Classification, Functions, Development and Outlook of Photoanode Block Layer for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Role of the Block Layer
2.1. Single Block Layers
2.2. Doped Block Layers
2.3. Multilayer Block Layers
3. Recent Developments
3.1. Single Block Layers
3.2. Doped Block Layers
3.3. Multilayer Block Layers
4. Summary and Outlook
4.1. Summary
4.2. Outlook
- (1)
- Multilayer block layers with tailored band structures
- (2)
- Expanding applications to ultraviolet (UV) and infrared (IR) devices
- (3)
- Adapting block layers for emerging electrode architectures
- (4)
- Block layers for flexible photoelectrochemical devices
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Bagher, A.M.; Vahid, M.M.A.; Mohsen, M. Types of solar cells and application. Am. J. Opt. Photonics 2015, 3, 94–113. [Google Scholar] [CrossRef]
- Hoppe, H.; Sariciftci, N.S. Organic solar cells: An overview. J. Mater. Res. 2004, 19, 1924–1945. [Google Scholar]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [PubMed]
- Jiang, C.; Moniz, S.J.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660. [Google Scholar]
- Shu, J.; Tang, D. Recent advances in photoelectrochemical sensing: From engineered photoactive materials to sensing devices and detection modes. Anal. Chem. 2019, 92, 363–377. [Google Scholar] [CrossRef]
- Mahmood, A. Triphenylamine based dyes for dye sensitized solar cells: A review. Sol. Energy 2016, 123, 127–144. [Google Scholar]
- Bella, F.; Gerbaldi, C.; Barolo, C.; Grätzel, M. Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 2015, 44, 3431–3473. [Google Scholar]
- Mustafa, M.N.; Sulaiman, Y. Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells. Sol. Energy 2021, 215, 26–43. [Google Scholar]
- Badr, M.H.; El-Kemary, M.; Ali, F.A.; Ghazy, R. Effect of TiCl4-based TiO2 compact and blocking layers on efficiency of dye-sensitized solar cells. J. Chin. Chem. Soc. 2018, 66, 459–466. [Google Scholar]
- Liu, Y.; She, G.; Qi, X.; Mu, L.; Wang, X.; Shi, W. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 Dye-Sensitized Solar Cells. J. Nanosci. Nanotechnol. 2015, 15, 7068–7073. [Google Scholar]
- Zhang, X.; Lei, L.; Wang, X.; Wang, D. Ultrathin TiO2 blocking layers via atomic layer deposition toward high-performance dye-sensitized photo-electrosynthesis cells. Sustainability 2023, 15, 7092. [Google Scholar] [CrossRef]
- Selopal, G.S.; Memarian, N.; Milan, R.; Concina, I.; Sberveglieri, G.; Vomiero, A. Effect of blocking layer to boost photoconversion efficiency in ZnO dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 11236–11244. [Google Scholar] [PubMed]
- Singh, M.; Rana, T.R.; Kim, S.; Kim, K.; Yun, J.H.; Kim, J. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications. ACS Appl. Mater. Interfaces 2016, 8, 12764–12771. [Google Scholar] [PubMed]
- Duong, T.-T.; Choi, H.-J.; He, Q.-J.; Le, A.-T.; Yoon, S.-G. Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition. J. Alloys Compd. 2013, 561, 206–210. [Google Scholar]
- Kavan, L.; Steier, L.; Gratzel, M. Ultrathin buffer layers of SnO2 by atomic layer deposition: Perfect blocking function and thermal stability. J. Phys. Chem. C 2017, 121, 342–350. [Google Scholar]
- Prakash, O.; Saxena, V.; Choudhury, S.; Tanvi; Singh, A.; Debnath, A.K.; Mahajan, A.; Muthe, K.P.; Aswal, D.K. Low temperature processable ultra-thin WO3 Langmuir-Blodgett film as excellent hole blocking layer for enhanced performance in dye sensitized solar cell. Electrochim. Acta 2019, 318, 405–412. [Google Scholar]
