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Abstract: Two new paddlewheel-type dirhodium (Rh2) complex isomers, formulated as trans-2,2-
and 3,1-forms of [Rh2(bhp)4] (bhp = 6-bromo-2-hydroxypyridinate), were obtained by the reaction
of 6-bromo-2-hydroxypyridine with [Rh2(O2CCH3)4(H2O)2] and characterized by NMR, ESI-MS,
and elemental analyses. Single crystal X-ray diffraction analyses clarified that the crystal structure of
trans-2,2-form takes a conventional paddlewheel-type dimer structure with no axial coordination
ligands, i.e., trans-2,2-[Rh2(bhp)4], whereas that of the 3,1-form changed significantly depending on
the kinds of solvent used for crystallization processes; dimer-of-dimers-type tetrarhodium complex,
i.e., 3,1-[Rh2(bhp)4]2, and a conventional paddlewheel-type dimer complex with an axial DMF ligand,
i.e., 3,1-[Rh2(bhp)4(DMF)], were observed. The 3,1-form showed unique absorption changes that were
not observed in the trans-2,2-form; the trans-2,2-form showed an absorption band at approximately
780 nm both in the solid state and in solution (CH2Cl2 and DMF), whereas the 3,1-form showed a
similar absorption band at 783 nm in CH2Cl2 solution, but their corresponding bands were blue-
shifted in solid state (655 nm) and in DMF solution (608 nm). The molecular structures and the
origin of their unique absorption properties of these Rh2 complexes were investigated using density
functional theory (DFT) and time-dependent DFT (TDDFT).

Keywords: dinuclear complexes; rhodium complexes; coordination isomers; crystal structures;
electronic structures; absorption properties

1. Introduction

Paddlewheel-type dinuclear complexes with multiple bonds or orbital interactions
between two metal atoms have been developed extensively not only because of the interest
in their molecular structures, electronic features, and functionalities but also because they
are useful building blocks for supramolecular complexes, coordination polymers, and metal-
organic frameworks (MOFs) [1–6]. As is well known, this structural motif can be formed
using most transition metal ions. Among them, dirhodium(II) (Rh2

4+) complexes [1,7–10],
which have a single Rh-Rh bond originating from the σ2π4δ2δ*2π*4 orbital interactions,
are particularly interesting because of their excellent catalytic [11–17], sensing [18,19], and
medical functionalities [20]. These functionalities are strongly influenced by the type of
bridging ligand coordinated at the equatorial positions of the Rh2 core. The majority
of bridging ligands in Rh2 complexes are carboxylates, but other bidentate ligands with
heterodonor sites, such as amidates [1,10] and amidinates [8], can also be used as bridging
ligands for Rh2 complexes.

2-Hydroxypyridine (hp) derivatives [21–26] are also available as bridging ligands,
and homoleptic paddlewheel-type dinuclear complexes with four hp derivative ligands,
[M2(hp)4], are expected to form four coordination isomers: 4,0-, 3,1-, trans-2,2-, and cis-2,2-
form structures (Scheme 1). In this regard, it is known that the introduction of a substituent
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at the 6-position of the hp ligand can somewhat control its coordination isomerization. For
example, 6-fluoro-2-hydroxypyridinate (fhp)-coordinated Rh2 complex, [Rh2(fhp)4], adopts
the 4,0-form structure as the main product [21,22], whereas 6-chloro-2-hydroxypyridine
(chp) or 6-methyl-2-hydroxypyridine (mhp) coordinated Rh2 complexes, i.e., [Rh2(chp)4] or
[Rh2(mhp)4], afford trans-2,2- and 3,1-form structures as the main and minor products, re-
spectively [23]. Single crystal X-ray diffraction (SCXRD) studies of 6-substituted hp-bridged
Rh2 complexes clarified that the 4,0- and 3,1-form structures can coordinate an axial donor
ligand at the Rh atom, which is surrounded by four and three O atoms of hp derivatives,
respectively, whereas trans-2,2-form structure cannot possess donor ligands at the axial
positions of the Rh-Rh bond because of the steric hindrance of the substituents [21–24].
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Although reports on Rh2 complexes coordinated with four hp derivatives or related
NˆO-bridging ligands are still relatively limited, they exhibit excellent catalytic activity in
electrochemical and photochemical hydrogen evolution reactions [22], enantioselective S-H
and C-H insertion reactions [15,27], and cyclopropanation reactions [28]. Therefore, further
development and detailed fundamental studies of Rh2 complexes with hp derivatives are
required. Herein, we report the synthesis, characterization, crystal structures, electrochemi-
cal properties, and absorption spectral features of paddlewheel-type Rh2 complexes with
6-bromo-2-hydroxypyridinate (bhp). From NMR, ESI-MS, elemental analyses, and SCXRD
analyses, it was revealed that two coordination isomers, trans-2,2- and 3,1-forms, can be iso-
lated. Interestingly, the crystal structures of the 3,1-form change significantly depending on
the type of solvent used for the crystallization processes; a dimer-of-dimers-type complex,
3,1-[Rh2(bhp)4]2, and a dimer complex with an axial DMF ligand, 3,1-[Rh2(bhp)4(DMF)],
were obtained. Moreover, the 3,1-form exhibited unique absorption spectral changes that
were not observed for the trans-2,2-form. The molecular structures and the origin of unique
absorption properties were also closely investigated by the density-functional theory (DFT)
and time-dependent DFT (TDDFT) calculations and were discussed in this study.

