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Abstract: The reaction of lanthanoid metal powders (Ln) with sulfur and cesium azide (CsN3) as a
nitrogen source in the presence of lanthanoid tribromides (LnBr3) yields lanthanoid nitride sulfides
with the composition Ln4N2S3 (Ln = Ce–Nd) when appropriate molar ratios of the starting material are
used. Additional cesium bromide (CsBr) as a flux secures quantitative conversion (7 days) at 900 ◦C
in evacuated silica tubes as well as the formation of black single crystals. All compounds crystallize
isotypically with the orthorhombic crystal structure of La4N2S3 (Pnnm, Z = 2) and their structures
were determined from single-crystal X-ray diffraction data (Ce4N2S3: a = 644.31(4), b = 1554.13(9),
c = 404.20(3) pm; Pr4N2S3: a = 641.23(4), b = 1542.37(9), c = 400.18(3) pm; Nd4N2S3: a = 635.19(4),
b = 1536.98(9), c = 397.85(3) pm). Compared to La4N2S3 the a-axes do not fulfill the expectation
of the lanthanide contraction. The main feature of the crystal structure comprises N3−-centered
(Ln3+)4 tetrahedra arranging as pairs [N2Ln6]12+ of edge-shared [NLn4]9+ units, which are further
connected via four vertices to form double chains 1

∞{([NLn4/2]2)6+}. Bundled along [001] like a
hexagonal rod packing, they are held together by two crystallographically different S2− anions.
Two compounds of a second modification (B-type La4N2S3 and Pr4N2S3) will also be presented and
discussed for comparison.

Keywords: lanthanoid nitride sulfides; dimorphic crystal structures

1. Introduction

The crystal structures of all ternary lanthanide(III) nitride chalcogenides known so far
(Ln3NCh3, Ln4N2Ch3, Ln5NCh6, Ln23N5Ch27, and Ln13N5Ch12) and their halide derivatives (Ln3N2ChX,
Ln4NCh3X3, Ln5N2Ch4X, Ln5N3Ch2X2, and Ln6N3Ch4X; Ln = La–Nd, Sm, Gd–Ho; Ch = S, Se, Te; X = Cl,
Br) are dominated by N3− anions in a tetrahedral coordination of Ln3+ cations [1–3]. A very interesting
structural behavior is exhibited by the nitride chalcogenides with the composition Ln4N2Ch3, which
occur in seven different crystal structure types. Depending upon the size of both the lanthanide
cation (Ln3+) and the chalcogenide anion (Ch2−), some of them differ fundamentally in the linkage of
the structure-governing N3−-centered (Ln3+)4 tetrahedra. The representatives of the Sm4N2S3-type
structure [4] crystallize in the monoclinic space group C2/m with Z = 4 and consist of [NLn4]9+

tetrahedra, which share cis-oriented edges to form linear strands 1
∞{[NLn2]3+}. In contrast, the linkage

via trans-oriented edges of [NLn4]9+ tetrahedra builds up undulated chains in the orthorhombic
Ce4N2Te3-type structure [5] (Ln = La–Nd; Pnma, Z = 4), the orthorhombic Tb4N2Te3-type structure [6]
(Ln = Gd, Tb; Pnna, Z = 4), and the monoclinic Dy4N2Te3-type structure [6] (P21/c, Z = 4). As the main
structural feature of the orthorhombic A-La4N2S3-type structure [7] (Pnnm, Z = 2), N3−-centered (Ln3+)4

tetrahedra, which first arrange as pairs [N2Ln6]12+ of two edge-shared [NLn4]9+ units, occur. These are
further connected via their four free vertices to form double chains 1

∞{([NLn2]2)6+}. For the first time,
an arrangement of interconnected [NLn4]9+ tetrahedra fused to layers is observed in the monoclinic
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Nd4N2Se3-type structure [8–11] (Ln = La–Nd; C2/c, Z = 4). In these compounds the [NLn4]9+ units are
first edge-linked to congonial bitetrahedra [N2Ln6]12+ again, and they then become cross-connected
to 2

