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Abstract: The syntheses, structural characterization, and magnetic properties of three lanthanide
complexes with formulas [Ln(L1)3] (Ln = Dy (1Dy); Er (1Er)); and [Dy(L2)2] (2Dy) were reported.
Complexes 1Dy and 1Er are isostructural with the metal ion in distorted trigonal-prismatic
coordination geometry, but exhibit distinct magnetic properties due to the different shapes of electron
density for DyIII (oblate) and ErIII (prolate) ions. Complex 1Dy shows obvious SMM behavior under
a zero direct current (dc) field with an effective energy barrier of 31.4 K, while complex 1Er only
features SMM behavior under a 400 Oe external field with an effective energy barrier of 23.96 K.
In stark contrast, complex 2Dy with the octahedral geometry only exhibits the frequency dependence
of alternating current (ac) susceptibility signals without χ′′ peaks under a zero dc field.

Keywords: six-coordinate geometry; trigonal-prism; octahedron; single-molecule magnets

1. Introduction

Single-molecule magnets (SMMs), with the individual molecules acting as tiny magnets, are
the most appealing candidates to develop memory devices with ultra-high density and spintronic
devices [1–6]. The realization of those potential applications firstly depends on the high magnetic
blocking temperature (TB) and large effective energy barrier (Ueff), which have attracted the interests of
chemists, physicists, and theorists [7–9]. The effective energy barrier (also called the anisotropy barrier,
∆E) is the potential barrier hampering the reversal of the magnetization. For polynuclear transition
metal SMMs, such as Mn12 [10] and Mn4 [11], the anisotropy barrier can be expressed as ∆E = DS2 or
D(S2 − 1/4) for integer and half-integer spins, in which D is the axial zero-field splitting parameter
and S is the spin of ground state. The magnetic blocking temperature (TB) can refer to the highest
temperature at which the M(H) hysteresis loop is observed. It is worth noting that TB strongly depends
on the field-sweep rate. Usually, a complex with a high anisotropy barrier will not have a guaranteed
high blocking temperature, which may be attributed to the fast quantum tunneling of magnetizations.
Up to now, the records of blocking temperature and effective energy barrier have been achieved by the
complex {[(Cpttt)2Dy][B(C6F5)4]} (Cpttt = 1,2,4-tri(tertbutyl)cyclopentadienide) [12,13], as reported by
the Layfield and Mills groups, with TB = 60 K and Ueff = 1837 K, in which the value of Ueff is higher
by more than a factor of 30 than that of the Mn12 [10], the first SMM with Ueff = 61 K. The remarkable
SMM properties of {[(Cpttt)2Dy][B(C6F5)4]} should mainly benefit from a perfectly axial crystal field
realized by the bis(cyclopentadienyl) ligand, which demonstrates that the coordination environment
of lanthanide ions plays a critical role in designing and modifying the SMMs, with the exception
of complex N2

3−–Ln2 [14,15], where strong lanthanide-radical magnetic exchange coupling hinders
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zero-field fast relaxation pathways, and the asymmetric Dy2(ovph)2 [16,17] with the Ising exchange
interaction between DyIII ions, which efficiently suppresses fast QTM [18].

Considering the various coordination geometries and numbers of lanthanide complexes, choosing
the particular coordination geometry is of vital importance in order to obtain better SMMs. For DyIII

ions with the oblate-shaped electron density, a crystal field in which the ligand electron density is
concentrated above and below the equatorial plane is desired to enhance the magnetic anisotropy [19].
Furthermore, this kind of crystal field could lead to a highly efficient dysprosium SIM (single-ion
magnet), such as D4d [20–22] or D5h [23–25]. Moreover, the low-coordinate lanthanide complexes
are superior at controlling the coordinated environment and understanding the magneto-structural
relationship [26–30].