- Zouhair, S.; Yoo, S.M.; Bogachuk, D.; Herterich, J.P.; Lim, J.; Kanda, H.; Son, B.; Yun, H.J.; Würfel, U.; Chahboun, A. Employing 2D-perovskite as an electron blocking layer in highly efficient (18.5%) perovskite solar cells with printable low temperature carbon electrode. Adv. Energy Mater. 2022, 12, 2200837. [Google Scholar]
- Asemi, M.; Maleki, S.; Ghanaatshoar, M. Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer. J. Sol-Gel Sci. Technol. 2016, 81, 645–651. [Google Scholar]
- Drygała, A.; Szindler, M.; Szindler, M.; Jonda, E. Atomic layer deposition of TiO2 blocking layers for dye-sensitized solar cells. Microelectron. Int. 2020, 37, 87–93. [Google Scholar]
- Kim, D.H.; Woodroof, M.; Lee, K.; Parsons, G.N. Atomic Layer Deposition of High Performance Ultrathin TiO2 Blocking Layers for Dye-Sensitized Solar Cells. ChemSusChem 2013, 6, 930. [Google Scholar]
- Yeoh, M.-E.; Chan, K.-Y. Efficiency Enhancement in Dye-Sensitized Solar Cells with ZnO and TiO2 Blocking Layers. J. Electron. Mater. 2019, 48, 4342–4350. [Google Scholar]
- Kouhestanian, E.; Mozaffari, S.A.; Ranjbar, M.; Amoli, H.S. Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer. Org. Electron. 2020, 86, 105915. [Google Scholar]
- Guan, J.; Zhang, J.; Yu, T.; Xue, G.; Yu, X.; Tang, Z.; Wei, Y.; Yang, J.; Li, Z.; Zou, Z. Interfacial modification of photoelectrode in ZnO-based dye-sensitized solar cells and its efficiency improvement mechanism. RSC Adv. 2012, 2, 7708–7713. [Google Scholar]
- Koo, B.-R.; Oh, D.-H.; Ahn, H.-J. Influence of Nb-doped TiO2 blocking layers as a cascading band structure for enhanced photovoltaic properties. Appl. Surf. Sci. 2018, 433, 27–34. [Google Scholar]
- Zatirostami, A. Increasing the efficiency of TiO2-based DSSC by means of a double layer RF-sputtered thin film blocking layer. Optik 2020, 207, 164419. [Google Scholar]
- Lv, F.; Ma, Y.; Xiang, P.; Shu, T.; Tan, X.; Qiu, L.; Jiang, L.; Xiao, T.; Chen, X. N-I co-doped TiO2 compact film as a highly effective n-type electron blocking layer for solar cells. J. Alloys Compd. 2020, 837, 155555. [Google Scholar]
- Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S. Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO-TiO2 seed layer for DSSC applications. J. Alloys Compd. 2017, 693, 1011–1019. [Google Scholar]
- Hwang, K.-J.; Park, J.-Y.; Jin, S.; Kang, S.O.; Cho, D.W. Light-penetration and light-scattering effects in dye-sensitised solar cells. New J. Chem. 2014, 38, 6161–6167. [Google Scholar]
- Kim, H.-Y.; Lee, M.W.; Song, D.H.; Yoon, H.J.; Suh, J.S. Plasmonic-enhanced graphene flake counter electrodes for dye-sensitized solar cells. J. Appl. Phys. 2017, 121, 243103. [Google Scholar]
- Ekanayake, P.; Rafieh, A.I.; Mohammad Thamrin, N.; Ming, L.C. Mg-La Co-Doped TiO2 as Compact Layer for High Efficient Dye-Sensitized Solar Cells. Key Eng. Mater. 2018, 765, 34–38. [Google Scholar]
- Wang, C.; Yu, Z.; Bu, C.; Liu, P.; Bai, S.; Liu, C.; Kondamareddy, K.K.; Sun, W.; Zhan, K.; Zhang, K.; et al. Multifunctional alumina/titania hybrid blocking layer modified nanocrystalline titania films as efficient photoanodes in dye sensitized solar cells. J. Power Sources 2015, 282, 596–601. [Google Scholar]
