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Abstract: 4-nitrophenol (4-NP) is a frequently encountered toxic phenolic organic pollutant in
water. It is important to develop a simple method to treat 4-NP. Small and monodispersed gold
nanoparticles often have good catalytic performance of 4-NP. Hemoglobin (Hb) is a kind of common
and important protein in organisms. Herein, highly biocompatible bovine hemoglobin-stabilized
gold nanoparticles (Aun-Hb NPs) were synthesized using hemoglobin as a biological template. Then,
the size, zeta potential, and composition of Aun-Hb NPs were investigated by transmission electron
microscopy, dynamic light scattering, and X-ray photoelectron spectroscopy. The Aun-Hb NPs with
small gold nanoparticles of about 1.4–2.4 nm had good catalytic capabilities in reducing 4-NP to form
4-aminophenol. Au20-Hb NPs demonstrated superior catalytic efficiency in the reduction of 4-NP
when compared to other nanoparticles. Moreover, as-synthesized Au20-Hb NPs exhibited excellent
biocompatibility through the MTT experiment. The method of preparation of gold nanoparticles offers
one way to prepare metal nanoparticles for good potential catalytic applications of gold nanoparticles.

Keywords: 4-nitrophenol; hemoglobin; gold nanoparticles; biocompatible; catalysis

1. Introduction

In recent years, nitrophenol compounds as water pollutants seriously threaten peo-
ple’s health and safety [1]. For example, 4-nitrophenol (4-NP) is a very toxic phenolic
compound [2]. The concentration of phenolic compounds is strictly controlled in China.
Catalytic reduction of 4-NP is one method to eliminate its environmental impact. The
resulting compound from the catalytic reduction of 4-NP is known as 4-aminophenol
(4-AP) [3]. 4-AP plays a vital role in the manufacturing process of fine chemicals like dyes,
pharmaceuticals, and pesticides. The efficiency of converting 4-NP to 4-AP is closely linked
to the choice of catalysts. Many nanomaterials such as gold nanoparticles (Au NPs) [4], pal-
ladium nanoparticles [5], Cu/Fe nanocomposite [6], and Fe3O4@C nanoparticles [7] have
been developed to reduce 4-NP. Noble metal nanoparticles with small particle sizes and
monodispersed states have good catalytic performance in the 4-NP reduction. However,
the noble metal nanoparticles easily aggregate.

The development of nanotechnology in recent years has provided new insights and
opportunities for the design of small particle sizes and monodispersed catalysts. Some or-
ganic polymers are often used as stabilizers to control the particle size and monodispersed
state. There are many options for the use of stabilizers, including polyvinyl pyrrolidone
(PVP) and polyethyleneimine (PEI) [5]. Recently, the exploration of an efficient and biocom-
patible catalyst to treat 4-NP has attracted widespread attention. The use of biocompatible
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substances is good for overcoming this problem. Many biocompatible molecules have been
used to stabilize the noble metal nanoparticles. He et al. [8] employed sericin as the reduc-
ing agent for silver ions, as well as the dispersing and stabilizing agent for the composite of
sericin–silver nanoparticles, which exhibited favorable size distribution and maintained
long-term stability. Nogueira et al. [9] used cashew gum-hydrolyzed collagen, kappa
carrageenan-hydrolyzed collagen, and agar-hydrolyzed collagen as effective nanoparticle
stabilizers to prepare silver nanoparticles, respectively. San et al. [10] used three proteins:
aminopeptidase PepA, serine endoprotease DegP, and Clp protease to prepare platinum
nanoparticles. Bitter gourd polysaccharide, elm pod polysaccharide, and lentinan were
also used to stabilize noble metal nanoparticles [11,12]. Large-ring cyclodextrins were also
used to stabilize gold nanoparticles in an aqueous phase [13–15]. However, some proteins
and polysaccharides have high prices, which is not good for the preparation of noble metal
nanoparticles on a large scale.

Bovine hemoglobin is a kind of natural protein found in the blood of bovine. Bovine
hemoglobin has an important impact on the survival of the organism. Hemoglobin is
a protein composed of four subunits, each consisting of a globin molecule and a heme
group. The globin molecule is made up of a chain of amino acids folded into a specific
three-dimensional structure, while the heme group contains an iron ion coordinated within
a porphyrin ring [16,17]. Bovine hemoglobin functions in the transport of oxygen and
carbon dioxide, as well as in regulating the blood’s acid–base equilibrium. The bovine
hemoglobin extracted from bovine blood is a good ideal metal stabilizer because of its
affordable price, good stability, and environmental friendliness. In addition, Au NPs, as
a kind of noble metal nanoparticles, are stable in their zero-valence state. Au NPs find
extensive application across a spectrum of catalytic processes; they have good catalytic
capabilities in the reduction of 4-NP.

In this study, in order to reduce the pollution caused by nitrophenol compounds in the
environment, bovine hemoglobin was used to stabilize gold nanoparticles (Scheme 1). We
prepare bovine hemoglobin-stabilized gold nanoparticles (Aun-Hb NPs) with small particle
sizes by a facile method. The prepared gold nanoparticles inside Aun-Hb NPs had a huge
specific surface area originating from their small particle size, which was very beneficial
for catalyzing 4-NP. Moreover, the biocompatibility and stability of the gold nanoparticles
had been greatly improved with the assistance of bovine hemoglobin. Thus, Aun-Hb NPs
demonstrated effective catalysis in the reduction of 4-NP. Overall, we prepared highly
biocompatible bovine hemoglobin-stabilized gold nanoparticles for catalytic reduction of
4-NP. The method in this report is good for the development of catalysts in the degradation
of nitrophenol compounds.
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2. Results and Discussion
2.1. UV-Vis Spectra Analysis

The bovine hemoglobin solution and HAuCl4 solution were mixed together for
15 min. Then, the HAuCl4 solution was reduced by reducing agent NaBH4, and bovine
hemoglobin was used to stabilize the generated gold nanoparticles. The samples of the
bovine hemoglobin solution, HAuCl4 solution, and Aun-Hb NP solution were measured
by a UV-Vis spectrometer with a wavelength from 200 to 600 nm. As shown in Figure 1a,
the bovine hemoglobin solution and HAuCl4 solution had characteristic peaks at 406 nm
and 306 nm, respectively. After the preparation of Aun-Hb NPs, the characteristic peaks
at 306 nm for the HAuCl4 solution disappeared, and the characteristic peaks at 406 nm
for the bovine hemoglobin solution were greatly reduced. These results indicated that
AuCl4- was completely reduced to form Au NPs, and Au NPs were complexed within
bovine hemoglobin. In addition, the absorbance of the Aun-Hb NPs solution gradually
increased with a n-value from 20 to 40, indicating that the amount of Au NPs in the Aun-Hb
NPs continued to increase. The color of the Aun-Hb NP (n = 20, 30, 40) solution gradually
deepened based on the same concentration of bovine hemoglobin, as shown in Figure 1b.
Taken together, all the results suggested that we successfully prepared Aun-Hb NPs.
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Figure 1. (a) UV-Vis spectra and (b) solutions of Au20-Hb NPs, Au30-Hb NPs, Au40-Hb NPs, HAuCl4,
and bovine Hb, respectively.

2.2. TEM Observation

The size of nanomaterials plays a crucial role in determining their catalytic efficiency.
Herein, the particle size and dispersion condition of Aun-Hb NPs were determined by
TEM. Figure 2 shows TEM images of Aun-Hb NPs prepared using bovine hemoglobin
with different HAuCl4 contents. TEM images indicated that Aun-Hb NPs (n = 20, 30, 40)
had highly dispersed states. The sizes of Aun-Hb NPs were 1.4 ± 0.6 nm for Au20-Hb
NPs, 2.1 ± 0.6 nm for Au30-Hb NPs, and 2.4 ± 0.8 nm for Au40-Hb NPs, respectively. The
specific surface area of Au NPs inside Au20-Hb NPs, Au30-Hb NPs, and Au40-Hb NPs
was 4.3 nm−1, 2.9 nm−1, and 2.5 nm−1, respectively. The Au NPs inside Aun-Hb NPs
have small and monodisperse states. It can also be seen that the molar ratio of HAuCl4 to
hemoglobin affects the size of Au NPs. The average diameter of Au NPs inside Aun-Hb
NPs increases with the molar ratio of HAuCl4 to bovine hemoglobin, and the shape of Au
NPs remains basically unchanged. Thus, Aun-Hb NPs were characterized by their small
size and uniform size distribution, which is beneficial to their catalytic performance.
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2.3. XPS Analysis

XPS analysis was utilized for further examination of the composition and valence
state of the synthesized Au20-Hb NPs. As shown in Figure 3a, the binding energies of
about 531.3, 399.7, and 284.6 eV were indexed to O 1s, N 1s, and C 1s, respectively. These
elements were derived from bovine hemoglobin. There is little Fe 2p3/2 in the XPS survey
spectrum of Au20-Hb NPs. To further determine the gold valence, the peaks of Au 4f7/2
and Au 4f5/2 were observed at 83.92 and 87.64 eV in the high-resolution XPS spectrum of
the Au 4f region, as shown in Figure 3b, respectively. The gap between the two peaks is
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3.72 eV. Consistent with zero-valent Au, the XPS binding energy of Au 4f7/2 confirmed the
presence of Au (0) based on the peaks observed [13,18]. It is important to mention that
the spectrum lacked the typical characteristic peaks associated with Au(III), suggesting a
thorough reduction of Au(III) to Au(0) during the preparation reaction. The completed
reduction of Au(III) is due to an excess of reducing agent NaBH4. Gold nanoparticles
were visible-light-induced synthesized using Lantana camara flower extract, which has
good antibacterial activity. The gap between Au 4f7/2 and Au 4f5/2 is also 3.7 eV [19]. The
XPS survey spectra manifest that the surface elements of Au20-Hb NPs were derived from
bovine hemoglobin and HAuCl4. Thus, the XPS measurements confirm the existence of
zero-valent gold nanoparticles, which were stabilized by bovine hemoglobin.
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2.4. Stability in Solution

Basically, the size and dispersion state of Au NPs in an aqueous solution are the
key factors for their catalytic activity. In order to evaluate the states of Aun-Hb NPs,
DLS was employed to measure the hydrodynamic size and zeta potential of Aun-Hb
NPs. As depicted in Figure 4a, the hydrodynamic size of bovine hemoglobin was 6.5 nm,
and the hydrodynamic sizes of Aun-Hb NPs (n = 20, 30, 40) were 7.5 nm, 8.7 nm, and
10.1 nm, respectively. It can be seen that Aun-Hb NPs had a small hydrodynamic size. The
hydrodynamic size of Aun-Hb NPs also increases with the increasing amount of HAuCl4
added. It should be noted that the hydrodynamic sizes of Aun-Hb NPs were larger than
the corresponding particle sizes shown in Figure 2. This was due to the different ways
of preparing the samples. The Aun-Hb NPs solution was deposited onto a carbon-coated
copper grid and left to air dry overnight in preparation for the TEM technique, while the
sample solution of Aun-Hb NPs was measured in a hydration state for the DLS method. In
addition, as we all know, the zeta potential plays a pivotal role in determining the strength
of the mutual repulsion or attraction between nanoparticles in solution. The bigger of
absolute value of the zeta potential of the nanoparticles, the more stable the nanoparticles
in the solution. That is, a high zeta potential is good for resisting the aggregation of
nanoparticles. In this experiment, the zeta potential of Aun-Hb NPs (n = 20, 30, 40) was
−1.0 mV for Au20-Hb NPs, −21.3 mV for Au30-Hb NPs, and −23.2 mV for Au40-Hb NPs,
as shown in Figure 4b. It shows that as the content of Au element in Aun-Hb NPs increases,
the absolute value of the zeta potential of Aun-Hb NPs gets bigger. The pH values of Au
20-Hb NPs, Au 30-Hb NPs, and Au40-Hb NPs were different. This should be the reason that
the volume of the HAuCl4 solution and NaBH4 solution increased, which led to the pH
of the mixture solution being slightly increased in the process of Aun-Hb NP preparation.
More carboxy groups of Aun-Hb NPs were deprotonated with the increasing pH. Moreover,
Aun-Hb NPs remained stable without precipitation for at least four days, as shown in
Figure 4c, while Au20, Au30, and Au40 without bovine hemoglobin easily aggregated into
large particles and formed precipitates, as shown in Figure 4d. The difference in Figure 4c,d
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proved that the bovine hemoglobin had a positive influence on preventing self-aggregation
of Au NPs during preparation and storage. The hydrophilic primary amine groups and
carboxyl groups on the outside of the molecule keep bovine hemoglobin in a highly water-
soluble state, which is conducive to maintaining its structural stability and exerting its
functional properties. Hydrophilic bovine hemoglobin is good for the stability of Aun-
Hb NPs. The main contributing factors to the exceptional stability of Aun-Hb NPs are
electrostatic repulsion and steric hindrance.
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2.5. Catalytic Performance