∞{[NLn2]3+} layers via their remaining four free vertices. Finally, a second layered arrangement
is found in the monoclinic B-Pr4N2S3-type structure [9] (Ln = La, Pr; C2/c, Z = 8). In this case,
the [NLn4]9+ tetrahedra are first edge-linked to bitetrahedra [N2Ln6]12+ just like in A-type La4N2S3

and Nd4N2Se3, but then connected via two vertices to quadruples [N4Ln10]18+, which eventually
build up layers 2

∞{[NLn2]3+} via their four remaining free corners. In addition, there are only two
compounds crystallizing dimorphously so far. La4N2S3 [7,12] is found in the A-La4N2S3- and in
the B-Pr4N2S3-type structures, while Ce4N2Se3 is observed either with the Nd4N2Se3- or with the
Ce4N2Te3-type arrangement.

2. Results and Discussion

The members of the short Ln4N2S3 series (Ln = Ce–Nd) crystallize orthorhombically in the space
group Pnnm with two formula units (Z = 2) per unit cell (Tables 1–3) and are therefore isotypical with
the A-type structure of La4N2S3 [7]. Each of the two crystallographically independent Ln3+ cations is
firstly surrounded by two N3− anions. For (Ln1)3+ another four, for (Ln2)3+ even four plus one S2−

anions appear in their coordination spheres, thus resulting in overall coordination numbers (C.N.)
of 6 and 6+1. The polyhedron around (Ln1)3+ having the site symmetry (..m) can be described as a
trigonal prism (Figure 1, left), in which both a prism edge (N···N′) as well as the center (Ln1) reside on
a mirror plane. (Ln2)3+, likewise with the site symmetry (..m), shows a trigonal prism or octahedron
as a coordination polyhedron, which again proves to be very distorted, since it exhibits, in addition,
another extra sulfur ligand (S2”) as a cap (Figure 1, right). The distances d(Ln3+–S2−) for Ln = Ce–Nd
start at 283 pm and increase continuously up to a value of 308 pm. For A-type La4N2S3 (a = 641.98(4),
b = 1581.42(9), c = 409.87(3) pm) [7], the following ligand provides an abrupt increase of distance
(d(La2–S2”) = 341 pm), but shows an ECoN = 0.26 (effective coordination number [13]); nevertheless,
it is a sound contribution to be considered for the whole coordination sphere of (La2)3+. In spite of
the lanthanide contraction as anticipated, the compounds Ln4N2S3 (Ln = Ce–Nd) investigated in this
work show a remarkable devolution of this mentioned distance d(Ln2–S2”). First an increase happens
from 341 to 351 pm during the transition from the lanthanum to the cerium compound, accompanied
by a decreasing ECoN value of 0.13. With the subsequent compounds Pr4N2S3 and Nd4N2S3, this
distance stagnates and finally decreases again to values of 350 and 343 pm (Table 4 and Figure 2,
yellow graph), so one can at most speak of a 6+1-fold but never of a real seven-fold coordination for
(Ln2)3+ (Ln = Ce–Nd). This behavior is also repeated in the lattice constants (Table 1 and Figure 2),
where in the extreme case an unusual increase of the a-axis from the lanthanum to the cerium compound
can be observed. The molar volumes Vm monotonically decrease with the increasing atomic number
of Ln, which finally reflects the lanthanide contraction again.
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Table 1. Crystallographic data for the three members of the Ln4N2S3 series (Ln = Ce–Nd).

Compound Ce4N2S3 Pr4N2S3 Nd4N2S3

Crystal system orthorhombic
Space group Pnnm (no. 58)
a/pm 644.31(4) 641.23(4) 635.19(4)
b/pm 1554.13(9) 1542.37(9) 1536.98(9)
c/pm 404.20(3) 400.18(3) 397.85(3)
Z 2
Vm/cm3·mol−1 121.87(2) 119.17(2) 116.95(2)
Dx/g·cm−3 5.618 5.772 5.995
Device Nonius Kappa-CCD (Bruker AXS)
Radiation Mo-Kα (λ = 71.07 pm)
±h, ±k, ±l 8, 20, 5 8, 20, 5 8, 20, 5
2θmax/◦ 56.54 56.60 56.39
F(000) 588 596 604
Absorption correction numerically (X-SHAPE [14])
µ/mm−1 22.75 24.88 27.00
Extinction (g) 0.0053 0.0008 0.0007
Measured reflections 9071 7386 6968
Independent reflections 575 552 546
Refl. with |Fo| ≥ 4σ(Fo) 538 457 494
Rint, Rσ 0.048, 0.016 0.058, 0.022 0.067, 0.025
Structure solution and refinement SHELX-97 [15]
Scattering factors International Tables, Vol. C [16]
R1, R1 with |Fo| ≥ 4α(Fo) 0.021, 0.018 0.041, 0.029 0.035, 0.028
wR2, GooF 0.036, 1.174 0.064, 1.100 0.049, 1.166
Resid. electron density ρmax,
ρmin/10−6 pm−3 1.02, −1.03 1.56, −1.32 1.11, −1.11

CSD numbers 1 431115 431117 431116
1 Details of the structure refinements are available at the Fachinformationszentrum Karlsruhe (FIZ),
76344 Eggenstein-Leopoldshafen, Germany (crysdata@fiz-karlsruhe.de), on quoting the CSD numbers.

Table 2. Fractional atomic coordinates for the three members of the Ln4N2S3 series (Ln = Ce–Nd).

Atom Site 1 Ce4N2S3 Pr4N2S3 Nd4N2S3

x/a y/b x/a y/b x/a y/b

Ln1 4g 0.22375(5) 0.56460(2) 0.22392(9) 0.56451(3) 0.22374(7) 0.56437(3)
Ln2 4g 0.26571(5) 0.84323(2) 0.26709(9) 0.84333(3) 0.26598(8) 0.84315(3)
N 4g 0.1313(7) 0.4154(3) 0.1312(13) 0.4164(6) 0.1312(12) 0.4154(5)
S1 2a 0 0 0 0 0 0
S2 4g 0.2680(2) 0.20004(8) 0.2683(5) 0.20011(16) 0.2636(4) 0.19985(14)

1 z/c = 0 for all positions.
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Table 3. Anisotropic displacement parameters (Uij
1/pm2) for the three members of the Ln4N2S3 series

(Ln = Ce–Nd).

Compound Atom U11 U22 U33 U23 U13 U12

Ce4N2S3

Ce1 71(2) 51(2) 50(2) 0 0 −4(1)
Ce2 103(2) 45(2) 46(2) 0 0 −6(1)
N 96(22) 57(20) 69(20) 0 0 −6(17)
S1 61(8) 105(9) 69(8) 0 0 −2(7)
S2 178(7) 55(6) 57(6) 0 0 11(5)

Pr4N2S3

Pr1 97(3) 91(3) 59(3) 0 0 −3(2)
Pr2 140(3) 84(3) 55(3) 0 0 −8(2)
N 58(38) 138(42) 74(42) 0 0 −5(33)
S1 119(17) 136(18) 66(16) 0 0 −14(13)
S2 208(13) 71(11) 81(12) 0 0 29(9)

Nd4N2S3

Nd1 111(3) 58(3) 72(3) 0 0 −8(2)
Nd2 145(3) 54(3) 72(3) 0 0 −9(2)
N 111(37) 126(40) 93(37) 0 0 −48(31)
S1 100(14) 95(15) 102(15) 0 0 −11(11)
S2 223(12) 50(9) 86(10) 0 0 9(8)

1 Given in the expression exp[−2π2(a*2h2U11 + b*2k2U22 + c*2l2U33 + 2b*c*klU23 + 2a*c*hlU13 + 2a*b*hkU12)].
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complete A-type Ln4N2S3 series (Ln = La–Nd, error bars with a percentage of 0.5%) versus the ionic
radii (ri) of the trivalent lanthanide cations [17].



