Structural, Up-Conversion Luminescence, and Electron Paramagnetic Resonance Investigations of Yb3+/Er3+-Doped LiGdF4 Nanocrystals Dispersed in Silica Glassy Matrix
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Morphological Analysis
2.3. FTIR Spectroscopy Measurements
2.4. EPR Spectroscopy Measurements
2.5. Up-Conversion Luminescence Properties
3. Materials and Methods
3.1. Sample Preparation
3.2. Samples Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonseca, J. Nanoparticles embedded into glass matrices: Glass nanocomposites. Front. Mater. Sci. 2022, 16, 220607. [Google Scholar] [CrossRef]
- Gorni, G.; Velázquez, J.J.; Mosa, J.; Balda, R.; Fernández, J.; Durán, A.; Castro, Y. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials. Materials 2018, 11, 212. [Google Scholar] [CrossRef]
- Dimitriou, C.; Psathas, P.; Solakidou, M.; Deligiannakis, Y. Advanced Flame Spray Pyrolysis (FSP) Technologies for Engineering Multifunctional Nanostructures and Nanodevices. Nanomaterials 2023, 13, 3006. [Google Scholar] [CrossRef]
- Mangiarini, F. Flame Spray Pyrolysis for the Preparation of Upconverting Luminescent Nanostructured Materials. Ph.D Thesis, Concordia University, Montreal, QC, Canada, 2012. [Google Scholar]
- Choi, J.E.; Kim, H.K.; Kim, Y.; Kim, G.; Lee, T.S.; Kim, S.; Jang, H.S. 800 nm near-infrared light-excitable intense green-emitting Li(Gd,Y)F4:Yb, Er-based core/shell/shell upconversion nanophosphors for efficient liver cancer cell imaging. Mater. Des. 2020, 195, 108941. [Google Scholar] [CrossRef]
- Shin, J.; Kyhm, J.H.; Hong, A.R.; Song, J.D.; Lee, K.; Ko, H.; Jang, H.S. Multicolor Tunable Upconversion Luminescence from Sensitized Seed-Mediated Grown LiGdF4:Yb,Tm-Based Core/Triple-Shell Nanophosphors for Transparent Displays. Chem. Mater. 2018, 30, 8457–8464. [Google Scholar] [CrossRef]
- Oleynikova, E.I.; Morozov, O.A.; Korableva, S.L.; Pudovkin, M.S. LiGdxY1−xF4 and LiGdF4:Eu3+ Microparticles as Potential Materials for Optical Temperature Sensing. Ceramics 2024, 7, 276–290. [Google Scholar] [CrossRef]
- Xiong, Z.; Yang, Y.; Wang, Y. Enhanced upconversion luminescence and tuned red-to-green emission ratio of LiGdF4 nanocrystals via Ca2+ doping. RSC Adv. 2016, 6, 75664–75668. [Google Scholar] [CrossRef]
- Na, H.; Jeong, J.S.; Chang, H.J.; Kim, H.Y.; Woo, K.; Lim, K.; Mkhoyan, K.A.; Jang, H.S. Facile synthesis of intense green light emitting LiGdF4:Yb,Er-based upconversion bipyramidal nanocrystals and their polymer composites. Nanoscale 2014, 6, 7461–7468. [Google Scholar] [CrossRef]
- Banski, M.; Afzaal, M.; Cha, D.; Wang, X.; Tan, H.; Misiewicz, J.; Podhorodecki, A. Crystal phase transition in LixNa1−xGdF4 solid solution nanocrystals—Tuning of optical properties. J. Mater. Chem. C 2014, 2, 9911–9917. [Google Scholar] [CrossRef]
- Koshelev, A.V.; Artemov, V.V.; Arkharova, N.A.; Seyed Dorraji, M.S.; Karimov, D.N. Peculiarities of the Synthesis of LiRF4 Nanoparticles (R = Er − Lu) by High-Temperature Coprecipitation and Their Photoluminescent Properties. Crystallogr. Rep. 2024, 69, 239–247. [Google Scholar] [CrossRef]
- Lepoutre, S.; Boyer, D.; Fujihara, S.; Mahiou, R. Structural and optical characterizations of sol–gel based composites constituted of LiGdF4: Eu3+ nanocrystallites dispersed into a silica matrix. J. Mater. Chem. 2009, 19, 2784–2788. [Google Scholar] [CrossRef]
- Secu, C.; Bartha, C.; Radu, C.; Secu, M. Up-Conversion Luminescence and Magnetic Properties of Multifunctional Er3+/Yb3+-Doped SiO2-GdF3/LiGdF4 Glass Ceramics. Magnetochemistry 2023, 9, 11. [Google Scholar] [CrossRef]
