)-4-methylphenyl}-1,3-dihydro-imidazol-2-ylidene, SItBu = 1,3-bis
(1,1-dimethylethyl)-imidazolidin-2-ylidene; Figure 1) for adduct formation with GaMe3 and InMe3

was studied.
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Figure 1. Structures of NHCs IPr* and SItBu.

We herein report the synthesis and structural characterization of such adducts and their reactivity
with H2, leading, as described below, to the first instance of H2 activation by a simple NHC/GaMe3

system. Preliminary results on the use of such compounds as lactide ring-opening polymerization
catalysts are also discussed.

2. Results

2.1. Adducts (IPr*)MMe3 (1, M = Ga; 2, M = In)

The superbulky NHC carbene IPr*, first reported by Marko and co-workers in 2010 [18], is
frequently referred to as an “exceptionally bulky NHC with some flexible sterics” in several reports,
and thus appeared to be a suitable candidate for our studies [19]. While a number of IPr*-supported
complexes of late transition metals are known, the coordination of IPr* to oxophilic metal centers is
thus far unreported.

The reaction of IPr*, which was prepared according to literature procedures, with a stoichiometric
amount of MMe3 (room temperature, toluene, 2 h) led to the quantitative formation of corresponding
(IPr*)MMe3 adducts (1, M = Ga; 2, M = In; Scheme 2), isolated in high yield as colorless solids (90%
and 92% yield, respectively) [18,19]. The NMR data for 1 and 2 are consistent with the coordination of
IPr* to the M(III) centers. In particular, the 13C NMR Ccarbene chemical shifts (δ 183.4 and 185.8 ppm for
1 and 2, respectively) lie in the expected range for NHC–Ga and NHC–In species and are significantly
upfield shifted versus that of free IPr* (δ 220.0 ppm). Somewhat surprisingly given the steric properties
of IPr*, adducts 1 and 2 are stable species in solution at room temperature, including in a coordinative
solvent such as THF. Likewise, as monitored by 1H NMR, species 1 and 2 are thermally robust and
retain their integrity upon prolonged heating (C6D6, 48 h, 80 ◦C). The latter observations sharply
contrast with the instability of their (ItBu)MMe3 counterparts (Scheme 1).
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Scheme 2. Synthesis of NHC adducts 1–4.

As determined through X-ray crystallographic studies (XRD), the solid-state molecular structure
of 2 confirmed the effective coordination of IPr* to InMe3, resulting in a four-coordinate In(III) adopting
a distorted tetrahedral geometry and coplanar to the NHC heterocyclic ring (Figure 2). The In–Ccarbene
bond distance (2.330(5) Å) in 2 is a bit longer than those in (IMes)InMe3 and (IPr)InMe3 (2.292(6) and
2.309(2) Å, respectively; IMes = 1,3-bis(2,4,6-trimethylphenyl)-1,3-dihydro-imidazol-2-ylidene; IPr =
1,3-bis{2,6-bis(1-methylethyl)phenyl})-1,3-dihydro-imidazol-2-ylidene), likely reflecting greater steric
hindrance between the NHC and InMe3 in 2 [20,21]. However, the shortest contacts between IPr* and
InMe3 (H···H = 2.257 Å and C···H = 2.747 Å) remain close to the sum of the van der Waals (vdW) radii
of the corresponding atoms, in line with no severe steric congestion in 2 and in agreement with the
observed stability of adduct (IPr*)InMe3 in solution [22].
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Figure 2. Molecular structure of adduct (IPr*)InMe3 (2, ORTEP view, the ellipsoids are at 50%
probability level). Hydrogen atoms are omitted for clarity. Selected bond distances (Å): In(1)–C(1) =
2.330(5), C(1)–N(1) = 1.368(5), C(1)–N(2) = 1.355(6), C(2)–C(3) = 1.335(6).