Inorganics 2017, 5, 2 5 of 10

Table 4. Selected interatomic distances (d/pm) and angles ( /◦) for the three members of the Ln4N2S3

series (Ln = Ce–Nd) compared to A-type La4N2S3.

La [7] Ce Pr Nd

Ln1

–N (1×) 233.8(6) 230.9(5) 229.6(9) 227.6(8)
–N’ (1×) 243.2(6) 239.4(4) 236.1(9) 236.4(8)
–S1 (2×) 287.8(1) 287.4(1) 285.1(1) 283.1(1)
–S2 (2×) 296.9(1) 291.9(1) 289.5(2) 288.1(2)

Ln2

–N (2×) 243.8(3) 240.5(3) 238.7(5) 237.0(5)
–S1 (1×) 299.8(1) 297.8(1) 296.2(1) 294.4(1)
–S2 (2×) 306.1(1) 301.4(1) 298.9(2) 297.4(2)
–S2’ (1×) 315.1(2) 307.9(2) 305.4(3) 306.0(3)
–S2” (1×) 341.1(2) 350.5(2) 349.8(3) 342.8(3)

N
–Ln1 (1×) 233.8(6) 230.9(5) 229.6(9) 227.6(8)
–Ln1’ (1×) 243.2(6) 239.4(4) 236.1(9) 236.4(8)
–Ln2 (2×) 243.8(3) 240.5(3) 238.7(5) 237.0(5)

Ln1 –N–Ln1 (1×) 96.3(2) 96.7(2) 97.2(3) 96.5(3)
Ln1 –N–Ln2 (2×) 109.8(2) 109.6(1) 109.4(2) 109.7(2)
Ln1 −N–Ln2’ (2×) 112.5(2) 112.5(1) 112.8(2) 112.7(2)
Ln2 –N–Ln2 (1×) 114.4(2) 114.4(2) 113.9(4) 114.1(3)

In analogy to all the rare-earth metal(III) nitride chalcogenides and their halide derivatives known
to date [1–3], the N3− anions are again surrounded by a more or less distorted tetrahedron of Ln3+

cations, in which the four N3−–Ln3+ distances (228–241 pm) differ by a maximum of 13 pm and
the angles range between 97◦ and 114◦ (Table 4). In fact, the typical characteristic of the structural
construction is actually created by the individual linkage of these [NLn4]9+ tetrahedra. As shown in
Figure 3, the [NLn4]9+ units initially occur as dimers [N2Ln6]12+ by sharing a common edge (Ln1···Ln1),
and they are then condensed to one-dimensional infinite strands along [001] by corner-linkage (via Ln2)
with two similar neighboring units corresponding to 1

∞{[N(Ln1)e
2/2(Ln2)v

2/2]3+} (e = edge-linking,
v = vertex-linking). This type of [NLn4]9+-tetrahedral linkage is also found in the crystal structures of
the nitride chlorides β-Y2NCl3 and β-Gd2NCl3 [18] and in those of nitride sulfide halides Ln6N3S4X
(Ln = La–Nd; X = Cl, Br) [19,20]. In the latter, however, the crystal structure is made up of two kinds
of strands that are commensurable with each other along their propagation axis. Figure 4 shows
a projection of the crystal structure of the new Ln4N2S3 representatives with an A-type La4N2S3

structure with a view along the c-axis. The 1
∞{([NLn2]2)6+} double strands are separated by two

crystallographically different S2− anions with almost octahedral Ln3+-coordination spheres (Table 5).
The neighboring cationic chain units in the a-direction are similarly oriented per se, but compared
to their adjacent chains in the b-direction, they get mirrored by a diagonal glide plane n that runs
vertical to the b-axis at heights of one-fourth and three-fourths and are shifted by one-half in the a- and
c-directions, respectively. Thus, a single strand is surrounded by a total of six more in the manner of a
hexagonal rod packing.
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Table 5. Motifs of mutual adjunction for the A- and B-type Ln4N2S3 structures (Ln = La–Nd).