- Mazur, M.; Poprac, P.; Valko, M. ‘U-spectrum’ type of Gd(III) EPR spectra recorded at various stages of TEOS-based sol–gel process. J. Sol-Gel Sci. Technol. 2016, 79, 220–227. [Google Scholar] [CrossRef]
- Antuzevics, A.; Rogulis, U.; Fedotovs, A.; Popov, A.I. Crystalline phase detection in glass ceramics by EPR spectroscopy. Low Temp. Phys. 2018, 44, 341–345. [Google Scholar] [CrossRef]
- Rada, M.; Culea, E.; Rada, S.; Pascuta, P.; Culea, M.; Dan, V.; Rusu, T.; Maties, V.; Bratu, I. The local structure of gadolinium-borate-tellurate vitroceramics investigated by FTIR and EPR spectroscopy. J. Phys. Conf. Ser. 2009, 182, 012074. [Google Scholar] [CrossRef]
- Rillings, K.W.; Roberts, J.E. A thermal study of the trifluoroacetates and pentafluoropropionates of praseodymium samarium and erbium. Thermochim. Acta 1974, 10, 285–298. [Google Scholar] [CrossRef]
- Yoshimura, C.Y.; Ohara, K. Thermochemical studies on the lanthanoid complexes of trifluoroacetic acid. J. Alloys Compd. 2006, 408–412, 573–576. [Google Scholar] [CrossRef]
- PDF-ICDD. Powder Diffraction File, PDF-4+ 2018 Software 4.18.0.2; International Centre for Diffraction Data: Newtown Square, PA, USA, 2011. [Google Scholar]
- Secu, C.; Bartha, C.; Secu, M. Unravelling the crystallization mechanism and structural evolution of Yb/Er-doped SiO2-GdF3 nano-glass ceramics. Mater. Adv. 2025, 6, 5877–5883. [Google Scholar] [CrossRef]
- Velázquez, J.J.; Mosa, J.; Gorni, G.; Balda, R.; Fernández, J.; Pascual, L.; Durán, A.; Castro, Y. Transparent SiO2-GdF3 sol–gel nano-glass cera mics for optical applications. J. Sol-Gel Sci. Technol. 2019, 89, 322–332. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Chuai, X.; Liu, Z.; Liu, Y.; He, C.; Qin, W. Enhanced Near-Infrared Upconversion Luminescence of GdF3:Yb3+, Tm3+ by Li+. J. Nanosci. Nanotechnol. 2014, 14, 3687–3689. [Google Scholar] [CrossRef] [PubMed]
- Opata, Y.A.; Grivel, J.C. Synthesis and Thermal Decomposition Study of Dysprosium Trifluoroacetate. J. Anal. Appl. Pyrolysis 2018, 132, 40–46. [Google Scholar] [CrossRef]
- Fujihara, S.; Mochizuki, C.; Kimura, T. Formation of LaF3 microcrystals in sol–gel silica. J. Non-Cryst. Solids 1999, 244, 267–274. [Google Scholar] [CrossRef]
- Aguiar, H.; Serra, J.; Gonzalez, P.; Leon, J.B. Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. Non-Cryst. Solids 2009, 355, 475–480. [Google Scholar] [CrossRef]
- Sosin, S.S.; Iafarova, A.F.; Romanova, I.V.; Morozov, O.A.; Korableva, S.L.; Batulin, R.G.; Zhitomirsky, M.; Glazkov, V.N. Microscopic Spin Hamiltonian for a Dipolar Heisenberg Magnet LiGdF4 from EPR Measurements. JETP Lett. 2022, 116, 771–778. [Google Scholar] [CrossRef]
- Brodbeck, C.M.; Iton, L.E. The EPR spectra of Gd3+ and Eu3+ in glassy systems. J. Chem. Phys. 1985, 83, 4285–4299. [Google Scholar] [CrossRef]
- Velázquez, J.J.; Gorni, G.; Balda, R.; Fernández, J.; Pascual, L.; Durán, A.; Pascual, M.J. Non-Linear Optical Properties of Er3+–Yb3+-Doped NaGdF4 Nanostructured Glass Ceramics. Nanomaterials 2020, 10, 1425. [Google Scholar] [CrossRef]
- Secu, M.; Secu, C.E. Up-conversion luminescence of Er3+/Yb3+ co-doped LiYF4 nanocrystals in sol-gel derived oxyfluoride glass-ceramics. J. Non-Cryst. Solids 2015, 426, 78–82. [Google Scholar] [CrossRef]
- de Pablos-Martín, A.; Méndez-Ramos, J.; del-Castillo, J.; Durán, A.; Rodríguez, V.D.; Pascual, M.J. Crystallization and up-conversion luminescence properties of Er3+/Yb3+-doped NaYF4-based nano-glass-ceramics. J. Eur. Ceram. Soc. 2015, 35, 1831–1840. [Google Scholar] [CrossRef]