- Palomares, E.; Clifford, J.N.; Haque, S.A.; Lutz, T.; Durrant, J.R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 2003, 125, 475–482. [Google Scholar] [PubMed]
- Kavan, L.; Tétreault, N.; Moehl, T.; Gratzel, M. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16408–16418. [Google Scholar]
- Noh, S.I.; Bae, K.-N.; Ahn, H.-J.; Seong, T.-Y. Improved efficiency of dye-sensitized solar cells through fluorine-doped TiO2 blocking layer. Ceram. Int. 2013, 39, 8097–8101. [Google Scholar]
- Lee, S.; Noh, J.H.; Han, H.S.; Yim, D.K.; Kim, D.H.; Lee, J.-K.; Kim, J.Y.; Jung, H.S.; Hong, K.S. Nb-doped TiO2: A new compact layer material for TiO2 dye-sensitized solar cells. J. Phys. Chem. C 2009, 113, 6878–6882. [Google Scholar]
- Kumar, N.; Choudhury, S.; Mahajan, A.; Saxena, V. Enhanced efficiency of dye-sensitized solar cells via controlled thickness of the WO3 Langmuir–Blodgett blocking layer in the Debye length regime. Mater. Adv. 2024, 5, 7659–7670. [Google Scholar]
- Liu, I.-P.; Lin, W.-H.; Tseng-Shan, C.-M.; Lee, Y.-L. Importance of compact blocking layers to the performance of dye-sensitized solar cells under ambient light conditions. ACS Appl. Mater. Interfaces 2018, 10, 38900–38905. [Google Scholar]
- Patrocínio, A.O.d.T.; Paterno, L.G.; Iha, N.M. Layer-by-layer TiO2 films as efficient blocking layers in dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem. 2009, 205, 23–27. [Google Scholar]
- Amini, M.; Keshavarzi, R.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Sadegh, F. From dense blocking layers to different templated films in dye sensitized and perovskite solar cells: Toward light transmittance management and efficiency enhancement. J. Mater. Chem. A 2018, 6, 2632–2642. [Google Scholar]
- Rehman, A.U.; Aslam, M.; Shahid, I.; Idrees, M.; Khan, A.D.; Batool, S.; Khan, M. Enhancing the light absorption in dye-sensitized solar cell by using bilayer composite materials based photo-anode. Opt. Commun. 2020, 477, 126353. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Wang, Y.; He, Y.; Pan, X.; Xie, E. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors. Nanoscale 2016, 8, 50–73. [Google Scholar] [CrossRef] [PubMed]
- Ozel, K.; Atilgan, A.; Yildiz, A. Multi-layered blocking layers for dye sensitized solar cells. J. Photochem. Photobiol. A Chem. 2024, 448, 115297. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, B.; Fan, Y.; Zhang, M.; Wu, W.; Wang, Z.; Liu, M.; Qiao, H.; Wang, Y. Photoelectrochemical UV Detector Based on High-Temperature Resistant ITO Nanowire Network Transparent Conductive Electrodes: Both the Response Range and Responsivity Are Improved. Nanomaterials 2023, 13, 2086. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, Q.; Li, H.; Wu, H.; Zou, D.; Yu, D. Transparent, double-sided, ITO-free, flexible dye-sensitized solar cells based on metal wire/ZnO nanowire arrays. Adv. Funct. Mater. 2012, 22, 2775–2782. [Google Scholar] [CrossRef]
- Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; Gratzel, M. The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes. Nano Lett. 2008, 8, 977–981. [Google Scholar] [CrossRef]
- Yang, W.; Wan, F.; Chen, S.; Jiang, C. Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2 Buffer Layers in Dye-Sensitized Solar Cells. Nanoscale Res. Lett. 2009, 4, 1486–1492. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, S.; Zhao, H.; Will, G.; Liu, P. An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim. Acta 2009, 54, 1319–1324. [Google Scholar] [CrossRef]