2. Results
2.1. Synthesis and Characterizations

The coordination isomers, trans-2,2- and 3,1-forms of [Rh2(bhp)4], were obtained by
the reaction of [Rh2(O2CCH3)4(H2O)2] with 10 equivalents of 6-bromo-2-hydroxypyridine
in chlorobenzene under N2 atmosphere, followed by column chromatography (silica gel)
and drying at 393 K under vacuum. An orange powder of trans-2,2-form and a yellowish
green powder of 3,1-form were isolated in 63.6% and 2.5% yields, respectively, indicating
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that the coordination structure of trans-2,2-form is energetically more stable than that
of 3,1-form. Although some precipitates, including rhodium black, were found in the
reaction solution after refluxing, they are insoluble in common solvents and could not be
structurally characterized.

The isolated trans-2,2- and 3,1-forms were characterized using ESI-MS, NMR spec-
troscopy, and elemental analyses. In the ESI-MS spectra of the trans-2,2- and 3,1-forms,
intense peaks appeared at 920.5531 and 920.5535 m/z, respectively, which correspond to
the calculated [M + Na]+ value (920.5555 m/z) for the complex of two Rh atoms and four
bhp ligands. As shown in Figures S1 and S2, the isotope distributions of the trans-2,2- and
3,1-forms matched well with each other and with the simulation results for [Rh2(bhp)4].
No other intense peaks were observed in the spectra. Elemental analyses also revealed that
the observed CHN ratios of trans-2,2- and 3,1-forms correspond to the calculated ratio of
dehydrated [Rh2(bhp)4]. The 1H NMR of trans-2,2-form showed three doublet of doublet
signals at 7.24, 6.78, and 6.35 ppm, with integral ratio of 1:1:1 (Figure S3). This spectral
feature is similar to that of trans-2,2-[Rh2(chp)4] with D2h molecular symmetry [29]. In the
13C{1H} NMR spectrum of trans-2,2-form, five resonances were observed as well resolved
signals in the aromatic region. On the other hand, the proton signals of 3,1-form were
observed in the region of 6.21–7.20 ppm, with integral ratio of 1:1:1:1:1:2:2:3[overlapped signal]

(Figure S4). In addition, fifteen resonances were overserved in the 13C{1H} NMR spectrum
of 3,1-form. These NMR results are consistent with the 3,1-arrangement structure with C2v
molecular symmetry.

2.2. Single Crystal X-ray Diffraction Analyses

Single crystals of trans-2,2-[Rh2(bhp)4], 3,1-[Rh2(bhp)4]2, and 3,1-[Rh2(bhp)4(DMF)]
suitable for SCXRD analysis were grown using the methods described in the experimental
section. Diffraction analyses revealed that trans-2,2-[Rh2(bhp)4] crystallized in the P 21/n
space groups (monoclinic system), whereas 3,1-[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)]
crystallized in the P-1 (triclinic system) and P 212121 space groups (orthorhombic system),
respectively. Figure 1 shows the crystal structures with selected numbering schemes of
trans-2,2-[Rh2(bhp)4], 3,1-[Rh2(bhp)4]2, and 3,1-[Rh2(bhp)4(DMF)]. Selected bond lengths
and angles of their crystal structures are summarized in Tables S1–S3.