2.2. Adducts (StBu)MMe3 (3, M = Ga; 4, M = In)

As earlier mentioned, the sterically hindered Lewis pairs (ItBu)MMe3 (M = Ga, In) are unstable
and rearrange to the corresponding C4-bonded isomers (aItBu)MMe3 (Scheme 1) [12–14]. To avoid such
isomerization, the backbone-saturated carbene StBu, prepared according to a known procedure [23],
was coordinated to GaMe3 and InMe3. Thus, reaction of StBu with one equiv. of GaMe3/InMe3

(pentane, −35 ◦C to room temperature, 30 min) led to the formation of species (StBu)MMe3 (3, M = Ga;
4, M = In), which were isolated in moderate to good yields as highly air-sensitive colorless solids
(73% and 42% yield, respectively). Unlike adducts 1 and 2, species 3 and 4 display a limited stability
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in common solvents. While stable for days in benzene/toluene at room temperature (under inert
atmosphere), they quickly decompose to unknown species in CH2Cl2 and THF at room temperature,
in line with severely hindered Lewis pairs. The NMR data for 3 and 4 only display sharp resonances
that are consistent with the proposed adduct formulation. Taking the example of the In(III) species 4,
the 1H NMR spectrum contains a singlet resonance for the StBu–CH2CH2 moiety (δ 2.82 ppm, 4 H),
upfield shielded relative to that in free StBu (δ 1.33 ppm), as well as a characteristic singlet in the
In–Me region (δ 0.01 ppm, 9 H). No evidence for adduct dissociation is observable under the studied
conditions for either 3 or 4 (C6D6, room temperature).

The solid-state molecular structures of adducts 3 and 4, as established by XRD studies, confirmed
the effective coordination of SItBu to the Ga(III) and In(III) metal centers, respectively (Figures 3 and 4).
In species 3, the Ga–Ccarbene bond distance (2.195(2) Å) is significantly longer (≈ 0.07 Å) than those in
related adducts (SIMes)GaMe3 and (SIPr)GaMe3 (2.124(5) and 2.137(2) Å, respectively) [21]. The latter,
together with very short contacts between the NHC and the GaMe3 moieties (shortest distances
between SItBu and GaMe3: Ga···H = 2.581 Å, H···H = 2.009 Å, C···H = 2.550 Å) well below the sum of
the vdW radii of the corresponding atoms, indicates that adduct 3 is severely crowded.
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The solid-state molecular structure of the In(III) adduct (SItBu)InMe3 (4) features a longer
In–Ccarbene bond distance (2.399(2) Å) versus those in (SIMes)InMe3 and (SIiPr)InMe3 (2.304(8) and
2.342(2) Å, respectively) [20,21]. Comparing adducts 3 and 4, the longer In–Ccarbene (versus Ga–Ccarbene)
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bond distance decreases steric congestion in adduct 4 (versus 3), as suggested by longer NHC/MMe3

atom contacts in 4 (shortest contacts: In···H = 2.642 Å, H···H = 2.169 Å, C···H = 2.660 Å).

2.3. Reactivity of Adducts 1–4 with H2

As sterically bulky Lewis adducts, the Ga- and In-based adducts are potential candidates for FLP
reactivity. Ga- and In-based intermolecular FLP systems remain rare [16,17]. The reactivity of NHC
adducts 1–4 with H2 was therefore studied. In line with their stability and robustness in solution, IPr*
adducts 1 and 2 were found to not react with H2 (1.5 bar) even under prolonged heating (80 ◦C, C6D6,
48 h). In sharp contrast and satisfyingly, the most sterically hindered adduct (SItBu)GaMe3 (3) exhibits
FLP reactivity as it reacts quickly with H2 (1.5 bar of H2, room temperature, 5 min) to quantitatively
yield the corresponding aminal derivative, 1,3-di-tert-butylimidazolidine (5), along with free GaMe3,
as deduced from 1H NMR data (Scheme 3) [24]. Note that neither SItBu nor GaMe3 alone react with
H2 under such conditions.
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A similar H2 activation was observed for the ItBu/Al(iBu)3 FLP system with H2 [13]. The formation
of product 5 is likely to proceed via a H2 heterolytic cleavage (mediated to 3) to yield transient salt
species (SItBu–H)(HGaMe3) (Scheme 4). The latter may then decompose via hydride transfer from the
Ga center to the C2-imidazolinium atom of SItBu–H+ to afford 5 and regenerate GaMe3. Consistent
with the latter proposal, a SItBu/GaMe3 mixture in a 1/0.4 ratio, i.e., with a substoichiometric amount
of GaMe3, also rapidly reacted and led to the quantitative conversion of SItBu to aminal 5 along with
0.4 equiv. of free GaMe3 (Figure S8). Formally, GaMe3 thus catalyzes the formation of 5 from 3 and H2