- Jeong, J.-A.; Kim, H.-K. Thickness effect of RF sputtered TiO2 passivating layer on the performance of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 344–348. [Google Scholar] [CrossRef]
- Jang, K.-I.; Hong, E.; Kim, J.H. Effect of an electrodeposited TiO2 blocking layer on efficiency improvement of dye-sensitized solar cell. Korean J. Chem. Eng. 2012, 29, 356–361. [Google Scholar] [CrossRef]
- Jin, Y.-S.; Kim, K.-H.; Kim, W.-J.; Jang, K.-U.; Choi, H.-W. The effect of RF-sputtered TiO2 passivating layer on the performance of dye sensitized solar cells. Ceram. Int. 2012, 38, S505–S509. [Google Scholar]
- Kim, H.-J.; Jeon, J.-D.; Kim, D.Y.; Lee, J.-J.; Kwak, S.-Y. Improved performance of dye-sensitized solar cells with compact TiO2 blocking layer prepared using low-temperature reactive ICP-assisted DC magnetron sputtering. J. Ind. Eng. Chem. 2012, 18, 1807–1812. [Google Scholar]
- Kovash, C.S.; Hoefelmeyer, J.D.; Logue, B.A. TiO2 compact layers prepared by low temperature colloidal synthesis and deposition for high performance dye-sensitized solar cells. Electrochim. Acta 2012, 67, 18–23. [Google Scholar]
- Han, H.S.; Kim, J.S.; Kim, D.H.; Han, G.S.; Jung, H.S.; Noh, J.H.; Hong, K.S. TiO2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices. Nanoscale 2013, 5, 3520–3526. [Google Scholar]
- Kim, K.P.; Lee, S.J.; Kim, D.H.; Hwang, D.K. Effect of anodic aluminum oxide template imprinting on TiO2 blocking layer of flexible dye-sensitized solar cell. J. Nanosci. Nanotechnol. 2013, 13, 1888–1890. [Google Scholar] [PubMed]
- Li, J.W.; Chen, X.; Xu, W.H.; Nam, C.Y.; Shi, Y. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition. Thin Solid. Films 2013, 536, 275–279. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Zhang, D.W.; Shen, J.; Li, Z.Q.; Shi, J.H.; Chen, Y.W.; Sun, Z.; Yang, Z.; Huang, S.M. Effects of RF and pulsed DC sputtered TiO2 compact layer on the performance dye-sensitized solar cells. Surf. Coat. Technol. 2013, 231, 126–130. [Google Scholar]
- Abdullah, M.H.; Rusop, M. Improved performance of dye-sensitized solar cell with a specially tailored TiO2 compact layer prepared by RF magnetron sputtering. J. Alloys Compd. 2014, 600, 60–66. [Google Scholar] [CrossRef]
- Alberti, A.; Pellegrino, G.; Condorelli, G.G.; Bongiorno, C.; Morita, S.; La Magna, A.; Miyasaka, T. Efficiency Enhancement in ZnO:Al-Based Dye-Sensitized Solar Cells Structured with Sputtered TiO2 Blocking Layers. J. Phys. Chem. C 2014, 118, 6576–6585. [Google Scholar]
- Hvojnik, M.; Popovičová, A.M.; Pavličková, M.; Hatala, M.; Gemeiner, P.; Müllerová, J.; Tomanová, K.; Mikula, M. Solution-processed TiO2 blocking layers in printed carbon-based perovskite solar cells. Appl. Surf. Sci. 2021, 536, 147888. [Google Scholar]
- Wang, Y.; Li, B.; Ren, P.; Liu, M.; Gong, Z.; Zhang, M.; Zhao, H.; Zhang, Y.; Zhang, Y.; Liu, J. Expansion of the response range of photoelectrochemical UV detector using an ITO/Ag-nanowire/quartz UV-visible transparent conductive electrode. J. Mater. Chem. C 2022, 10, 4157–4165. [Google Scholar] [CrossRef]
- Raja, S.; Rathinam, K.; Sundaram, S.; Bellan, C.S. Fabrication of dye sensitized solar cells using BaTiO3 blocking layer. J. Optoelectron. Adv. M. 2022, 24, 136–139. [Google Scholar]
- Raksa, P.; Nilphai, S.; Gardchareon, A.; Choopun, S. Copper oxide thin film and nanowire as a barrier in ZnO dye-sensitized solar cells. Thin Solid. Films 2009, 517, 4741–4744. [Google Scholar] [CrossRef]