The catalytic performance of the synthesized Aun-Hb NPs was quantitatively assessed
by their ability to facilitate the reduction of 4-NP to 4-AP in the presence of an excess of
NaBH4 as the reducing agent. A time-dependent absorbance change in a mixed solution
was monitored by UV-Vis spectra. As depicted in Figure 5a, the absorption peak observed
at 317 nm corresponded to the pure 4-NP aqueous solution. Upon the introduction of
NaBH4, the absorption peak of 4-NP at 317 nm underwent a shift to 400 nm, demonstrating
the formation of 4-nitrophenolate ions in the alkaline condition. The solution underwent a
color alteration from transparent to intense yellow. Au20-Hb NPs were picked up for further
catalytic research. After the addition of the Au20-Hb NPs, the absorption peak intensity
of 4-nitrophenolate ions at 400 nm dramatically decreased, indicating the consumption of
4-nitrophenolate ions and the generation of 4-AP, as shown in Figure 5b. Moreover, the
4-NP conversion rate reached 98% after 21 min for Au20-Hb NPs in Figure 5c, and the
resulting solution became colorless. As depicted in Figure 5d, ln(Ct/C0) versus reaction
time (t) for the different amounts of Au20-Hb NPs is linear. The catalytic performance of
Au20-Hb NPs was improved with increasing amounts of Au20-Hb NPs. Furthermore, the
catalytic reaction conformed to a pseudo-first-order kinetic equation in the presence of an
excess of NaBH4. (Equation (2)). Ct represents the concentration of 4-NP at time t, while
C0 denotes the initial concentration of 4-NP at t = 0, kapp is the rate constant (s−1), and t
is time.
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ln
Ct

C0
= ln

At

A0
= −kappt (1)

Inorganics 2024, 12, x FOR PEER REVIEW 8 of 12 
 

 

further reduced to form 4-AP after the addition of catalysts, which is the rate-determining 

step in the kinetic process [30].  

It is expected that the catalytic reaction facilitated by Au20-Hb NPs also adheres to 

Langmuir–Hinshelwood kinetics. All the components in this reaction quickly reach an ad-

sorption/desorption equilibrium on the surface of gold nanoparticles of Au20-Hb NPs. The 

rate-determining step is the formation of 4-AP, which occurred only on the surface of the 

gold nanoparticles. 

 

 

 

Figure 5. (a) UV-Vis spectra of 4-NP and 4-NP + NaBH4, (b) UV-Vis spectra recorded for 4-NP + 

NaBH4 following the addition of Au20-Hb NPs every 3 min, (c) 4-NP conversion rate after the addi-

tion of Au20-Hb NPs, (d) the correlation between ln(Ct/C0) and the reaction time for different con-

centration of Au20-Hb NPs, (e) kapp against different gold concentrations of Au20-Hb NPs, and (f) the 

association between ln(Ct/C0) and the elapsed reaction time for diverse Aun-Hb NPs. 