Ln1 Ln2 Ln3 Ln4 C.N.

A-type Ln4N2S3

N 2/2 2/2 4
S1 2/4 1/2 6
S2 2/2 3+1/3+1 5+1

C.N. 6 6+1

B-type Ln4N2S3

N1 1/1 1/1 1/1 1/1 4
N2 1/1 1/1 1/1 1/1 4
S1 1/2 1/2 1/2 0/0 6
S2 1/2 0/0 1/2 1/2 6
S3 1/1 1/1 1/1 3/3 6
S4 1/1 3/3 1/1 1/1 6

C.N. 6 7 6 7

Apart from the nitride sulfides Ln4N2S3 (Ln = Ce–Nd) and La4N2S3 [7] of the orthorhombic A-type
modification presented here, a monoclinic form (B-type) for La4N2S3 [12] and Pr4N2S3 [9] has been
reported for each with a crystal structure quite different from the orthorhombic one. Unlike the crystal
structure of the A-type Ln4N2S3 members (Ln = La, Pr), in which linear chains are built by linkage
of [N2Ln6]12+ bitetrahedra, in the B-type structure layers are produced by their cross-linkage via
common vertices according to 2

∞{[N(Ln3/4)e
2/2(Ln1/2)v

2/2]3+} with four- and eight-fold pores (Figure 5).
Accompanied by a quadruplication of the cell volume for the B-type (Z = 8) as compared to the A-type
(Z = 2), the unit cell of the B-Ln4N2S3 representatives contains four times the total number of cations
and anions, but only twice the number of crystallographically different unkind particles owing to the
doubling of the respective Wyckoff positions (8f and 4c or 4e as compared to 4g and 2a). With the
exception of the already-mentioned distance Ln2–S2” which loses its coordinative influence upon the
transition from A-La4N2S3 to A-Ce4N2S3, both kinds of anions (N3− and S2−) as well as the cations
can analogously be assigned to each other in their respective modifications as shown in Table 5.
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∞{[NLn4/2]3+}
perpendicular to [001] consisting of four- and eight-membered rings in the crystal structure of the
B-type Ln4N2S3 series (Ln = La, Pr).

In addition to La4N2S3 [7,12] crystallizing dimorphously in the A-La4N2S3- and in the
B-Pr4N2S3-type structures and Ce4N2Se3, which is observed either with the Nd4N2Se3- or with the
Ce4N2Te3-type arrangement, now the next nitride sulfide of the lanthanoids with the composition
Pr4N2S3 can represent both the A- and B-type structures. In order to determine the respective
high-pressure and/or high-temperature phases, the theoretically calculated densities using X-ray
diffraction (Dx) give at least uniform indications, even though they are not strong. With values of
5.426 [7] and 5.772 g/cm3 (Table 1) the A-type Ln4N2S3 members (Ln = La, Pr) show somewhat larger
densities as compared to 5.363 [12] and 5.740 g/cm3 [9], respectively, which are available for the
possible low-pressure and/or high-temperature phases of the B-type representatives. To what extent
these differences of 1.2% and 0.6% could be significant is left to the reader to determine. As the physical
parts of the preparation methods for members of both modifications are identical (seven days at 900 ◦C
in evacuated fused silica ampoules, see Experimental), only the chemical conditions can provide an
explanation. If for the synthesis of the A-type Ln4N2S3 representatives (Ln = La–Nd), in addition
to the lanthanoid metal and sulfur, cesium azide (CsN3) and the corresponding lanthanide bromide
(LnBr3, Ln = La–Nd) with CsBr as a fluxing agent were used (see Experimental), the alkali metal and
the halides in the form of the triiodides LnI3 (Ln = La, Pr), sodium azide (NaN3) and fluxing NaI
varied for the preparation of the B-type Ln4N2S3 ones. Whether, in this case, the intermediates formed,
such as elemental iodine (causing changes in pressure or chemical transport) or ternary halides (such as
Cs3LnBr6 [21] in the first or Na3LnI6 [22] in the second case) play a role can only be speculated.