SIMs with six-coordination geometries are still rare in the previously reported Ln-based
complexes, compared with other SIMs with high coordination numbers [31,32]. Recently, Gao
and co-workers reported that the complex [(LCO)Dy(N*)2] (LCOH = {N-[(2-MeO)–C6H5]}N =
C(Me)CH = C(Me)N(H){N′-[(2-MeO)C6H5]} and HN* = HN(SiMe3)2) with trigonal-prismatic
coordination geometry, exhibited a high energy barrier Ueff = 190 K under a zero dc field [33]. It is
crucial to note that the magnetic axis is approximately collinear to the direction of [N*]−–N,
resulted from the strong axial-ligand field improved by the short Dy–N([N*]−) bond lengths of
2.296 Å. However, complexes Dy(H2BPzMe

2)3 (HPz = pyrazole) [34] and Dy(BcMe)3 ([BcMe]− =
dihydrobis(methylimidazolyl)borate) [35] both exhibit only field- or dilution-induced slow relaxation
of magnetization, in which cases the averaged bond distances of Dy–N and Dy–C are 2.477 and
2.577 Å, respectively. Those cases have demonstrated that the occurrence of SIMs’ properties not
only depends on the coordination geometry, but also on the strong axial-ligand field. In contrast,
the six-coordinate Ln-based complexes possessing octahedral geometries show no SIM properties
under a zero dc field, such as {(H2O)[Ln(NA)2]·H2O}n (H2NA = 5-hydroxynicotinic acid) [28] and
[Yb(H3L)2]Cl·5CH3OH·H2O (H3L = tri(((2-hydroxy-3-methoxybenzyl)amino)ethyl)amine) [36], which
can be attributed to the fact that the cubic Oh symmetry does not have second-order uniaxial anisotropy
parameter B0

2 [37–39].
Herein, we report three six-coordinate lanthanide complexes, [Ln(L1)3] (Ln = Dy (1Dy); Er

(1Er)); and [Dy(L2)2] (2Dy), where HL1 = 2-(((2,6-diisopropylphenyl)imino)methyl)-phenol and
H2L2 = 6,6′-(2-(dimethylamino)ethylazanediyl)bis(methylene)bis(2,4-di-tert-butylphenol) (Scheme 1).
Complexes 1Ln present the distorted trigonal-prismatic coordination geometry, while complex 2Dy
shows distorted octahedral coordination geometry. The ac susceptibility data reveal the SIM behavior
of 1Dy under a zero dc field, but the field-induced SIM behavior of 1Er. Without exception, complex
2Dy only shows the frequency dependence of ac signals without χ” peaks under a zero dc field, as
reported previously [28,40]. Therefore, this series of complexes sheds light on the magneto-structural
correlation of six-coordinate complexes with different geometries. Importantly, complex 1Dy is the
second SIM with trigonal-prismatic coordination geometry in the absence of an external field.
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2. Results and Discussion

2.1. Crystallography

Single-crystal X-ray diffraction investigation revealed that complexes 1Dy, 1Er (Figure 1), and 2Dy
(Figure 2) crystallize in the triclinic P1 space group with Z = 2, in which complexes 1Dy and 1Er
are isostructural. Herein, the crystal structure of 1Dy is described representatively. Details of the
crystallographic data and the structure solution of three complexes are summarized in Table 1. Selected
bond distances and angles are listed in Table S1 (see Supplementary Materials). The asymmetric
unit of 1Dy contains one DyIII ion with a [N3O3] coordination environment, which comes from three
[L1]− ligands. The coordination geometry around the DyIII ion is similar to the trigonal-prismatic
geometry, which has been proven by the SHAPE 2.1 software [41–43], revealing that the DyIII ion is
located in a distorted trigonal prism with a deviation of 2.36 from the ideal D3h symmetry (Table S2,
Supplementary Materials). The up and down basal planes are constructed by atoms O1, O3, and N3
and O2, N1, and N2, respectively, in which the θ angle between the two planes is 13.12◦ (Figure S1,
Supplementary Materials). The bond distances of Dy–O and Dy–N are in the range of 2.144(3)–2.167(3)
Å and 2.446(3)–2.606(3) Å, respectively. The angles of O1–Dy–O2 and O2–Dy–O3 are 142.05◦ and
132.32◦, respectively. The packing arrangement along the c axis (Figure S2, Supplementary Materials)
demonstrates that the shortest Dy···Dy distance is 10.88 Å. For complex 1Er, the bond distances of
Er–O and Er–N are in the range of 2.123(5)–2.146(5) Å and 2.411(4)–2.567(5) Å, respectively, which are
shorter than those of 1Dy. The angles of O1–Er–O2 and O2–Er–O3 are 140.62◦ and 132.89◦, respectively.
The θ angle between two planes is 11.56◦ (Figure S3, Supplementary Materials), and the shortest Er···Er
distance is 10.94 Å (Figure S4, Supplementary Materials).