  

Figure 5. (a) UV-Vis spectra of 4-NP and 4-NP + NaBH4, (b) UV-Vis spectra recorded for 4-
NP + NaBH4 following the addition of Au20-Hb NPs every 3 min, (c) 4-NP conversion rate after the
addition of Au20-Hb NPs, (d) the correlation between ln(Ct/C0) and the reaction time for different
concentration of Au20-Hb NPs, (e) kapp against different gold concentrations of Au20-Hb NPs, and
(f) the association between ln(Ct/C0) and the elapsed reaction time for diverse Aun-Hb NPs.

The kapp value is also linearly dependent on the amount of Au20-Hb NPs in Figure 5e.
It has been shown that the kapp value is related to mass transfer resistance, size of gold
nanoparticles, temperature, and 4-NP, NaBH4 [20], or catalyst concentration [21]. The kapp
value increases with increasing temperature, NaBH4, or catalyst concentration [20]. It has
been reported that kapp decreases with increasing 4-NP concentration and increasing mass
transfer resistance [20]. Increasing mass transfer resistance limits substrate contacts with
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active metal sites on the catalyst. Here, the low kapp value of Au20-Hb NPs should be due to
their low concentration. In order to compare the effect of the n value on the catalytic activity
of Aun-Hb NPs, the same amount of Aun-Hb NPs was added in the catalytic reduction
process of 4-NP, where the hemoglobin concentration was the same. Figure 5f illustrates
the linear relationship between ln(Ct/C0) and time (t) during the catalytic reduction of
Aun-Hb NPs. As the number of gold nanoparticles on each hemoglobin molecule increased,
the corresponding catalytic activity also increased. Aun-Hb NPs exhibited a good catalytic
reduction behavior, indicating that Aun-Hb NPs were effective catalysts for the reduction
of 4-NP.

Many groups reported the catalytic reduction of 4-NP by metal nanoparticles treated
with NaBH4 [22–25]. For a comparative evaluation of catalytic efficacy against alternative
catalysts, calculations were performed for the normalized rate constant (knor = kapp/nAu)
and turnover frequency (TOF) of Aun-Hb NPs. TOF is quantified as the ratio of the number
of molecules generated by the reducing species 4-NP to the moles of catalytically active
sites per hour when the 4-NP conversion achieves 90%. Table 1 shows the calculated
kapp and TOF comparison of Au20-Hb NPs in conjunction with catalysts mentioned in
previous studies. Here, the TOF of Au20-Hb NPs was determined to be 6768 h−1, which
was much higher than those of Au/graphene (12 h−1), Au NPs (94 h−1), GO@NH2-Au
NPs (595 h−1), Au10-LP (6053 h−1), and Au/Fe2O3@HAP (241.3 h−1). The knor of Au20-Hb
NPs was 3.32 × 104 s−1mmol−1, which was also much higher than those of GO@NH2-
Au NPs (5.85 × 102 s−1mmol−1), Au10-LP (1.31 × 103 s−1mmol−1), Au/Fe2O3@HAP
(1.27 × 103 s−1mmol−1), Au NPs/AOBC (2.98 × 103 s−1mmol−1), and Cu-Au BNSs
(2.01 × 104 s−1mmol−1). Thus, Au20-Hb NPs had superior activity in the catalytic re-
duction reaction of 4-NP. It should be noted that the size of the AuNPs inside Aun-Hb NPs
is smaller than most Au NPs in Table 1. The advantages of 4-NPs can be attributed to good
stability and the small size of gold nanoparticles. It is well known that smaller Au NPs
should have more active sites and higher catalytic activity. The specific surface area of
Au20-Hb NPs is quite high, and the elevated catalytic efficiency can primarily be attributed
to the considerable specific surface area or high active site content for catalytic reactions
on the gold nanoparticle surface. Gold nanoparticles that are small in size can also be
stabilized by ligands. However, robust ligands may hinder the functioning of active surface
sites, ultimately reducing catalytic ability. The Au NPs without ligands will precipitate for
a long time, which also largely reduces their catalytic activity.