(Scheme 4). Unlike its Ga(III) counterpart, the In(III) adduct 4 led to a complicated mixture of products
upon reaction with H2 (1.5 bar of H2, room temperature, 3 h), among which only derivative 5 could be
identified. The distinct reactivities towards H2 of 3 and 4 versus 5 is certainly related to greater steric
hindrance between the NHC and the MMe3 fragments in 3 and 4, prompting their easier dissociation
and subsequent reactivity with H2.
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2.4. Reactivity of Adducts 1–4 with Lactide

Over the past twenty years, group 13 metal alkoxide complexes supported by various
ligand platforms have been widely and successfully investigated as ring-opening polymerization
(ROP) initiators of cyclic esters/carbonates for the production of well-defined biodegradable
poly-esters/-carbonates [25–27]. More recently, the polymerization of polar/unsaturated monomers,
including cyclic esters, initiated by simple Al-based Lewis adducts has attracted attention [28,29].
Such a Lewis pair polymerization (LPP) relies on the cooperative activation of the monomer by the
Lewis acid/base fragments and may be related to FLP reactivity.

The Lewis adducts 1–4 were thus tested as lactide (LA) ROP initiators (100 equiv. of rac-lactide
(rac-LA), toluene, room temperature, 18 h). Adducts 1, 2, and 4 promote the ROP of rac-lactide to
quantitatively yield ill-defined and broadly disperse polylactide (PLA), as deduced from Size Exclusion
Chromatography (SEC) data (1000 < Mn < 5000 g·mol−1, 3 < Đ < 4). On the contrary, narrow disperse
PLA (Mn = 4500 g·mol−1, Đ = 1.12) was quantitatively produced using the Ga adduct 3 as the ROP
catalyst. The MALDI-TOF data of the prepared PLA display peaks that are equally spaced by 72 a.u.,
which is consistent with transesterified PLA (Figure S9). Also, both the mass values and the 1H NMR
data for the isolated PLA agree with the absence of any chain-end signals, and, therefore, with a cyclic
PLA (Figure S10, SI). We recently reported the formation of cyclic PLA using related NHC–AlMe3

Lewis pairs as lactide ROP catalysts [20]. It therefore seems likely that an analogous ROP mechanism
is presently at play, involving a zwitterionic chain growing species that undergoes an intramolecular
nucleophilic attack to form cyclic PLA and regenerate adduct 3 (Scheme 5).
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3. Materials and Methods

All experiments were carried out under N2 using standard Schlenk techniques or in an MBraun
Unilab glovebox (Mbraun, Garching, Germany). Toluene and pentane were collected after being
passed through drying columns and stored over activated molecular sieves (4 Å) for 24 h in a
glovebox prior to use. Tetrahydrofuran was distilled over Na/benzophenone and stored over activated
molecular sieves (4 Å) for 24 h in a glovebox prior to use. CD2Cl2 and C6D6 were distilled from
CaH2, degassed under a N2 flow, and stored over activated molecular sieves (4 Å) in a glovebox
prior to use. GaMe3 and InMe3 were purchased from Strem Corporation (MA, USA). IPr* and
1,3-di-tert-butylimidazolin-2-ylidene (SItBu) [18,23]. The NMR spectra were recorded on Bruker AC
300, 400, or 500 MHz NMR spectrometers in Teflon-valved J-Young NMR tubes. 1H and 13C chemical
shifts are reported versus SiMe4 and were determined by reference to the residual 1H and 13C solvent
peaks. Mass spectra were performed at the Mass Spectrometry Department of the University of
Strasbourg. Mass spectra were acquired on a time-of-flight mass spectrometer (MALDI–TOF–TOF
Autoflex II TOF-TOF, Bruker Daltonics, Bremen, Germany) equipped with a nitrogen laser (λ = 337 nm).
An external multipoint calibration was carried out before each measurement with a standard peptide
mixture and a standard protein mixture (depending on the mass range analysed). Scan accumulation
and data processing were performed with FlexAnalysis 3.4 software (Bruker Daltonics, Bremen,
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Germany). α-Cyano-4-hydroxy-cinnamic acid (CHCA), dithranol (DIT), or super-DHB (a 9/1 mixture
of dihydroxybenzoid acid/2-hydroxy-5-methoxybenzoic acid) was used as the matrix for analysis of
the prepared PLA samples. SEC analyses were performed on a SEC system equipped with a Shimadzu
RID10A refractometer detector using HPLC-grade THF as an eluant (MilliporeSigma, MA, USA).
Molecular weights and polydispersity indices (PDIs) were calculated using polystyrene standards.
Molecular weight numbers (Mn) were corrected with the appropriate correcting factor (0.58) for the
Mn values.