Table 1. Crystallographic data and structure refinement details of complexes 1Dy, 1Er, and 2Dy.

1Dy 1Er 2Dy

Formula C57H66DyN3O3 C57H66ErN3O3 C68H109DyN4O4
c

FW, g·mol−1 1003.62 1008.38 1209.09 c

crystal system Triclinic Triclinic Triclinic
space group P1 P1 P1

T, K 293(2) 293(2) 293(2)
λ, Å 0.71073 0.71073 0.71073
a, Å 10.8822(15) 10.9407(11) 13.7983(12)
b, Å 11.4229(15) 11.4509(11) 16.6655(15)
c, Å 20.823(3) 20.735(2) 18.6715(17)
α, ◦ 89.735(3) 90.066(2) 70.7220(10)
β, ◦ 88.681(3) 91.458(2) 77.406(2)
γ, ◦ 76.170(2) 103.853(2) 86.857(2)

V, Å3 2512.7(6) 2521.3(4) 3954.7(6)
Z 2 2 2

reflns collected 16100 15710 23959
unique reflns 10012 9686 15601

Rint 0.0300 0.0605 0.0408
GOF on F2 1.036 0.996 1.080

R1
a, wR2

b (I ≥ 2σ(I)) 0.0381, 0.0766 0.0584, 0.1014 0.0606, 0.1659
R1, wR2 (all data) 0.0476, 0.0822 0.0956, 0.1212 0.0878, 0.1857
CCDC number 1586924 1586925 1586926

a R1 = ∑||Fo| − |Fc||/∑|Fo|; b wR2 = [∑w(Fo
2 − Fc

2)2/∑w(Fo
2)2]1/2; c The formula and the formula weight of

2Dy do not include the squeezed solvents.
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Figure 1. The molecular structures of complexes 1Dy (left) and 1Er (right). The dashed green lines 
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plane. Hydrogen atoms have been omitted for clarity. 

The DyIII ion of complex 2Dy locates in a [N4O2] coordination environment, in which O1 and O2 
come from one H2L2 ligand, and O3, O4, N3, and N4 come from a second H2L2 ligand. The six-
coordinate DyIII ion is in a distorted octahedral arrangement with a deviation of 1.70 from the ideal 
Oh symmetry (Table S2, Supplementary Materials). Two phenol O atoms (O3 and O4) are axially 
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Dy–O4 bond angle of 155.23°. The other bond distances of Dy–O are 2.182(3) and 2.208(3) Å, which 
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ErIII (11.48 cm3·K·mol−1) ions. As the temperature decreased, the χMT products decrease slowly down 
to 2 K, reaching values of 11.60 and 11.15 cm3·K·mol−1 for 1Dy and 2Dy, respectively. For complex 
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obvious decrease until 2 K with a minimum of 7.99 cm3·K·mol−1. The decrease of χMT values can be 
attributed to the Stark level splitting of lanthanide ions with large unquenched orbital moment. The 
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Figure 2. The molecular structure of complex 2Dy. The dashed green lines represent the equatorial
plane. Hydrogen atoms have been omitted for clarity.

The DyIII ion of complex 2Dy locates in a [N4O2] coordination environment, in which O1
and O2 come from one H2L2 ligand, and O3, O4, N3, and N4 come from a second H2L2 ligand.
The six-coordinate DyIII ion is in a distorted octahedral arrangement with a deviation of 1.70 from
the ideal Oh symmetry (Table S2, Supplementary Materials). Two phenol O atoms (O3 and O4) are
axially coordinated to DyIII with a Dy–O3 distance of 2.275(3) and a Dy–O4 distance of 2.170(3) Å, and
O3–Dy–O4 bond angle of 155.23◦. The other bond distances of Dy–O are 2.182(3) and 2.208(3) Å, which
are longer than those of Dy–O4. The bond distances of Dy–N are 2.515(4) and 2.662(4) Å. Furthermore,
the shortest distance of the neighboring DyIII ions is 10.36 Å (Figure S5, Supplementary Materials).

2.2. Magnetic Properties

The variable-temperature magnetic susceptibility data of complexes 1Dy, 1Er, and 2Dy were
collected on the polycrystalline samples under an applied magnetic field of 1 kOe. At room
temperature, the χMT values (Figure 3) of 1Dy, 1Er, and 2Dy are 13.77, 11.38, and 13.21 cm3·K·mol−1,
respectively, which are slightly lower than the expected value for free DyIII (14.17 cm3·K·mol−1)
and ErIII (11.48 cm3·K·mol−1) ions. As the temperature decreased, the χMT products decrease
slowly down to 2 K, reaching values of 11.60 and 11.15 cm3·K·mol−1 for 1Dy and 2Dy, respectively.



Inorganics 2018, 6, 16 5 of 12

For complex 1Er, upon cooling, the χMT products slightly decrease over the range of 300–100 K,
followed by an obvious decrease until 2 K with a minimum of 7.99 cm3·K·mol−1. The decrease of
χMT values can be attributed to the Stark level splitting of lanthanide ions with large unquenched
orbital moment. The field-dependent magnetizations for complexes 1Dy and 2Dy show the same
tendency (Figures S6 and S8, Supplementary Materials), as observed in most dysprosium complexes
reported [44]. The magnetizations increase rapidly up to a field of 10 kOe, followed by an almost
constant rise to 70 kOe, reaching values of 5.57 and 4.91 µB at 1.9 K for 1Dy and 2Dy, respectively.
However, a residual slope for complex 1Er (Figure S7, Supplementary Materials) is observed even
at high field, and the magnetization finally reaches a value of 5.07 µB at 1.9 K. The non-saturation of
the field-dependent magnetizations at high field (70 kOe) for three complexes reveal the presence of
magnetic anisotropy caused by the crystal-field effects and/or low-lying excited states.

Inorganics 2018, 6, 16  5 of 12 

 

field-dependent magnetizations for complexes 1Dy and 2Dy show the same tendency (Figures S6 
and S8, Supplementary Materials), as observed in most dysprosium complexes reported [44]. The 
magnetizations increase rapidly up to a field of 10 kOe, followed by an almost constant rise to 70 kOe, 
reaching values of 5.57 and 4.91 μB at 1.9 K for 1Dy and 2Dy, respectively. However, a residual slope 
for complex 1Er (Figure S7, Supplementary Materials) is observed even at high field, and the 
magnetization finally reaches a value of 5.07 μB at 1.9 K. The non-saturation of the field-dependent 
magnetizations at high field (70 kOe) for three complexes reveal the presence of magnetic anisotropy 
caused by the crystal-field effects and/or low-lying excited states. 

 
Figure 3. Plots of the χMT versus T for 1Dy, 1Er and 2Dy in an applied field of 1 kOe. 

Alternating current susceptibility measurements were also conducted for three complexes under 
zero and 400 Oe dc field to further probe the dynamics of magnetization. In the absence of an applied 
dc field, both in-phase (χ′) and out-of-phase (χ′′) ac susceptibilities for complex 1Dy exhibit frequency 
(Figure 4) and temperature (Figure S9, Supplementary Materials) dependency. However, no 
maximum peaks of temperature dependence of the out-of-phase (χ′′) signal are observed in the range 
of 1–1488 Hz, which may be caused by the quantum tunneling of the magnetization (QTM), as also 
indicated by strong temperature-independent peaks below 9 K showed in Figure 4. To evaluate the 
effective barrier of magnetic relaxation, the relaxation times (τ) were extracted from the plot χ″ versus 
υ using the Debye model [45]. The τ versus T−1 plot (Figure 5) shows a crossover from a linear increase 
of thermally activated to a temperature independent regime of QTM, which suggests the presence of 
more than one relaxation pathway. The plot was fitted using Equation (1), yielding effective energy 
barriers Ueff of 31.40 K with a τ0 = 3.56 × 10−4 s, where the τ−1QTM, AH2T, CTn, and τ0−1exp(−Ueff/kBT) 
represent quantum tunneling, direct, Raman, and Orbach relaxation processes, respectively. For 
complex 1Dy, the direct process is excluded since the corresponding contribution is nullified at zero 
dc field. Other parameters obtained from the fitting are given in Table S3 (see Supplementary 
Materials). 

1 1 2 1
0 expn eff

obs QTM
B

U
AH T CT k Tτ τ τ− − − − = + + +  

 
 (1) 

Figure 3. Plots of the χMT versus T for 1Dy, 1Er and 2Dy in an applied field of 1 kOe.