The reaction rate is very slow in kinetics without Au20-Hb NPs. It can be concluded
that Au20-Hb NPs were effective catalysts for the reduction of 4-NP. The bovine hemoglobin
acted as an excellent stabilizer for Au NPs. The absorption of BH4

− onto Au nanoparticles
potentially provides Au−H species, which play a role in facilitating the transfer of all
four electrons [1,26]. Many research groups have documented the mechanism involved
in the catalytic reduction of 4-NP using noble metal nanoparticles under the conditions
of NaBH4 [26–28]. It is widely acknowledged that the catalytic reaction of 4-NP follows
Langmuir–Hinshelwood kinetics. Ballauff et al. [29] proposed a detailed mechanism of
the catalytic reaction. All compounds rapidly achieve equilibrium between adsorption
and desorption. 4-NP is first rapidly converted to the stable intermediate (4-Hx). The
concentration of 4-Hx remains approximately constant without catalysts. The intermediate
4-Hx is further reduced to form 4-AP after the addition of catalysts, which is the rate-
determining step in the kinetic process [30].

It is expected that the catalytic reaction facilitated by Au20-Hb NPs also adheres to
Langmuir–Hinshelwood kinetics. All the components in this reaction quickly reach an
adsorption/desorption equilibrium on the surface of gold nanoparticles of Au20-Hb NPs.
The rate-determining step is the formation of 4-AP, which occurred only on the surface of
the gold nanoparticles.
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Table 1. Comparative analysis of knor and TOF values for Au20-Hb NPs with other catalysts.

Catalyst Au Size
(nm)

kapp
(×10−3 s−1)

knor
(s−1 mmol−1)

TOF
(h−1) Ref.

Au20-Hb 1.4 3.32 3.32 × 104 6768 This work
Au/graphene 14.6 3.17 6.25 12 [31]

Au NPs 80 7.42 1.46 × 102 94 [23]
GO@NH2-Au NPs 14 35.6 5.85 × 102 595 [32]

Au10-LP 7.8 4.65 1.31 × 103 6053 [33]
Au/Fe2O3@HAP 10 7.12 1.27 × 103 241.3 [34]
Au NPs/AOBC 10.6 4.47 2.98 × 103 1198 [35]

Cu-Au BNSs 78 30.2 2.01 × 104 536.4 [36]

2.6. Biocompatibility

The catalysts have good catalytic ability with regard to the degradation of organic
pollutants, and they also should be biocompatible with our body. MTT is a widely accepted
method to measure the cytotoxicity of nanomaterials [37]. Bovine hemoglobin is a kind of
biocompatible biomolecule in the body. Here, the MTT assay was employed to determine
the cytotoxicity of bovine hemoglobin and Au20-Hb NPs against HeLa cells and A549
cells. Cell viability exceeded 90% when the concentration of Au20-Hb NPs and bovine
hemoglobin was lower than 200 µg/mL, as illustrated in Figure 6. Thus, Au20-Hb NPs
and bovine hemoglobin were biocompatible towards cells. The good biocompatibility
should be due to biocompatible bovine hemoglobin. Bovine hemoglobin has the function
of transporting nutrients and oxygen and emitting carbon dioxide in the body. Compared
with highly toxic PEI, Au20-Hb NPs can be applied well in bio-related catalysis.
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3. Materials and Methods
3.1. Materials

Bovine hemoglobin (Hb) from bovine blood, chloroauric acid (HAuCl4), sodium
borohydride (NaBH4), 4-nitrophenol (4-NP), and dimethyl sulfoxide (DMSO) were bought
from Aladdin. HeLa cells and A549 cells were purchased from the China Center for Typical
Culture Collection.