3.1. Synthesis of (IPr*)MMe3 (1, M = Ga; 2, M = In)

In a glovebox, a toluene solution of free carbene IPr* (400 mg, 0.438 mmol) was added dropwise
via a pipette of toluene solution (10 mL) of MMe3 (M= Ga or In, 0.438 mmol) under vigorous stirring.
The latter mixture was stirred for 1h to room temperature then dried in vacuo to afford a colorless
solid residue that was washed twice with pentane. It was further dried in vacuo to quantitatively
afford the corresponding (IPr*)GaMe3 (1) and (IPr*)InMe3 (2) adducts as NMR-pure colorless solids.
Data for compound 1. 92% yield. X-ray quality crystals were grown from a pentane/toluene solution
cooled at −35 ◦C. 1H NMR (400 MHz, C6D6): δ = −0.08 (s, 9H, Ga(CH3)3), 1.78 (s, 6H, p-CH3), 5.02 (s,
2H, CHIm), 5.69 (s, 4H, CHPh2), 6.74–6.86 (m, 20H, CHPh), 7.04 (t, J = 7.5 Hz, 4H, CHPh), 7.14 (s, 4H,
CHAr), 7.20 (t, J = 7.5 Hz, 8H, CHPh), 7.59 (d, J = 7.5 Hz, 8H, CHPh) ppm; 13C{1H} NMR (125.8 MHz,
C6D6): δ = −3.2 (Ga(CH3)3), 21.3 (p-CH3), 52.2 (CHPh2), 123.6 (CHIm), 126.6, 127.2, 128.8, 129.8, 130.3,
131.1, 135.1, 140.0, 142.5, 143.2, 144.8, 183.4 (Ccarbene) ppm. Data for compound 2. 90% yield. 1H NMR
(500 MHz, C6D6): δ = −0.11 (s, 9H, In(CH3)3), 1.77 (s, 6H, p-CH3), 5.11 (s, 2H, CHIm), 5.66 (s, 4H,
CHPh2), 6.75–6.88 (m, 20H, CHPh), 7.04 (t, J = 7.5 Hz, 4H, CHPh), 7.13 (s, 4H, CHAr), 7.19 (t, J = 7.5 Hz,
8H, CHPh), 7.52 (d, J = 7.5 Hz, 8H, CHPh) ppm; 13C{1H} NMR (125.8 MHz, C6D6): δ = −7.7 (In(CH3)3),
21.3 (p-CH3), 52.1 (CHPh2), 124.1 (CHIm), 126.7, 127.2, 128.4, 128.7, 129.8, 130.5, 131.0, 135.4, 140.1,
142.5, 143.2, 144.5, 185.8 (Ccarbene) ppm.