As expected, the obtained structures consist of the paddlewheel core and are iso-
meric. In trans-2,2-[Rh2(bhp)4], the Rh2 core is bridged by four bhp ligands with trans-
2,2-arrangemnet and is not coordinated by solvent molecules as the axial ligands because
of the bulky bromide groups, similar to the structures of trans-2,2-[Rh2(chp)4] and trans-
2,2-[Rh2(mhp)4] [23]. By contrast, the Rh2 core in 3,1-[Rh2(bhp)4(DMF)] is coordinated
by four bhp ligands with 3,1-arrangement, and the Rh atom surrounded by three oxy-
gen atoms and one nitrogen atom of the bhp ligands is further coordinated by a DMF
molecule, which was used as the recrystallization solvent. In the 3,1-[Rh2(bhp)4]2 structure,
two 3,1-[Rh2(bhp)4] units self-aggregate with bonds between the oxygen atom of one bhp
ligand in 3,1-[Rh2(bhp)4] and the axial position of another Rh2 unit. Similar “dimer-of-
dimers-type” structure was found in the crystal structure of 3,1-[Ru2(chp)4]2 [30]. The
averaged Rh2-Oaxial bond lengths in 3,1-[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)] are 2.293
and 2.173 Å, respectively, which are sizably longer than the averaged Rh2-Oequatrial bond
lengths in 3,1-[Rh2(bhp)4]2 (2.022 Å) and 3,1-[Rh2(bhp)4(DMF)] (2.031 Å). These results
indicate that the coordination energies of the Rh-Oaxial bonds in 3,1-[Rh2(bhp)4]2 and 3,1-
[Rh2(bhp)4(DMF)] are considerably weaker than those of the Rh2-Oequatrial bonds. The bhp
ligands in 3,1-[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)] are slightly twisted, whereas those
in trans-2,2-[Rh2(bhp)4] are almost planar: averaged dihedral angles of N-Rh-Rh-O in 3,1-
[Rh2(bhp)4]2, 3,1-[Rh2(bhp)4(DMF)], and trans-2,2-[Rh2(bhp)4] are 22.59◦, 23.39◦, and 1.66◦,
respectively. Ligand twisting is presumed to be a structural uniqueness of the 3,1-form,
because similar twisted (3,1-form) structures were found when mhp or chp were used as the
bridging ligands for Rh2 complexes [23]. The Rh-Rh bond length of trans-2,2-[Rh2(bhp)4]
was determined to be 2.3902(4) Å, which is slightly longer than that of trans-2,2-[Rh2(chp)4]
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(2.379(1) Å) and trans-2,2-[Rh2(mhp)4] (2.359(1) Å) [23]. This slight increase in the Rh-Rh
bond length is presumably due to the electron-withdrawing effects of the bromide groups
of the bhp ligands. The Rh-Rh bond length of 3,1-[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)]
are 2.3704(4) and 2.3726(11) Å, which are slightly (0.02 Å) shorter than those of trans-2,2-
[Rh2(bhp)4] and 4,0-[Rh2(fhp)4(DMF)] (2.3970 Å) [22]. The shorter Rh-Rh bond lengths in
3,1-[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)] than in trans-2,2-[Rh2(bhp)4] may be owing to
the axial coordination effect rather than the influence of the structural arrangement.

Inorganics 2024, 12, x FOR PEER REVIEW 4 of 12 
 

 

are considerably weaker than those of the Rh2-Oequatrial bonds. The bhp ligands in 3,1-
[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)] are slightly twisted, whereas those in trans-2,2-
[Rh2(bhp)4] are almost planar: averaged dihedral angles of N-Rh-Rh-O in 3,1-[Rh2(bhp)4]2, 

3,1-[Rh2(bhp)4(DMF)], and trans-2,2-[Rh2(bhp)4] are 22.59°, 23.39°, and 1.66°, respectively. 
Ligand twisting is presumed to be a structural uniqueness of the 3,1-form, because similar 
twisted (3,1-form) structures were found when mhp or chp were used as the bridging 
ligands for Rh2 complexes [23]. The Rh-Rh bond length of trans-2,2-[Rh2(bhp)4] was deter-
mined to be 2.3902(4) Å, which is slightly longer than that of trans-2,2-[Rh2(chp)4] (2.379(1) 
Å) and trans-2,2-[Rh2(mhp)4] (2.359(1) Å) [23]. This slight increase in the Rh-Rh bond 
length is presumably due to the electron-withdrawing effects of the bromide groups of 
the bhp ligands. The Rh-Rh bond length of 3,1-[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)] are 
2.3704(4) and 2.3726(11) Å, which are slightly (0.02 Å) shorter than those of trans-2,2-
[Rh2(bhp)4] and 4,0-[Rh2(fhp)4(DMF)] (2.3970 Å) [22]. The shorter Rh-Rh bond lengths in 
3,1-[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)] than in trans-2,2-[Rh2(bhp)4] may be owing to 
the axial coordination effect rather than the influence of the structural arrangement. 

 
Figure 1. Crystal structures of (a) trans-2,2-[Rh2(bhp)4], (b) 3,1-[Rh2(bhp)4(DMF)], and (c) 3,1-
[Rh2(bhp)4]2. Thermal ellipsoids were drawn at 30% probability. Hydrogen atoms and solvents were 
omitted for clarity. 

2.3. Structural Stabilities and Favorable Spin States 
To investigate the structural characteristics of 3,1-[Rh2(bhp)4], restricted DFT (B3LYP 

functional) calculations of 3,1-[Rh2(bhp)4(DMF)] in DMF and 3,1-[Rh2(bhp)4]2 in the gas 
phase were computed. The zero-point energy (ZPE) of optimized geometry of 3,1-

Figure 1. Crystal structures of (a) trans-2,2-[Rh2(bhp)4], (b) 3,1-[Rh2(bhp)4(DMF)], and (c) 3,1-
[Rh2(bhp)4]2. Thermal ellipsoids were drawn at 30% probability. