Supplementary Information

1. NMR Spectroscopy

Figure S1. ¹H-NMR spectrum of ligand L1 in CDCl₃.

Figure S2. ¹H-NMR spectrum of ligand L2 in CDCl₃.

Figure S3. ¹H-NMR spectrum of complex 1 in CDCl₃.

Figure S4. ¹H-NMR spectrum of complex 2 in CD₂Cl₂.

Figure S5. ¹³C-NMR spectrum of ligand L2 in CDCl₃.

Figure S6. ¹³C-NMR spectrum of complex 1 in CDCl₃.

Figure S7. ¹³C-NMR spectrum of complex 2 in CD₂Cl₂.

2. Crystallographic Data

	Complex 1	Complex 2
Empirical formula	$C_{23}H_{24}N_2O_4Pt$	$C_{20}H_{17}NO_4Pt$
Formula weight	587.53	530.44
Crystal size	0.3 x 0.4 x 0.5 mm	0.4 x 0.3 x 0.2 mm
Color	red	orange
Habit	plate	block
Crystal system	triclinic	monoclinic
Space group	<i>P</i> -1	$P2_{1}/c$
Unit cell dimensions [Å], [°]	$a = 7.6251(15), \alpha = 80.47(3)$	$a = 8.2099(16), \alpha = 90$
	$b = 11.565(2), \beta = 76.46(3)$	$b = 11.547(2), \beta = 111.91(3)$
	$c = 11.953(2), \gamma = 86.57(3)$	$c = 19.235(5), \gamma = 90$
Volume [Å ³]	1010.4(3)	1691.8(6)
Formula units per cell Z	2	4
Calculated density [g/cm ³]	1.931	2.083
Absorption coefficient [mm ⁻¹]	6.977	8.320
F(000)	572	1016

 Table S1. Crystal data and structure refinement for complexes 1 and 2.

Table S1. Cont.

	Complex 1	Complex 2
Temperature [K]	99 (2)	100 (2)
Wavelength Mo $K_{\alpha} \lambda$ [Å]	0.71073	0.71073
Effective range for data collection θ [°]	1.77 to 26.74	2.10 to 26.92
Completeness to θ [%]	99.1	98.3
Limiting indices	$-9 \le h \le 9,$	$-10 \le h \le 10$,
	$-14 \le k \le 14$,	$-14 \le k \le 14$,
	$-15 \le l \le 15$	$-24 \le l \le 24$
Collected reflections	13661	24804
Unique reflections	4254 [R(int) = 0.0928]	3602 [R(int) = 0.1516]
Data with $I > 2/\sigma(I)$		
Max. and min. transmission	0.5853 and 0.3701	0.6133 and 0.3000
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	4254 / 0 / 273	3602 / 0 / 238
Goodness-of-fit on F^2	1.120	1.096
Final R indices $[I > 2/\sigma(I)]$	$R_1 = 0.0382, wR_2 = 0.0848$	$R_1 = 0.0645, wR_2 = 0.1457$
R indices (all data)	$R_1 = 0.0432, wR_2 = 0.0865$	$R_1 = 0.0824, wR_2 = 0.1646$
Absorption correction	Integration	Integration
Largest diff. peak and hole $[e / Å^3]$	3.860 and -3.615	5.702 and -3.545

Table S2. List of bond lengths and bond angles of complex 1.