- Akman, E. Enhanced photovoltaic performance and stability of dye-sensitized solar cells by utilizing manganese-doped ZnO photoanode with europium compact layer. J. Mol. Liq. 2020, 317, 114223. [Google Scholar] [CrossRef]
- Chandiran, A.K.; Tetreault, N.; Humphry-Baker, R.; Kessler, F.; Baranoff, E.; Yi, C.; Nazeeruddin, M.K.; Gratzel, M. Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells. Nano Lett. 2012, 12, 3941–3947. [Google Scholar] [CrossRef]
- Maheswari, D.; Venkatachalam, P. Improved Performance of Dye-Sensitized Solar Cells Fabricated from a Coumarin NKX-2700 Dye-Sensitized TiO2/MgO Core–Shell Photoanode with an HfO2 Blocking Layer and a Quasi-Solid-State Electrolyte. J. Electron. Mater. 2015, 44, 967–976. [Google Scholar] [CrossRef]
- Shanmugam, M.; Baroughi, M.F.; Galipeau, D. Effect of atomic layer deposited ultra thin HfO2 and Al2O3 interfacial layers on the performance of dye sensitized solar cells. Thin Solid. Films 2010, 518, 2678–2682. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Fabrication of dye-sensitized solar cells using Nb2O5 blocking layer made by sol-gel method. J. Nanosci. Nanotechnol. 2011, 11, 7335–7338. [Google Scholar] [CrossRef]
- Lim, S.-H.; Park, K.-W.; Jin, M.H.; Ahn, S.; Song, J.; Hong, J. Facile preparation of a Nb2O5 blocking layer for dye-sensitized solar cells. J. Electroceramics 2014, 34, 221–227. [Google Scholar] [CrossRef]
- Suresh, S.; Unni, G.E.; Ni, C.; Sreedharan, R.S.; Krishnan, R.R.; Satyanarayana, M.; Shanmugam, M.; Pillai, V.P.M. Phase modification and morphological evolution in Nb2O5 thin films and its influence in dye- sensitized solar cells. Appl. Surf. Sci. 2017, 419, 720–732. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, Y.-C.; Chen, C.-M. The Study of Blocking Effect of Nb2O5 in Dye-Sensitized Solar Cells under Low Power Lighting. J. Electrochem. Soc. 2018, 165, F409–F416. [Google Scholar]
- Bonomo, M.; Di Girolamo, D.; Piccinni, M.; Dowling, D.P.; Dini, D. Electrochemically Deposited NiO Films as a Blocking Layer in p-Type Dye-Sensitized Solar Cells with an Impressive 45% Fill Factor. Nanomaterials 2020, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.S.; Kim, D.W.; Hwang, D.; Suk, J.H.; Oh, L.S.; Han, B.S.; Kim, D.H.; Kim, J.S.; Kim, D.; Kim, J.Y.; et al. Controlled interfacial electron dynamics in highly efficient Zn2SnO4 -based dye-sensitized solar cells. ChemSusChem 2014, 7, 501–509. [Google Scholar]
- Yang, Y.; Peng, X.; Chen, S.; Lin, L.; Zhang, B.; Feng, Y. Performance improvement of dye-sensitized solar cells by introducing a hierarchical compact layer involving ZnO and TiO2 blocking films. Ceram. Int. 2014, 40, 15199–15206. [Google Scholar]
- Augustowski, D.; Kwaśnicki, P.; Dziedzic, J.; Rysz, J. Magnetron Sputtered Electron Blocking Layer as an Efficient Method to Improve Dye-Sensitized Solar Cell Performance. Energies 2020, 13, 2690. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Shafie, S.; Wahid, M.H.; Sulaiman, Y. Preparation of TiO2 compact layer by heat treatment of electrospun TiO2 composite for dye-sensitized solar cells. Thin Solid. Films 2020, 693, 137699. [Google Scholar]
- Owino, B.O.; Nyongesa, F.W.; Ogacho, A.A.; Aduda, B.O.; Odari, B.V. Effects of TiO2 Blocking Layer on Photovoltaic Characteristics of TiO2/Nb2O5 Dye Sensitized Solar Cells. MRS Adv. 2020, 5, 1049–1058. [Google Scholar]