3.2. (SItBu)MMe3 (3, M = Ga; 4, M = In)

In a glovebox, a precooled pentane solution (−35 ◦C, 10 mL) of free carbene 1,3-di-tert-
butylimidazolin-2-ylidene (SItBu, 100.0 mg, 0.55 mmol) was added dropwise via a pipette to a
precooled (−35 ◦C) pentane solution (5 mL) of MMe3 (M = Ga or In, 0.55 mmol) under vigorous
stirring. The resulting colorless solution was allowed to warm to room temperature, provoking, upon
warming, the massive precipitation of a colorless solid. The latter suspension was stirred for 10 min
at room temperature after which it was filtered through a glass frit. The collected colorless solid was
dried in vacuo to afford the corresponding adduct (SItBu)MMe3 (3, M = Ga; 4, M = In). For both 3 and
4, X-ray quality crystals were grown from a saturated pentane solution cooled at −35 ◦C. Data for
compound 3. 123 mg, 73% yield. 1H NMR (300 MHz, C6D6): δ = −0.06 (s, 9H, Ga(CH3)3), 1.32 (s, 18H,
tBu), 2.83 (s, 4H, (CH2)Im) ppm; 13C{1H} NMR (75 MHz, C6D6): δ = −0.8 (Ga(CH3)3), 30.1 (C(CH3)3),
44.7 ((CH2)Im), 54.6 (C(CH3)3), 232.1 (Ccarbene) ppm. Data for compound 4. 79 mg, 42% yield. Anal.
Calcd. for C14H31InN: C 49.13, H 9.13; found: C 49.24, H 9.12; 1H NMR (300 MHz, C6D6): δ = −0.01 (s,
9H, In(CH3)3), 1.31 (s, 18H, tBu), 2.82 (s, 4H, (CH2)Im) ppm; 13C{1H} NMR (75 MHz, C6D6): δ = −0.3
(In(CH3)3), 30.1 (C(CH3)3), 45.0 ((CH2)Im), 55.2 (C(CH3)3), 223.3 (Ccarbene) ppm.

3.3. Reaction of Adducts 1–4 with H2

A Teflon-valved J-Young NMR tube containing a C6D6 solution of the desired adduct (NHC)MMe3

(10 mg, NHC = IPr*, ItBu or SItBu, M = Ga or In, 0.5 mL,) was charged with H2 (1.5 bar) at room
temperature. The reaction was monitored by 1H NMR spectroscopy until consumption of the starting
(NHC)MMe3 adduct was completed. In the case of adduct 3, immediate and quantitative conversion
to 1,3-di-tert-butylimidazolidine and free GaMe3 was observed.

1,3-Di-tert-butylimidazolidine [24]. 1H NMR (300 MHz, C6D6): δ = 1.00 (s, 18H, tBu), 2.70 (s,
4H, –N–CH2–CH2–N–), 3.67 (s, 2H, N–CH2–N).
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3.4. Typical Procedure for the ROP of Lactide Initiated by Complexes 1–4

In a N2-filled glovebox, the desired Lewis pair initiator (0.05 mmol) was charged in a vial equipped
with a Teflon®-tight screw-cap and rac-lactide solution (100 equiv., [rac-lactide]0 = 1 M, toluene) was
added via a syringe all at once. The reaction mixture was stirred for 18 h at room temperature and
subsequently was quenched with cold MeOH, provoking the precipitation of the polymer. The latter
was then washed several times with MeOH, dried in vacuo and subsequently analyzed by SEC. In most
cases, a MALDI–TOF MS analysis of the isolated polymers was performed. Catalytic runs under a
given set of conditions were all duplicated.

4. Conclusions

The sterically bulky NHC–GaMe3 and NHC–InMe3 adducts (NHC = IPr*, SItBu) were prepared
and characterized, and their level of steric congestion was assessed through structural analysis.
All data agree with the IPr* adducts 1 and 2 being robust and stable adducts under various conditions.
In contrast, the more severely congested SItBu adducts 3 and 4 are more reactive: this is best exemplified
by the fast reaction of (SItBu)GaMe3 (3) with H2 at room temperature to afford the corresponding
aminal product, the mechanism of which is currently being studied. Such an FLP reactivity constitutes
the first instance of a H2 activation involving GaMe3, and further exemplifies the usefulness of bulky
NHC ligands in FLP chemistry [30]. Adduct 3 was also found to mediate the ROP of rac-lactide at
room temperature to afford cyclic PLA.

Supplementary Materials: The following are available online www.mdpi.com/2304-6740/6/1/23/s1, CIF files
for adducts 2, 3, and 4 (CCDC 1813207, 1813208, and 1813209, respectively). NMR spectra of all compounds.
MALDI–TOF and 1H NMR data of the produced PLA.
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