Bond le	engths [Å]	Angles	[°]
Pt(1)-N(2)	1.974(5)	N(2)-Pt(1)-C(7)	81.3(2)
Pt(1)-C(7)	1.978(6)	N(2)-Pt(1)-O(3)	176.67(16)
Pt(1)-O(3)	2.013(4)	C(7)-Pt(1)-O(3)	98.98(19)
Pt(1)-O(4)	2.072(4)	N(2)-Pt(1)-O(4)	89.64(18)
O(1)-C(13)	1.379(7)	C(7)-Pt(1)-O(4)	170.40(18)
O(1)-C(14)	1.382(7)	O(3)-Pt(1)-O(4)	89.91(16)
N(1)-C(11)	1.366(7)	C(13)-O(1)-C(14)	121.2(4)
N(1)-C(17)	1.453(7)	C(11)-N(1)-C(17)	121.9(5)
N(1)-C(15)	1.461(7)	C(11)-N(1)-C(15)	121.6(5)
C(1)-N(2)	1.332(8)	C(17)-N(1)-C(15)	116.2(5)
C(1)-C(2)	1.383(8)	N(2)-C(1)-C(2)	123.4(5)
O(2)-C(14)	1.221(7)	C(1)-N(2)-C(5)	119.9(5)
N(2)-C(5)	1.379(7)	C(1)-N(2)-Pt(1)	123.9(4)
C(2)-C(3)	1.392(8)	C(5)-N(2)-Pt(1)	116.3(4)
O(3)-C(20)	1.292(7)	C(1)-C(2)-C(3)	118.2(5)
C(3)-C(4)	1.396(8)	C(20)-O(3)-Pt(1)	125.4(4)
O(4)-C(22)	1.279(7)	C(2)-C(3)-C(4)	119.4(5)
C(4)-C(5)	1.408(8)	C(22)-O(4)-Pt(1)	126.1(4)
C(5)-C(6)	1.449(8)	C(3)-C(4)-C(5)	119.8(5)
C(6)-C(7)	1.372(8)	N(2)-C(5)-C(4)	119.3(5)
C(6)-C(14)	1.446(7)	N(2)-C(5)-C(6)	112.0(4)
C(7)-C(8)	1.465(7)	C(4)-C(5)-C(6)	128.7(5)
C(8)-C(9)	1.396(8)	C(7)-C(6)-C(14)	124.2(5)
C(8)-C(13)	1.416(7)	C(7)-C(6)-C(5)	116.3(5)
C(9)-C(10)	1.380(8)	C(14)-C(6)-C(5)	119.4(5)
C(10)-C(11)	1.428(7)	C(6)-C(7)-C(8)	116.8(5)

Table S2. Cont.

Bond lengths [Å]		Angles [°]
C(11)-C(12)	1.408(8)	C(6)-C(7)-Pt(1)	114.0(4)
C(12)-C(13)	1.382(8)	C(8)-C(7)-Pt(1)	129.2(4)
C(15)-C(16)	1.519(9)	C(9)-C(8)-C(13)	115.4(5)
C(17)-C(18)	1.535(8)	C(9)-C(8)-C(7)	126.4(5)
C(19)-C(20)	1.509(8)	C(13)-C(8)-C(7)	118.3(5)
C(20)-C(21)	1.387(8)	C(10)-C(9)-C(8)	122.8(5)
C(21)-C(22)	1.393(8)	C(9)-C(10)-C(11)	121.3(5)
C(22)-C(23)	1.499(8)	N(1)-C(11)-C(12)	122.2(5)
		N(1)-C(11)-C(10)	121.3(5)
		C(12)-C(11)-C(10)	116.5(5)
		C(13)-C(12)-C(11)	120.8(5)
		O(1)-C(13)-C(12)	114.6(5)
		O(1)-C(13)-C(8)	122.2(5)
		C(12)-C(13)-C(8)	123.2(5)
		O(2)-C(14)-O(1)	114.7(5)
		O(2)-C(14)-C(6)	128.3(5)
		O(1)-C(14)-C(6)	117.1(5)
		N(1)-C(15)-C(16)	112.8(5)
		N(1)-C(17)-C(18)	113.3(5)
		O(3)-C(20)-C(21)	127.6(5)
		O(3)-C(20)-C(19)	113.0(5)
		C(21)-C(20)-C(19)	119.4(5)
		C(20)-C(21)-C(22)	125.5(5)
		O(4)-C(22)-C(21)	125.4(5)
		O(4)-C(22)-C(23)	114.7(5)
		C(21)-C(22)-C(23)	119.9(5)

 Table S3. List of bond lengths and bond angles of complex 2.