- Huang, J.-J.; Cheng, T.-F.; Ho, Y.-R.; Huang, D.-P. Performance improvement of dye-sensitized solar cells by using TiO2 compact layer and silver nanowire scattering layer. Thin Solid. Films 2021, 736, 138903. [Google Scholar]
- Pathak, S.K.; Abate, A.; Ruckdeschel, P.; Roose, B.; Gödel, K.C.; Vaynzof, Y.; Santhala, A.; Watanabe, S.I.; Hollman, D.J.; Noel, N. Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv. Funct. Mater. 2014, 24, 6046–6055. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Y.; Hou, R.; Ren, X.; Yuan, S.; Lou, Y.; Wang, Z.; Li, D.; Shi, L. Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2 photoanode with Al-doped TiO2 layer. J. Photochem. Photobiol. A Chem. 2016, 319–320, 62–69. [Google Scholar]
- Qi, J.-H.; Li, Y.; Duong, T.-T.; Choi, H.-J.; Yoon, S.-G. Dye-sensitized solar cell based on AZO/Ag/AZO multilayer transparent conductive oxide film. J. Alloys Compd. 2013, 556, 121–126. [Google Scholar]
- Parthiban, S.; Anuratha, K.S.; Arunprabaharan, S.; Abinesh, S.; Lakshminarasimhan, N. Enhanced dye-sensitized solar cell performance using TiO2:Nb blocking layer deposited by soft chemical method. Ceram. Int. 2015, 41, 205–209. [Google Scholar]
- Horie, Y.; Daizaka, K.; Mukae, H.; Guo, S.; Nomiyama, T. Enhancement of photocurrent by columnar Nb-doped TiO2 compact layer in dye sensitized solar cells with low temperature process of dc sputtering. Electrochim. Acta 2016, 187, 348–357. [Google Scholar]
- Bramhankar, T.S.; Pawar, S.S.; Shaikh, J.S.; Gunge, V.C.; Beedri, N.I.; Baviskar, P.K.; Pathan, H.M.; Patil, P.S.; Kambale, R.C.; Pawar, R.S. Effect of Nickel–Zinc Co-doped TiO2 blocking layer on performance of DSSCs. J. Alloys Compd. 2020, 817, 152810. [Google Scholar]
- Qin, Y.; Hu, Z.; Lim, B.H.; Yang, B.; Chong, K.-K.; Chang, W.S.; Zhang, P.; Zhang, H. Performance improvement of dye-sensitized solar cell by introducing Sm3+/Y3+ co-doped TiO2 film as an efficient blocking layer. Thin Solid. Films 2017, 631, 141–146. [Google Scholar]
- Yao, N.; Huang, J.; Fu, K.; Deng, X.; Ding, M.; Shao, M.; Xu, X. Enhanced light harvesting of dye-sensitized solar cells with up/down conversion materials. Electrochim. Acta 2015, 154, 273–277. [Google Scholar]
- Mahmood, K.; Kang, H.W.; Munir, R.; Sung, H.J. A dual-functional double-layer film with indium-doped ZnO nanosheets/nanoparticles structured photoanodes for dye-sensitized solar cells. RSC Adv. 2013, 3, 25136–25144. [Google Scholar]
- Suresh, S.; Unni, G.E.; Satyanarayana, M.; Nair, A.S.; Pillai, V.P.M. Ag@Nb2O5 plasmonic blocking layer for higher efficiency dye-sensitized solar cells. Dalton Trans. 2018, 47, 4685–4700. [Google Scholar]
- Xing, D.; Pan, W.; Xie, Z.; Jiang, Q.-S.; Wu, Y.; Xun, W.; Lin, Y.; Yang, X.; Zhang, Y.; Lin, B. Improving photovoltaic performance of dye-sensitized solar cells by doping SnO2 compact layer with potassium. Mater. Lett. 2022, 327, 133079. [Google Scholar]
- Yue, J.; Xiao, Y.; Li, Y.; Han, G.; Zhang, Y.; Hou, W. Enhanced photovoltaic performances of the dye-sensitized solar cell by utilizing rare-earth modified tin oxide compact layer. Org. Electron. 2017, 43, 121–129. [Google Scholar]
- Raja, R.; Govindaraj, M.; Antony, M.D.; Krishnan, K.; Velusamy, E.; Sambandam, A.; Subbaiah, M.; Rayar, V.W. Effect of TiO2/reduced graphene oxide composite thin film as a blocking layer on the efficiency of dye-sensitized solar cells. J. Solid. State Electrochem. 2016, 21, 891–903. [Google Scholar] [CrossRef]