Alternating current susceptibility measurements were also conducted for three complexes under
zero and 400 Oe dc field to further probe the dynamics of magnetization. In the absence of an applied
dc field, both in-phase (χ′) and out-of-phase (χ′′) ac susceptibilities for complex 1Dy exhibit frequency
(Figure 4) and temperature (Figure S9, Supplementary Materials) dependency. However, no maximum
peaks of temperature dependence of the out-of-phase (χ′′) signal are observed in the range of 1–1488 Hz,
which may be caused by the quantum tunneling of the magnetization (QTM), as also indicated by
strong temperature-independent peaks below 9 K showed in Figure 4. To evaluate the effective barrier
of magnetic relaxation, the relaxation times (τ) were extracted from the plot χ′′ versus υ using the Debye
model [45]. The τ versus T−1 plot (Figure 5) shows a crossover from a linear increase of thermally
activated to a temperature independent regime of QTM, which suggests the presence of more than one
relaxation pathway. The plot was fitted using Equation (1), yielding effective energy barriers Ueff of
31.40 K with a τ0 = 3.56 × 10−4 s, where the τ−1

QTM, AH2T, CTn, and τ−1
0 exp(−Ueff/kBT) represent

quantum tunneling, direct, Raman, and Orbach relaxation processes, respectively. For complex 1Dy,
the direct process is excluded since the corresponding contribution is nullified at zero dc field. Other
parameters obtained from the fitting are given in Table S3 (see Supplementary Materials).

τ−1
obs = τ−1

QTM + AH2T + CTn + τ−1
0 exp(−Ue f f/kBT) (1)
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For complex 1Er, no out-of-phase (χ′′) signals (Figure S10, Supplementary Materials) were
observed above 1.9 K at 997 Hz, which may be attributed to the fast quantum tunneling of the
magnetization at zero dc field. The rather different magnetic behaviors of 1Dy and 1Er are correlated
with the axial ligand field of trigonal-prismatic coordination geometry, as DyIII is oblate and ErIII is
prolate [19]. In order to suppress the QTM process, the ac magnetic susceptibility measurements were
also performed under a dc field (Figure S11, Supplementary Materials). The non-zero frequency- and
temperature-dependent χ′ and χ′′ signals (Figure 4 and Figure S12, Supplementary Materials) were
observed at low temperature, indicating the field-induced SMM behavior. The relaxation times (τ) of
1Er were extracted from the plot χ′′ versus υ using the Debye model. The τ versus T−1 plot (Figure 5),
showing a smooth increase as the temperature was lowered, corroborates that the QTM is suppressed
to a certain extent. The plot was fitted using Equation (1), yielding effective energy barriers Ueff of
23.96 K with a τ0 = 5.46 × 10−8 s, and other parameters are listed in Table S3 (see Supplementary
Materials). To avoid overparametrization, the direct process is canceled.

The Cole-Cole plots (Figure 6) of 1Dy and 1Er both show an asymmetrical semicircular shape,
which can be fitted by the generalized Debye model [45], giving a series of α parameters below 0.11
from 1.9 to 13 K for 1Dy and 0.13 from 1.9 to 3.7 K for 1Er, respectively, which indicates a narrow
distribution of the relaxation time for both complexes.

For complex 2Dy, both in-phase (χ′) and out-of-phase (χ′′) ac susceptibilities exhibited frequency
(Figure 4) and temperature (Figure S13, Supplementary Materials) dependency under a zero dc field,
indicative of slow relaxation of magnetization. However, no peaks of χ′′ were observed, indicating the
presence of fast QTM relaxation.
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Compared with 1Ln with trigonal-prismatic geometry, the six-coordinated 2Dy with octahedral
geometry demonstrates inferior magnetic properties, verifying that the coordination geometry around
lanthanide ions directly affects the SMM performance. The closer the distribution of the ligands to
spherical symmetry, such as the environment of cubic symmetry (octahedron, etc.), the smaller the
crystal-field (CF) splitting [46]. Therefore, the trigonal prismatic geometry can improve a relatively axial
ligand field compared with the octahedron, which means that the six-coordinated lanthanide-based
complexes, especially dysprosium complexes, located in trigonal-prismatic geometry are more likely
to show SMM behavior in principle, which coincides with our experimental results. In order to
further explore the magnetic properties of these two six-coordinate Dy-based complexes, the Magellan
program [47] was used to calculate the magnetic anisotropy axes of complex 1Dy (Figure 7). The results
reveal that the orientation of the magnetic axis of complex 1Dy is found to be almost collinear to
Dy–O2 with an angle of 3.707◦. Apparently, the negative charges on the O atoms are much larger
than those on the N atoms for 1Dy, where it is more capable of stabilizing the ground doublet.
As the ground-state wave function of complex [(LCO)Dy(N*)2] [33] featuring similar trigonal-prismatic
coordination geometry around DyIII ion with complex 1Dy shows a dominant MJ = ±15/2 doublet,
the magnetic axis orientation might prefer the negative charge dense direction for the DyIII ion with
the oblate shaped electron density of <±15/2> doublet. Herein, the calculation was based on an
electrostatic model, and a further quantitative evaluation of the anisotropy axis through ab initio
calculation is definitely needed.
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3. Materials and Methods