Bond len	gths [Å]	Angles [°]			
Pt(1)-C(7)	1.965(11)	C(7)-Pt(1)-N(1)	82.4(4)		
Pt(1)-N(1)	1.983(9)	C(7)-Pt(1)-O(3)	91.2(4)		
Pt(1)-O(3)	2.010(9)	N(1)-Pt(1)-O(3)	173.6(3)		
Pt(1)-O(4)	2.089(8)	C(7)-Pt(1)-O(4)	175.9(4)		
O(1)-C(14)	1.371(13)	N(1)-Pt(1)-O(4)	93.5(3)		
O(1)-C(10)	1.395(11)	O(3)-Pt(1)-O(4)	92.9(3)		
O(2)-C(14)	1.241(14)	C(14)-O(1)-C(10)	120.2(9)		
O(3)-C(17)	1.284(13)	C(17)-O(3)-Pt(1)	124.0(8)		
O(4) - C(19)	1.283(14)	C(19)-O(4)-Pt(1)	123.3(7)		
N(1)-C(1)	1.303(15)	C(1)-N(1)-C(5)	120.1(10)		
N(1)-C(5)	1.380(12)	C(1)-N(1)-Pt(1)	123.2(8)		
C(1) - C(2)	1.407(16)	C(5)-N(1)-Pt(1)	116.7(7)		
C(2) - C(3)	1.403(15)	N(1)-C(1)-C(2)	122.2(11)		
C(3) - C(4)	1.395(15)	C(3)-C(2)-C(1)	119.0(10)		
C(4)-C(5)	1.384(16)	C(4)-C(3)-C(2)	118.1(11)		
C(5)-C(6)	1.461(15)	C(5)-C(4)-C(3)	119.9(10)		
C(6) - C(11)	1.409(14)	N(1)-C(5)-C(4)	120.7(10)		
C(6)-C(7)	1.444(16)	N(1)-C(5)-C(6)	112.5(10)		
C(7) - C(8)	1.373(16)	C(4)-C(5)-C(6)	126.8(9)		
C(8)-C(9)	1.426(14)	C(11)-C(6)-C(7)	120.3(10)		
C(9) - C(10)	1.391(15)	C(11)-C(6)-C(5)	124.7(10)		
C(9) - C(12)	1.450(16)	C(7)-C(6)-C(5)	115.1(9)		
C(10)-C(11)	1.385(15)	C(8)-C(7)-C(6)	119.0(10)		
C(12)-C(13)	1.343(15)	C(8)-C(7)-Pt(1)	127.7(9)		
C(12) - C(15)	1.496(16)	C(6)-C(7)-Pt(1)	113.3(8)		
C(13)-C(14)	1.435(15)	C(7)-C(8)-C(9)	121.0(10)		
C(16)-C(17)	1.518(17)	C(10)-C(9)-C(8)	118.6(10)		
C(17)-C(18)	1.418(15)	C(10)-C(9)-C(12)	119.0(10)		
C(18)-C(19)	1.400(15)	C(8) - C(9) - C(12)	122.4(10)		

Table S3. Cont.

Bond lengths [Å]		Angles [']
C(19)-C(20)	1.508(14)	C(11)-C(10)-C(9)	122.6(9)
		C(11)-C(10)-O(1)	116.1(10)
		C(9)-C(10)-O(1)	121.3(10)
		C(10)-C(11)-C(6)	118.6(10)
		C(13)-C(12)-C(9)	118.0(11)
		C(13)-C(12)-C(15)	121.6(11)
		C(9)-C(12)-C(15)	120.4(9)
		C(12)-C(13)-C(14)	123.0(11)
		O(2)-C(14)-O(1)	116.3(10)
		O(2)-C(14)-C(13)	125.3(11)
		O(1)-C(14)-C(13)	118.4(10)
		O(3)-C(17)-C(18)	126.5(12)
		O(3)-C(17)-C(16)	113.0(10)
		C(18)-C(17)-C(16)	120.5(10)
		C(19)-C(18)-C(17)	127.9(10)
		O(4)-C(19)-C(18)	125.3(10)
		O(4)-C(19)-C(20)	116.7(10)
		C(18)-C(19)-C(20)	118 0(10)

Figure S8. Hydrogen bonds between individual molecules of complex 1, indicated by dashed lines.

(a)

Figure S9. Cont.

Figure S9. Two-dimensional cuts from the crystal structure of complex 1 showing the stacking arrangement. Hydrogen bonds and d^8 - d^8 -interactions of individual molecules are indicated by dashed lines.

Figure S10. π -Stacking of individual molecules of **2** by overlapping of (**a**) pyridyl and pyranonyl units over 3.278 Å and (**b**) pyridyl and acac units over 3.377 Å. Hydrogen atoms are omitted for clarity.

Figure S11. Sheetlike arrangement of individual molecules of complex 2 showing hydrogen bonds involving the exocyclic carbonyl oxygen atom, indicated by dark blue dashed lines.

Figure S13. IR spectrum of complex 1.

Figure S14. IR spectrum of complex 2.

Figure S15. (a) The first; (b) the first and the second oxidations of 1 in the 0.1 M NBu₄PF₆ solution in dichloromethane and (c) the first reduction of 1 in the 0.1 M NBu₄PF₆ solution in THF at a sweep rate v = 100 mV s⁻¹ at ambient conditions.

Table S4. Electrochemical data for complexes 1 and 2.

Figure S16. (a) The first; (b) the first and the second oxidations of 2 in the 0.1-M NBu₄PF₆ solution in dichloromethane. (c) The first; (d) the first and the second reductions of 2 in the 0.1-M NBu₄PF₆ solution in THF. The measurements were performed at ambient conditions at a sweep rate v = 100 mV s⁻¹.

Table S5. Peak positions of different redox states of **2** in IR in the 0.2 M NBu₄PF₆ THF solution.

Wavenumber [cm ⁻¹]											
2	1777	1729	-	1679	1652	1641	-	1577	1564	1545	1522
2	1777	1726	1692	1673	1647	1644	1604	1577	-	1545	1519
22-	-	1723	-	-	-	-	1604	1577	-	-	1519
2	-	1723	-	-	-	-	1004	1377	-	-	131

Figure S17. Temporal evolution of the luminescence signal of complex 1: (**a**) at ambient conditions, detected at 566 nm; (**b**) at 77 K, detected at 558 nm; of complex 2: (**c**) at r.t., detected at 550 nm; (**d**) at 77 K, detected at 540 nm after pulsed excitation at 355 nm with pulse width of 10 ns in deoxygenated 2-MeTHF.

6. Quantum Chemical Calculations

Figure S18. Scaled TD-DFT (B3LYP) calculated and experimental absorption spectra of complexes 1 (a) and 2 (b) in CH_2Cl_2 (exp.) or 1,2-dichloroethane (calcd.).

Table S6. Major contributions to the TD-DFT transitions of complex 1.

ῦ [cm⁻¹]	λ [nm]	Osc. strength	Major contributions
23201	431	0.651	$HOMO \rightarrow LUMO (96\%)$
28974	345	0.107	$H-1 \rightarrow LUMO (87\%)$
30884	324	0.185	$HOMO \rightarrow L+2 (85\%)$
34793	287	0.158	$H-2 \rightarrow L+1 \ (80\%)$
41018	244	0.106	$H-1 \rightarrow L+3 (83\%)$
41271	242	0.096	$\text{H-3} \rightarrow \text{L+2}$ (64%), $\text{HOMO} \rightarrow \text{L+7}$ (19%)

Table S7. Major contributions to the TD-DFT transitions of complex 2.

ῦ [cm ⁻¹]	λ [nm]	Osc. strength	Major contributions
23698	422	0.100	HOMO \rightarrow LUMO (95%)
26884	372	0.102	$H-1 \rightarrow LUMO (93\%)$
31295	320	0.503	$H-3 \rightarrow LUMO (77\%)$
33197	301	0.127	$\text{H-4} \rightarrow \text{LUMO} (17\%), \text{H-1} \rightarrow \text{L+1} (64\%)$
34272	292	0.239	$\text{H-1} \rightarrow \text{L+2}$ (61%), $\text{HOMO} \rightarrow \text{L+3}$ (25%)
40368	248	0.115	$H-5 \rightarrow L+4 (11\%), H-4 \rightarrow L+2 (19\%),$
			$HOMO \rightarrow L+5 (40\%)$
40778	245	0.129	$\text{H-9} \rightarrow \text{LUMO} (30\%), \text{H-5} \rightarrow \text{L+4} (11\%),$
			$\text{H-4} \rightarrow \text{L+1} (12\%), \text{HOMO} \rightarrow \text{L+5} (16\%)$
41557	241	0.175	$H-4 \rightarrow L+2 (50\%), H-3 \rightarrow L+3 (10\%),$
			$HOMO \rightarrow L+5 (10\%)$
41906	239	0.345	$\text{H-3} \rightarrow \text{L+3} (47\%), \text{HOMO} \rightarrow \text{L+5} (14\%)$

Table S8. Fragment population analysis for frontier molecular orbitals of complexes 1 and 2.

1							2				
MO	eV	coum	ру	acac	Pt	MO	eV	coum	ру	acac	Pt
L+7	0.31	51	6	2	41	L+7	0.56	39	20	1	40
L+6	0.01	45	5	2	48	L+6	0.03	11	4	7	78
L+5	0.01	27	3	2	68	L+5	-0.13	74	5	2	19
L+4	-0.45	16	15	13	57	L+4	-0.24	8	9	9	74
L+3	-0.47	48	47	1	4	L+3	-0.86	44	50	3	3
L+2	-0.93	19	70	9	2	L+2	-1.3	11	13	72	4
L+1	-1.43	2	8	88	2	L+1	-1.43	18	56	23	3
LUMO	-1.93	53	36	1	10	LUMO	-2.24	58	38	1	3
HOMO	-5.22	89	11	0	1	HOMO	-5.76	53	5	14	27
H-1	-6.13	19	9	46	26	H-1	-6.16	19	9	44	28
H-2	-6.37	37	14	19	30	H-2	-6.46	3	1	3	93
Н-3	-6.52	92	1	1	6	H-3	-6.59	66	13	6	15
H-4	-6.59	8	1	4	87	H-4	-6.98	17	8	36	39
H-5	-7.06	15	20	26	40	H-5	-7.19	6	2	25	68
H-6	-7.18	46	4	29	21	H-6	-7.41	21	2	68	10
H-7	-7.23	28	2	22	48	H-7	-7.43	46	22	9	23
H-8	-7.5	19	14	19	48	H-8	-7.55	99	0	1	0
H-9	-7.71	40	4	49	7	H-9	-7.82	36	32	5	28

Figure S19. Selected molecular orbitals of complex 1. Hydrogen atoms are omitted for reasons of clarity.

Figure S20. Selected molecular orbitals of complex 2. Hydrogen atoms are omitted for reasons of clarity.

Table S9. List of calculated bond lengths and bond angles for optimized singlet ground state geometry of **1** in a dichloroethane medium.

	Bond lengths [Å]	Angles [°]		
Pt(1)-O(3)	2.0339	O(3)-Pt(1)-O(4)	88.78	
Pt(1)-O(4)	2.0960	O(3)-Pt(1)-N(2)	179.48	
Pt(1)-N(2)	2.0039	O(3)-Pt(1)-C(7)	99.22	
Pt(1)-C(7)	1.9946	O(4)-Pt(1)-N(2)	90.78	
O(1)-C(13)	1.3576	O(4)-Pt(1)-C(7)	171.99	
O(1)-C(14)	1.3717	N(2)-Pt(1)-C(7)	81.22	
O(2)-C(14)	1.2196	C(13)-O(1)-C(14)	122.79	
O(3)-C(20)	1.2826	Pt(1)-O(3)-C(20)	126.67	
O(4)-C(22)	1.2744	Pt(1)-O(4)-C(22)	126.49	
N(1)-C(11)	1.3623	C(11)-N(1)-C(15)	122.09	
N(1)-C(15)	1.4558	C(11)-N(1)-C(17)	121.76	
N(1)-C(17)	1.4554	C(15)-N(1)-C(17)	116.16	
N(2)-C(1)	1.3426	Pt(1)-N(2)-C(1)	122.77	
N(2)-C(5)	1.3621	Pt(1)-N(2)-C(5)	116.25	
C(1)-C(2)	1.3826	C(1)-N(2)-C(5)	120.98	
C(2)-C(3)	1.3948	N(2)-C(1)-C(2)	121.9	
C(3)-C(4)	1.3853	C(1)-C(2)-C(3)	118.34	
C(4)-C(5)	1.4017	C(2)-C(3)-C(4)	119.73	
C(5)-C(6)	1.4455	C(3)-C(4)-C(5)	119.84	
C(6)-C(7)	1.4028	N(2)-C(5)-C(4)	119.21	
C(6)-C(14)	1.4435	N(2)-C(5)-C(6)	113.05	
C(7)-C(8)	1.4345	C(4)-C(5)-C(6)	127.73	
C(8)-C(9)	1.4143	C(5)-C(6)-C(7)	116.4	
C(8)-C(13)	1.4147	C(5)-C(6)-C(14)	120.45	
C(9)-C(10)	1.3746	C(7)-C(6)-C(14)	123.15	
C(10)-C(11)	1.4237	Pt(1)-C(7)-C(6)	113.07	
C(11)-C(12)	1.4092	Pt(1)-C(7)-C(8)	130.13	

(a) Calculated with the PBE0 functional.

Table S9. Cont.

	Bond lengths [Å]		Angles [°]
C(12)-C(13)	1.3832	C(6)-C(7)-C(8)	116.8
C(15)-C(16)	1.5236	C(7)-C(8)-C(9)	125.92
C(17)-C(18)	1.5247	C(7)-C(8)-C(13)	119.20
C(19)-C(20)	1.503	C(9) - C(8) - C(13)	114.89
C(20)-C(21)	1.3953	C(8)-C(9)-C(10)	122.77
C(21)-C(22)	1.4008	C(9)-C(10)-C(11)	121.43
C(22)-C(23)	1.5034	N(1)-C(11)-C(10)	121.61
0(11) 0(10)	1.000	N(1)-C(11)-C(12)	121.61
		C(10)-C(11)-C(12)	116 77
		C(11)-C(12)-C(13)	120.64
		O(1)-C(13)-C(8)	121.48
		O(1)-C(13)-C(12)	115.02
		C(8)-C(13)-C(12)	123 51
		O(1)-C(14)-O(2)	115.62
		O(1)-C(14)-C(6)	116.50
		O(1)-C(14)-C(6)	127 70
		N(1) C(15) C(16)	112 /1
		N(1) - C(13) - C(10) N(1) - C(17) - C(18)	113.41
		O(2) C(20) C(10)	112.59
		O(3) - C(20) - C(19)	115.39
		O(3)-C(20)-C(21)	120.98
		C(19)-C(20)-C(21)	119.43
		C(20)-C(21)-C(22)	125.69
		O(4)- $C(22)$ - $C(21)$	125.39
		O(4)-C(22)-C(23)	115.04
		C(21)-C(22)-C(23)	119.57
	(b) Calculated wi	th the B3LYP function	onal.
	Bond lengths [Å]		Angles [°]
Pt(1)-O(3)	2.0538	O(3)-Pt(1)-O(4)	88.49
Pt(1)-O(4)	2.1187	O(3)-Pt(1)-N(2)	178.69
Pt(1)-N(2)	2.0247	O(3)-Pt(1)-C(7)	99.48
Pt(1)-C(7)	2.0157	O(4)-Pt(1)-N(2)	91.02
O(1)-C(13)	1.3663	O(4)-Pt(1)-C(7)	172.04
O(1)-C(14)	1.3836	N(2)-Pt(1)-C(7)	81.02
O(2)-C(14)	1.2238	C(13)-O(1)-C(14)	122.74
O(3)-C(20)	1.2889	Pt(1)-O(3)-C(20)	126.64
O(4)-C(22)	1.2802	Pt(1)-O(4)-C(22)	126.40
N(1)-C(11)	1.3706	C(11)-N(1)-C(15)	122.11
N(1)-C(15)	1.4664	C(11) - N(1) - C(17)	121.84
N(1)-C(17)	1.4660	C(15)-N(1)-C(17)	116.06
N(2)-C(1)	1.3481	Pt(1)-N(2)-C(1)	122.90
N(2)-C(5)	1 3687	Pt(1)-N(2)-C(5)	116.06
C(1)-C(2)	1 3863	C(1)-N(2)-C(5)	121.03
C(2)-C(3)	1 3984	N(2)-C(1)-C(2)	121.84
C(3)-C(4)	1 3888	C(1)-C(2)-C(3)	118 35
C(4)-C(5)	1 4057	C(2)-C(3)-C(4)	119.81
C(5)- $C(6)$	1 4527	C(2) = C(3) = C(4)	119.01
C(6)- $C(7)$	1 4070	N(2)-C(5)-C(4)	119.06
C(6)-C(14)	1 4480	N(2)-C(5)-C(6)	113.23
C(0)-C(14) C(7) C(8)	1.4480	C(4) C(5) C(6)	115.25
C(7) - C(8)	1.4577	C(4) - C(3) - C(0)	127.71
C(8) - C(9)	1.4191	C(5) - C(0) - C(7)	120.25
C(0) - C(13) C(0) - C(10)	1.4103	C(3) - C(0) - C(14) C(7) - C(6) - C(14)	120.33
C(9) - C(10) C(10) - C(11)	1.3/// 1.4294	U(7) - U(0) - U(14) D(1) $U(7) - U(6)$	122.73
C(10)-C(11) C(11)-C(12)	1.4284	F(1) - C(7) - C(0) D(1) C(7) C(9)	112.92
C(11)-C(12)	1.4139	P(1)-U(7)-U(8)	129.89
C(12)-C(13)	1.3808	C(0)-C(7)-C(8)	11/.18
C(15)-C(16)	1.5334	C(7) - C(8) - C(9)	125.97
C(17)-C(18)	1.5335	C(7)-C(8)-C(13)	119.24
C(19)-C(20)	1.5119	C(9)-C(8)-C(13)	114.79
C(20)-C(21)	1.3989	C(8)-C(9)-C(10)	122.77
C(21)-C(22)	1.4050	C(9)-C(10)-C(11)	121.53

Table 9S. Cont.

Bond lengths [Å]		Angles [°]	
C(22)-C(23)	1.5116	N(1)-C(11)-C(10)	121.70
		N(1)-C(11)-C(12)	121.64
		C(10)-C(11)-C(12)	116.66
		C(11)-C(12)-C(13)	120.61
		O(1)-C(13)-C(8)	121.31
		O(1)-C(13)-C(12)	115.04
		C(8)-C(13)-C(12)	123.64
		O(1)-C(14)-O(2)	115.44
		O(1)-C(14)-C(6)	116.54
		O(2)-C(14)-C(6)	128.02
		N(1)-C(15)-C(16)	113.67
		N(1)-C(17)-C(18)	113.67
		O(3)-C(20)-C(19)	113.57
		O(3)-C(20)-C(21)	126.99
		C(19)-C(20)-C(21)	119.43
		C(20)-C(21)-C(22)	126.07
		O(4)-C(22)-C(21)	125.41
		O(4) - C(22) - C(23)	115.05
		C(21)-C(22)-C(23)	119.53

Table S10. List of calculated bond lengths and bond angles for optimized singlet ground state geometry of 2 in a dichloroethane medium.

Bond lengths [Å]		Angles [°]	
Pt(1)-O(3)	2.0209	O(3)-Pt(1)-O(4)	91.33
Pt(1)-O(4)	2.1055	O(3)-Pt(1)-N(1)	174.97
Pt(1)-N(1)	2.0092	O(3)-Pt(1)-C(7)	93.64
Pt(1)-C(7)	1.9731	O(4)-Pt(1)-N(1)	93.7
O(3)-C(17)	1.2837	O(4)-Pt(1)-C(7)	175.03
O(4)-C(19)	1.274	N(1)-Pt(1)-C(7)	81.33
O(1)-C(10)	1.3635	Pt(1)-O(3)-C(17)	124.8
O(1)-C(14)	1.3726	Pt(1)-O(4)-C(19)	123.89
O(2)-C(14)	1.214	C(10)-O(1)-C(14)	122.14
N(1)-C(1)	1.3403	Pt(1)-N(1)-C(1)	123.36
N(1)-C(5)	1.3622	Pt(1)-N(1)-C(5)	116.18
C(1)-C(2)	1.3861	C(1)-N(1)-C(5)	120.46
C(2)-C(3)	1.3928	N(1)-C(1)-C(2)	121.88
C(3)-C(4)	1.3884	C(1)-C(2)-C(3)	118.67
C(4)-C(5)	1.3943	C(2)-C(3)-C(4)	119.29
C(5)-C(6)	1.4606	C(3)-C(4)-C(5)	119.81
C(6)-C(7)	1.4214	N(1)-C(5)-C(4)	119.89
C(6)-C(11)	1.3930	N(1)-C(5)-C(6)	113.51
C(7)-C(8)	1.3903	C(4)-C(5)-C(6)	126.6
C(8)-C(9)	1.4061	C(5)-C(6)-C(7)	114.56
C(12)-C(9)	1.4512	C(5)-C(6)-C(11)	123.96
C(12)-C(13)	1.357	C(7)-C(6)-C(11)	121.48
C(12)-C(15)	1.4947	Pt(1)-C(7)-C(6)	114.41
C(9)-C(10)	1.4054	Pt(1)-C(7)-C(8)	127.63
C(11)-C(10)	1.3878	C(6)-C(7)-C(8)	117.95
C(13)-C(14)	1.447	C(7)-C(8)-C(9)	121.71
C(16)-C(17)	1.5025	C(9)-C(12)-C(13)	118.38
C(17)-C(18)	1.3974	C(9)-C(12)-C(15)	120.21
C(18)-C(19)	1.4047	C(13)-C(12)-C(15)	121.41
C(19)-C(20)	1.5045	C(8)-C(9)-C(12)	123.82

(a) Calculated with the PBE0 functional.

Table S10. Cont.