- Atli, A.; Atilgan, A.; Yildiz, A. Multi-layered TiO2 photoanodes from different precursors of nanocrystals for dye-sensitized solar cells. Sol. Energy 2018, 173, 752–758. [Google Scholar] [CrossRef]
- Wei, L.; Wang, P.; Yang, Y.; Dong, Y.; Fan, R.; Song, W.; Qiu, Y.; Yang, Y.; Luan, T. Enhanced performance of dye sensitized solar cells by using a reduced graphene oxide/TiO2 blocking layer in the photoanode. Thin Solid. Film. 2017, 639, 12–21. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, W.; Yu, J. High-efficiency dye-sensitized solar cells based on electrospun TiO2 multi-layered composite film photoanodes. Energy 2015, 86, 196–203. [Google Scholar] [CrossRef]
- Ran, H.; Fan, J.; Zhang, X.; Mao, J.; Shao, G. Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites. Appl. Surf. Sci. 2018, 430, 415–423. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, H.; Yang, J.; Chen, H.; Li, Y.; Wang, L.; Niu, X. TiO2/SnO2 nanocomposites as electron transporting layer for efficiency enhancement in planar CH3NH3PbI3-based perovskite solar cells. ACS Appl. Energy Mater. 2018, 1, 6936–6944. [Google Scholar] [CrossRef]
- Otoufi, M.K.; Ranjbar, M.; Kermanpur, A.; Taghavinia, N.; Minbashi, M.; Forouzandeh, M.; Ebadi, F. Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers. Sol. Energy 2020, 208, 697–707. [Google Scholar] [CrossRef]
- Kavan, L. Conduction band engineering in semiconducting oxides (TiO2, SnO2): Applications in perovskite photovoltaics and beyond. Catal. Today 2019, 328, 50–56. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, K.H.; Kang, P.; Kim, H.J.; Choi, Y.S.; Lee, W.I. Effect of layer-by-layer assembled SnO2 interfacial layers in photovoltaic properties of dye-sensitized solar cells. Langmuir 2012, 28, 10620–10626. [Google Scholar] [CrossRef]
- Xiong, L.; Qin, M.; Chen, C.; Wen, J.; Yang, G.; Guo, Y.; Ma, J.; Zhang, Q.; Qin, P.; Li, S. Fully high-temperature-processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706276. [Google Scholar] [CrossRef]
- Nascimento, L.L.; Brussasco, J.G.; Garcia, I.A.; Paula, L.F.; Polo, A.; Patrocinio, A.O.T. Aluminum oxides as alternative building blocks for efficient layer-by-layer blocking layers in dye-sensitized solar cells. J. Phys. Condens. Matter 2020, 33, 055002. [Google Scholar] [CrossRef] [PubMed]
- Law, M.; Greene, L.E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663. [Google Scholar] [PubMed]
Material | Preparation Method | Block Layer/ No Block Layer | Voc (V) | Jsc(mA/cm−2) | FF | η (%) | Ref. |
---|---|---|---|---|---|---|---|
TiO2 | RF-magnetron sputtered | NBL | 0.67 | 10.88 | 0.64 | 4.67 | [75] |
BL | 0.66 | 13.14 | 0.7 | 6.07 | |||
TiO2 | ALD | NBL | 0.698 | 4.91 | 0.62 | 5.15 | [20] |
BL | 0.717 | 5.87 | 0.58 | 6.18 | |||
TiO2 | Heat treatment-assisted electrospinning | NBL | 0.52 | 5.95 | 0.56 | 1.73 | [76] |
BL | 0.58 | 9.79 | 0.54 | 3.06 | |||
TiO2 | Spray pyrolysis technique | NBL | 0.676 | 4.87 | 0.58 | 1.9 | [77] |
BL | 0.719 | 8.16 | 0.58 | 3.39 | |||
TiO2 | RF-magnetron sputtered (TiO2) | NBL | 0.67 | 10.7 | 0.57 | 4.06 | [78] |
BL | 0.68 | 11.21 | 0.61 | 4.59 | |||
ZnO | DC-magnetron sputtered | NBL | 0.66 | 9.72 | 0.66 | 4.25 | [23] |
BL | 0.68 | 10.83 | 0.7 | 5.12 | |||
ZnO | VUV irradiation | NBL | 0.72 | 13 | 0.64 | 5.97 | [61] |
BL | 0.81 | 16.9 | 0.67 | 9.14 | |||
Eu | Sol-gel | NBL | 0.55 | 5.61 | 0.47 | 1.45 | [64] |
BL | 0.54 | 7.15 | 0.46 | 1.77 | |||
NiO | Electrodeposition | NBL | 0.102 | -1.77 | 0.31 | 0.055 | [72] |
BL | 0.151 | -3.08 | 0.46 | 0.166 | |||
TiO2/ZnO | Sol-gel | NBL | 0.695 | 8.48 | 0.66 | 3.86 | [22] |
BL/ZnO | 0.728 | 8.18 | 0.73 | 4.34 | |||
BL/TiO2 | 0.697 | 9.32 | 0.67 | 4.36 | |||
TiO2/ZnO | Sol-gel | NBL | 0.788 | 9.13 | 0.68 | 4.93 | [74] |
BL/ZnO | 0.799 | 8.07 | 0.69 | 4.44 | |||
BL/TiO2 | 0.786 | 10.66 | 0.73 | 6.16 | |||
ZnO | Sol-gel | NBL | 0.536 | 7.55 | 0.68 | 2.76 | [24] |
BL/ZnO | 0.563 | 8.55 | 0.70 | 3.34 |
Material | Preparation Method | Block Layer/ No Block Layer | Voc (V) | Jsc(mA/cm−2) | FF | η (%) | Ref. |
---|---|---|---|---|---|---|---|
YbF3-Eu3+-doped SnO2 | Spin-coating and sintered | NBL | 0.75 | 16.08 | 0.6 | 7.24 | [90] |
BL YbF3-Eu3+ co-doped SnO2 | 0.78 | 17.15 | 0.61 | 8.16 | |||
Ag-doped Nb2O5 | RF-magnetron sputtered | NBL | 0.76 | 12.18 | 0.66 | 6.19 | [88] |
BL Ag-doped Nb2O5 | 0.78 | 17.33 | 0.69 | 9.24 | |||
Al-doped TiO2 | Sol-gel | BL TiO2 | 0.713 | 14.76 | 0.67 | 7.02 | [80] |
BL Al-doped TiO2 | 0.702 | 16.5 | 0.66 | 7.66 | |||
Mg-La-dop- ed TiO2 | Sol-gel | BL TiO2 | 0.79 | 12.5 | 0.66 | 7.17 | [31] |
BL Mg-La co-doped TiO2 | 0.78 | 13.1 | 0.65 | 7.42 | |||
Nb-doped TiO2 | HUSPD | NBL | 0.71 | 14.02 | 0.62 | 6.13 | [25] |
BL TiO2 | 0.76 | 15.11 | 0.61 | 7.16 | |||
BL Nb-doped TiO2 | 0.74 | 16.9 | 0.6 | 7.5 | |||
N-I-doped TiO2 | Sol-gel | NBL | 0.687 | 11.48 | 0.64 | 5.08 | [27] |
BL TiO2 | 0.69 | 12.65 | 0.66 | 5.77 | |||
BL N-doped TiO2 | 0.714 | 13.41 | 0.63 | 6.05 | |||
BL I-doped TiO2 | 0.738 | 12.74 | 0.65 | 6.11 | |||
BL N-I co-doped TiO2 | 0.734 | 14.23 | 0.65 | 6.79 | |||
Cr-doped TiO2 | Sol-gel | NBL | 0.65 | 3.79 | 0.65 | 1.8 | [19] |
BL | 0.68 | 8.52 | 0.67 | 3.92 | |||
Ni-Zn-doped TiO2 | Sol-gel | BL TiO2 | 0.645 | 1.039 | 0.425 | 0.47 | [84] |
BL Ni-Zn co-doped TiO2 | 0.694 | 1.436 | 0.459 | 0.76 | |||
Sm3+-Y3+- doped TiO2 | Sol-gel | NBL | 0.709 | 9.1 | 0.54 | 3.48 | [85] |
BL TiO2 | 0.717 | 9.67 | 0.51 | 3.52 | |||
BL Sm3+-Y3+ co-doped TiO2 | 0.723 | 11.12 | 0.51 | 4.09 | |||
rGO-doped TiO2 | Sol-gel | NBL | 0.609 | 6.792 | 0.6 | 2.49 | [91] |
BL TiO2 | 0.62 | 6.934 | 0.65 | 2.82 | |||
BL rGO- doped TiO2 | 0.65 | 12.13 | 0.64 | 5.08 | |||
Eu3+-Tb3+- doped ZnO | Sol-gel | BL TiO2 | 0.7 | 6.38 | 0.67 | 3.01 | [86] |
BL ZnO/TiO2 | 0.74 | 8.13 | 0.56 | 3.34 | |||
BL Eu3+-Tb3+ co-doped | 0.76 | 10.13 | 0.67 | 5.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, W.; Ren, P. Classification, Functions, Development and Outlook of Photoanode Block Layer for Dye-Sensitized Solar Cells. Inorganics 2025, 13, 103. https://doi.org/10.3390/inorganics13040103
Wang Y, Wu W, Ren P. Classification, Functions, Development and Outlook of Photoanode Block Layer for Dye-Sensitized Solar Cells. Inorganics. 2025; 13(4):103. https://doi.org/10.3390/inorganics13040103
Chicago/Turabian StyleWang, Youqing, Wenxuan Wu, and Peiling Ren. 2025. "Classification, Functions, Development and Outlook of Photoanode Block Layer for Dye-Sensitized Solar Cells" Inorganics 13, no. 4: 103. https://doi.org/10.3390/inorganics13040103
APA StyleWang, Y., Wu, W., & Ren, P. (2025). Classification, Functions, Development and Outlook of Photoanode Block Layer for Dye-Sensitized Solar Cells. Inorganics, 13(4), 103. https://doi.org/10.3390/inorganics13040103