All manipulations of air- and moisture-sensitive complexes were performed under a nitrogen
atmosphere using standard Schlenk techniques and a glovebox. THF (tetrahydrofuran) and toluene
were distilled under nitrogen over sodium and sodium benzophenone. Pentane and hexane were
distilled under nitrogen over CaH2 (calcium hydride). Ln(N(SiMe3)2)3 [48], ligand HL1 [49], and ligand
H2L2 [50,51] were synthesized according to previously published procedures under ambient conditions.
All other starting materials were commercially available and used without further purification. FTIR
spectra were obtained using a Nicolet 6700 Flex FTIR spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) equipped with smart iTRTM attenuated total reflectance (ART) sampling accessory in the
range from 500 to 4000 cm−1. Elemental analysis for C, N, and H was carried out via a Perkin-Elmer
2400 analyzer (Perkin Elmer, Waltham, MA, USA).

X-ray crystal structure determinations. Single-crystal X-ray data of the title complexes were
collected using a Bruker Apex II CCD diffractometer (Bruker, Billerica, MA, USA) equipped with
graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å). Data processing was completed using the
SAINT processing program (Bruker, Billerica, MA, USA). The structures were solved by direct methods
and refined by full-matrix least-squares methods on F2 using SHELXTL-2014 [52–54]. All non-hydrogen
atoms were determined from the difference Fourier maps and anisotropically refined. Hydrogen atoms
were introduced at the calculated positions and refined with fixed geometry with respect to their
carrier atoms. Further details may be obtained from the Cambridge Crystallographic Data Centre on
quoting the depository numbers 1586924–1586926 (http://www.ccdc.cam.ac.uk).

Magnetic susceptibility measurements were recorded on a Quantum Design MPMS-XL7
SQUID magnetometer (Quantum Design, San Diego, CA, USA) equipped with a 7 T magnet.
The variable-temperature magnetization was measured in the temperature range of 1.9–300 K with an
external magnetic field of 1000 Oe. The dynamics of the magnetization were investigated in a 3.0 Oe
ac oscillating field at different frequencies ranging from 1 to 1500 Hz. Diamagnetic corrections for
the complexes were made with the Pascal’s constants [55] for all the constituent atoms as well as the
contributions of the sample holder.

Synthesis of [Dy(L1)3] (1Dy). Dy(N(SiMe3)2)3 (0.1 mmol) in 5 mL of toluene was added to
a solution of HL1 (0.3 mmol) in 10 mL toluene at room temperature. The solution was stirred at
room temperature for 6 h, and then filtered. After removal of toluene under reduced pressure,
recrystallization of the residue in hexane at ambient temperature gave 1Dy as yellow crystals after
several days. Yield: ~70%. Selected IR (cm−1): 2960 (s), 2926 (m), 1603 (s), 1583 (s), 1536 (s), 1464 (m),
1443 (s), 1381 (m), 1359 (w), 1254 (w), 1200 (w), 1167 (m), 1143 (m), 1106 (w), 921 (m), 851 (m), 792 (m),
750 (m), 739 (m), 593 (w). Anal. Calcd. for [Dy(L1)3] (C57H66DyN3O3, MW = 1003.62): C, 68.15%; H,
6.57%; N, 4.18%. Found: C, 68.21%; H, 6.67%; N, 4.26%.