Bond lengths [Å]	Angles [°]	
	C(8)-C(9)-C(10)	118.41
	C(12)-C(9)-C(10)	117.77
	C(6)-C(11)-C(10)	118.9
	O(3)-C(17)-C(16)	113.54
	O(3)-C(17)-C(18)	127.14
	C(16)-C(17)-C(18)	119.32
	C(17)-C(18)-C(19)	127.04
	O(4)-C(19)-C(18)	125.8
	O(4)-C(19)-C(20)	115.05
	C(18)-C(19)-C(20)	119.15
	O(1)-C(10)-C(9)	121.93
	O(1)-C(10)-C(11)	116.53
	C(9)-C(10)-C(11)	121.54
	C(12)-C(13)-C(14)	123.07
	O(1)-C(14)-O(2)	117.44
	O(1)-C(14)-C(13)	116.7
	O(2)-C(14)-C(13)	125.86

(b) Calculated with the B3LYP functional.

Bond lengths [Å]		Angles [°]	
Pt(1)-O(3)	2.0404	O(3)-Pt(1)-O(4)	90.71
Pt(1)-O(4)	2.1297	O(3)-Pt(1)-N(1)	175.05
Pt(1)-N(1)	2.0334	O(3)-Pt(1)-C(7)	93.97
Pt(1)-C(7)	1.9915	O(4)-Pt(1)-N(1)	94.24
O(3)-C(17)	1.29	O(4)-Pt(1)-C(7)	175.31
O(4)-C(19)	1.2788	N(1)-Pt(1)-C(7)	81.08
O(1)-C(10)	1.3722	Pt(1)-O(3)-C(17)	125.02
O(1)-C(14)	1.3841	Pt(1)-O(4)-C(19)	124.04
O(2)-C(14)	1.2175	C(10)-O(1)-C(14)	122.09
N(1)-C(1)	1.3462	Pt(1)-N(1)-C(1)	123.6
N(1)-C(5)	1.3691	Pt(1)-N(1)-C(5)	115.93
C(1)-C(2)	1.3893	C(1)-N(1)-C(5)	120.47
C(2)-C(3)	1.3963	N(1)-C(1)-C(2)	121.82
C(3)-C(4)	1.3916	C(1)-C(2)-C(3)	118.71
C(4)-C(5)	1.3979	C(2)-C(3)-C(4)	119.33
C(5)-C(6)	1.4657	C(3)-C(4)-C(5)	119.94
C(6)-C(7)	1.4258	N(1)-C(5)-C(4)	119.73
C(6)-C(11)	1.3972	N(1)-C(5)-C(6)	113.71
C(7)-C(8)	1.3931	C(4)-C(5)-C(6)	126.56
C(8)-C(9)	1.4113	C(5)-C(6)-C(7)	114.87
C(12)-C(9)	1.4551	C(5)-C(6)-C(11)	123.87
C(12)-C(13)	1.3601	C(7)-C(6)-C(11)	121.26
C(12)-C(15)	1.5039	Pt(1)-C(7)-C(6)	114.41
C(9)-C(10)	1.4097	Pt(1)-C(7)-C(8)	127.48
C(11)-C(10)	1.3915	C(6)-C(7)-C(8)	118.10
C(13)-C(14)	1.4510	C(7)-C(8)-C(9)	121.79
C(16)-C(17)	1.5120	C(9)-C(12)-C(13)	118.56
C(17)-C(18)	1.4004	C(9)-C(12)-C(15)	120.29
C(18)-C(19)	1.4091	C(13)-C(12)-C(15)	121.16
C(19)-C(20)	1.5129	C(8)-C(9)-C(12)	123.95

Bond lengths [Å] Angles [°] C(8)-C(9)-C(10) 118.2 C(12)-C(9)-C(10) 117.86 119.01 C(6)-C(11)-C(10)O(3)-C(17)-C(16) 113.46 O(3)-C(17)-C(18) 127.19 C(16)-C(17)-C(18) 119.35 C(17)-C(18)-C(19) 127.21 O(4)-C(19)-C(18) 125.82 O(4)-C(19)-C(20) 115.03 C(18)-C(19)-C(20) 119.15 O(1)-C(10)-C(9) 121.8 O(1)-C(10)-C(11) 116.56 C(9)-C(10)-C(11)121.64 C(12)-C(13)-C(14)123.18 O(1)-C(14)-O(2) 117.39 O(1)-C(14)-C(13)116.53 O(2)-C(14)-C(13) 126.08

Table S10. Cont.

The calculated emissions of **1** and **2** (B3LYP) are located at 457 and 484 nm, respectively.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).