- Georgescu, S.; Voiculescu, A.M.; Matei, C.; Secu, C.E.; Negrea, R.F.; Secu, M. Ultraviolet and visible up-conversion luminescence of Er3+/Yb3+ co-doped CaF2 nanocrystals in sol–gel derived glass-ceramics. J. Lumin. 2013, 143, 150–156. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.X. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors 2012, 12, 2414–2435. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337. [Google Scholar] [CrossRef]
- Wang, L.; Lan, M.; Liu, Z.; Qin, G.; Wu, C.; Wang, X.; Qin, W.; Huang, W.; Huang, L. Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in β-NaLuF4 microcrystals under 980 nm excitation. J. Mater. Chem. C 2013, 1, 2485–2490. [Google Scholar] [CrossRef]
- Wisser, M.D.; Fischer, S.; Maurer, P.C.; Bronstein, N.D.; Chu, S.; Alivisatos, A.P.; Salleo, A.; Dionne, J.A. Enhancing Quantum Yield via Local Symmetry Distortion in Lanthanide-Based Upconverting Nanoparticles. ACS Photonics 2016, 3, 1523–1530. [Google Scholar] [CrossRef]
- Lee, C.K.; Kim, Y.J. Correlation between local lattice distortions and up-/down-conversion luminescence of (Y,Al)NbO4:Yb3+/Er3+. Ceram. Int. 2022, 48, 3985–3992. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, S.; Zhou, B.; Zhu, H.; Wang, Y. Enhancing upconversion luminescence of LiYF4:Yb,Er nanocrystals by Cd2+ doping and Core–Shell structure. J. Phys. Chem. C 2017, 121, 18909–18916. [Google Scholar] [CrossRef]
- Wyss, C.; Lüthy, W.; Weber, H.P.; Rogin, P.; Hulliger, J. Energy transfer in Yb:Er:YLF. Optic Commun. 1997, 144, 31–35. [Google Scholar] [CrossRef]
- Bartha, C.; Secu, C.E.; Matei, E.; Secu, M. Crystallization kinetics mechanism investigation of sol–gel derived NaYF4:(Yb,Er) up-converting phosphors. Cryst. Eng. Comm. 2017, 19, 4992–5000. [Google Scholar] [CrossRef]
- Krause, W.; Nolze, G. PowderCell a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]







| Glass-Ceramic Sample/ Lattice Parameters | a (Å) | GdF3 b (Å) | c (Å) | Cell Volume (Å)3 | a (Å) | LiGdF4 c (Å) | Cell Volume (Å)3 |
|---|---|---|---|---|---|---|---|
| Glass-Ceramic (T = 275 °C) | 6.471 | 6.943 | 4.419 | 198.5 | |||
| Glass-Ceramic (T = 650 °C) | 5.181 | 10.789 | 289.4 | ||||
| LiGdF4 (PDF file) | 5.219 | 10.971 | 298.8 | ||||
| Orth-GdF3 (PDF file) | 6.571 | 6.984 | 4.393 | 201.6 | |||
| SiO2-LiGdF4 (x = 0) | 5.181 | 10.789 | 289.4 | ||||
| SiO2-LiGd0.6Y0.4F4 (x = 0.4) | 5.169 | 10.750 | 287.2 | ||||
| SiO2-LiGd0.6Y0.4F4 (x = 0.7) | 5.163 | 10.714 | 285.6 | ||||
| SiO2-LiYF4 (x = 1.0) | 5.162 | 10.694 | 284.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secu, C.; Radu, C.; Rostas, A.; Secu, M. Structural, Up-Conversion Luminescence, and Electron Paramagnetic Resonance Investigations of Yb3+/Er3+-Doped LiGdF4 Nanocrystals Dispersed in Silica Glassy Matrix. Inorganics 2025, 13, 378. https://doi.org/10.3390/inorganics13110378
Secu C, Radu C, Rostas A, Secu M. Structural, Up-Conversion Luminescence, and Electron Paramagnetic Resonance Investigations of Yb3+/Er3+-Doped LiGdF4 Nanocrystals Dispersed in Silica Glassy Matrix. Inorganics. 2025; 13(11):378. https://doi.org/10.3390/inorganics13110378
Chicago/Turabian StyleSecu, Corina, Cristian Radu, Arpad Rostas, and Mihail Secu. 2025. "Structural, Up-Conversion Luminescence, and Electron Paramagnetic Resonance Investigations of Yb3+/Er3+-Doped LiGdF4 Nanocrystals Dispersed in Silica Glassy Matrix" Inorganics 13, no. 11: 378. https://doi.org/10.3390/inorganics13110378
APA StyleSecu, C., Radu, C., Rostas, A., & Secu, M. (2025). Structural, Up-Conversion Luminescence, and Electron Paramagnetic Resonance Investigations of Yb3+/Er3+-Doped LiGdF4 Nanocrystals Dispersed in Silica Glassy Matrix. Inorganics, 13(11), 378. https://doi.org/10.3390/inorganics13110378