Synthesis of [Er(L1)3] (1Er). 1Er were synthesized using a procedure similar to that for 1Dy with
the replacement of Dy(N(SiMe3)2)3 by Er(N(SiMe3)2)3. Yield: ~70%. Selected IR (cm−1): 2959 (s),
2926 (m), 1603 (s), 1583 (s), 1536 (s), 1464 (m), 1444 (s), 1381 (m), 1360 (w), 1342 (s), 1320 (m), 1254 (w),
1200 (w), 1167 (m), 1143 (m), 1106 (w), 921 (m), 851 (m), 792 (m), 750 (m), 739 (m), 594 (w). Anal. Calcd.
for [Er(L1)3] (C57H66ErN3O3, MW = 1008.38): C, 67.83%; H, 6.55%; N, 4.16%. Found: C, 67.72%; H,
6.79%; N, 4.08%.

Synthesis of [Dy(L2)2] (2Dy). A solution of Dy(N(SiMe3)2)3 (0.5 mmol) in pentane was added
dropwise to a solution of H2L2 (1 mmol) in pentane at −78 ◦C. The solution was stirred overnight
at room temperature and then filtered. The final filtrate was left unperturbed at room temperature,
X-ray quality crystals of 2Dy were obtained after few days. Yield: ~60%. Anal. Calcd. for [Dy(L2)2]
(C68H109DyN4O4, MW = 1209.09): C, 67.48%; H, 9.02%; N, 4.63%. Found: C, 67.52%; H, 9.09%;
N, 4.59%.

http://www.ccdc.cam.ac.uk
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4. Conclusions

In summary, we have synthesized and characterized three Ln-based mononuclear complexes,
1Dy, 1Er, and 2Dy, which show distinct magnetic properties. In complexes 1Dy and 1Er, the
trigonal-prismatic coordination geometry provides an axial ligand field, which is in favor of the
oblate DyIII ion rather than the prolate ErIII ion; therefore, 1Dy exhibits the better magnetic properties
with Ueff = 31.4 K under a zero dc field. 1Er shows field-induced SIM properties with Ueff = 23.96 K
under a 400 Oe dc field. Complex 2Dy with the Oh symmetry only displays the frequency dependence
of ac signals without χ′′ peaks under the zero dc field, indicating the presence of fast QTM relaxation.
For six-coordinate dysprosium complexes, the trigonal-prismatic coordination geometry is much more
favorable to designing effective SIMs.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/6/1/16/s1. Cif and
Checkcif files. Table S1: Selected bond distances [Å] and angles [◦] for complexes 1Dy, 1Er, and 2Dy. Table S2:
Lanthanide geometry analysis by SHAPE software for 1Dy, 1Er, and 2Dy. Table S3: Best-fit parameters for the
Arrhenius plots of 1Dy and 1Er. Figure S1: X-ray structures of complexes 1Dy. The green planes represent the
coordination planes with labeled dihedral angle (θ). Solvents and hydrogen atoms have been omitted for clarity.
Figure S2: Packing diagram of 2 viewed along the c-axis. Figure S3: X-ray structures of complexes 1Er. The green
planes represent the coordination planes with labeled dihedral angle (θ). Solvents and hydrogen atoms have been
omitted for clarity. Figure S4: Packing diagram of 1Er viewed along the c-axis. Figure S5: Packing diagram of 2Dy
viewed along the c-axis. Figure S6: Molar magnetization (M) versus field (H) for complex 1Dy at 1.9, 3.0, and
5.0 K. Figure S7: Molar magnetization (M) versus field (H) for complex 1Er at 1.9, 3.0, and 5.0 K. Figure S8: Molar
magnetization (M) versus field (H) for complex 2Dy at 1.9, 3.0, and 5.0 K. Figure S9: Temperature dependent in
phase (χ′) and out of phase (χ′′) ac susceptibilities for complexes 1Dy at indicated frequencies under a zero dc
field. Figure S10: Temperature dependence in phase (χ′) and out of phase (χ′′) ac susceptibilities for complexes
1Er under zero dc field. Figure S11: The field dependence of the out-of-phase signals of 1Er and 2Dy on applied
dc field strength at 1.9 K and 997 Hz. Figure S12: Temperature dependent in phase (χ′) and out of phase (χ′′) ac
susceptibilities for complexes 1Er under a 400 Oe dc field. Figure S13: Temperature dependent in phase (χ′) and
out of phase (χ′′) ac susceptibilities for complexes 2Dy under a zero dc field.
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