3.2. Synthesis of Aun-Hb NPs

A total of 32 mg of bovine hemoglobin was dissolved in 10 mL of deionized water to
obtain 0.05 mM of the bovine hemoglobin solution. Then, 2 mM of the HAuCl4 solution at
different volumes (200 µL, 300 µL, 400 µL) was mixed with 400 µL of the prepared bovine
hemoglobin solution, respectively. The molar ratio of HAuCl4 to bovine hemoglobin was
20:1, 30:1, and 40:1, respectively. The mixed solution was kept at 25 ◦C in a constant
temperature mixer (600 rpm) for 15 min. The freshly prepared NaBH4 (1 mg/mL) with
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an equal volume to the HAuCl4 solution was added rapidly, respectively. The solution
underwent a color change from yellow to dark red, suggesting the formation of Aun-Hb
NPs (n = 20, 30, 40). The sample was stored at 4 ◦C for further experiments.

3.3. Characterization of Aun-Hb NPs

The UV-Vis spectra of hemoglobin and the Aun-Hb NP solution were acquired by
a UV-vis spectrophotometer (TU-1810PC). The hydrodynamic size and zeta potential of
Aun-Hb NPs were measured three times using a dynamic light scattering (DLS) measure-
ment from Zetasizer (Nano ZS90). The software for Nano ZS90 is Zetasizer version 7.11.
X-ray photoelectron spectroscopy (XPS) spectra were performed on a Thermo Scientific
EACALAB 250Xi. The sample for XPS was dialyzed and lyophilized. The size and shape
of Aun-Hb NPs were analyzed using transmission electron microscopy (TEM, HT 7700).
Aun-Hb NPs were immobilized onto a carbon-coated copper grid and left to dry overnight
prior to measurement. The software used was Nano Measurer version 1.2, which counted
Au nanoparticles to determine the size distribution.

3.4. Catalytic Performance of Aun-Hb NPs

Aun-Hb NPs were employed to catalytically reduce 4-NP, following a procedure based
on prior reports with slight alterations.

(1) The merging of a 4-NP aqueous solution (0.1 mM, 2 mL) and freshly prepared
NaBH4 (0.5 M, 1 mL) occurred in a quartz cuvette at room temperature. Then, Au20-Hb
NPs (100 µL) were added into the mixture solution, with UV-Vis spectra monitoring the
reaction solution every 3 min.

(2) In situ 4-NP reduction by NaBH4 occurreed by mixing the 4-NP (0.1 mM, 2 mL)
aqueous solution and fresh NaBH4 (0.5 M, 1 mL) in a quartz cuvette. Then, Aun-Hb NPs
(100–400 µL) were added. In situ measurement of the absorbance at 403 nm in a mixed
solution was conducted using a UV-Vis spectrophotometer.

3.5. MTT Assay

The cytotoxicity of HeLa cells and A549 cells were inoculated into 96-well culture
plates (1 × 104 cells/well). After 24 h, the DMEM medium supplemented with 10%
fetal bovine serum was exchanged with a fresh DMEM medium containing the samples
(hemoglobin and Au20-Hb NPs) from 5 to 200 µg/mL. After 24 h, the cells were treated with
a new 100 µL DMEM medium containing 500 µg/mL MTT. After 4 h, the MTT solution was
aspirated and substituted with 150 µL of DMSO. The absorbance (A) value at 490 nm was
measured with a microplate reader. Cell viability was assessed using Formula (1). Asample
means the absorbance value of the sample, and Acontrol means the absorbance value of the
control group.

Cell viability (%) =
Asample

Acontrol
× 100 (2)

4. Conclusions

In conclusion, biocompatible and stable Aun-Hb NPs were prepared by a simple
method. Bovine hemoglobin played an important role in stabilizing Au NPs. The Au NPs
were well-dispersed with a small size of about 1.4–2.4 nm. Aun-Hb NPs exhibited good
stability for at least four days. In addition, Aun-Hb NPs were good catalysts for the catalytic
reduction of hazardous 4-NP. The catalytic kinetics follow the pseudo-first-order kinetic
equation. The TOF and knor of Au20-Hb NPs were 6768 h−1 and 3.32 × 104, which were
much higher than those of other catalysts. More importantly, Aun-Hb NPs exhibited no
cytotoxicity towards cells. The prepared catalysts will have a good aspect in the treatment
of phenolic pollutants.
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