3. Experimental

As adapted from the standard methodology reported in [1], the new lanthanoid nitride sulfides
Ln4N2S3 (Ln = Ce–Nd) are obtained by the reaction of lanthanoid metal (Ln; ChemPur: 99.9%) with
sulfur (S; ChemPur: 99.9999%) and lanthanoid tribromide (LnBr3; prepared from CeO2, Pr6O11 and
Nd2O3 (all: Johnson-Matthey: 99.999%) by the ammonium-bromide method [23]) and cesium azide
(CsN3; Ferak: 99.9%). On adding cesium bromide (CsBr; ChemPur: 99.9%) as flux almost black,
rod-shaped single crystals of the target compounds Ln4N2S3 (Ln = Ce–Nd) that reflect strongly in the
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incident light under a microscope are obtained after seven days at 900 ◦C in evacuated torch-sealed
fused silica tubes.

Nonetheless, the process of the reaction according to

34 Ln + 27 S + 6 CsN3 + 2 LnBr3 → 9 Ln4N2S3 + 6 CsBr (Ln = Ce–Nd),

which can be classified as redox metathesis with the formation of CsBr as driving force, is not complete.
Besides some white amorphous parts, which are presumably produced by undesired reactions with
the silica-ampoule walls, mostly brown rods that could be characterized as Ln3NS3 representatives
(Ln = Ce–Nd) [24] were also obtained. As in addition to this the whole product mixture in excess of
CsBr is stable to hydrolysis, so the fluxing agent and by-product can easily be rinsed off with water.
A largest possible black rod (0.02× 0.03× 0.20 mm3) of each of the new Ln4N2S3 members was selected
from the mixture under paraffin oil and transferred into a mark-tube capillary to subsequently record
the intensity data sets of X-ray diffraction experiments with the help of a plate detector (four-circle
diffractometer Kappa-CCD, Bruker AXS). In Tables 1–3 the crystallographic data for the three new
nitride sulfides Ln4N2S3 (Ln = Ce–Nd) are summarized.

4. Conclusions

The new series of lanthanoid(III) nitride sulfides with the composition Ln4N2S3 (Ln = Ce–Nd)
adopting the A-type structure of La4N2S3 [7] expands the knowledge about the constitution of
lanthanoid(III) nitride chalcogenides in general. Just like for all members of the formula types
Ln3NCh3 [2,24] and Ln4N2Ch3 [4–12], nitride-centered lanthanoid tetrahedra [NLn4]9+ display the
fundamental building units, which are here connected by one edge (e) and two vertices (v) each
to form 1

∞{([N(Ln1)e
2/2(Ln2)v

2/2]3+)2} chains. Bundled like hexagonal rod packing, they are held
together by S2− anions taking care of the charge compensation. Whereas the coordination numbers
(C.N. = 5–6) of these compare well with those in the binary sesquisulfides Ln2S3 with A- or C-type
crystal structures (C.N. = 5–6) [25–29], the presence of tetrahedrally coordinated N3− anions baffles a
little, since all binary lanthanoid(III) mononitrides LnN [30,31] exhibit octahedrally coordinated N3−

anions in their rocksalt-type crystal structures.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/5/1/2/s1, cif and
checkcif files of Ce4N2S3, Nd4N2S3, and Pr4N2S3.
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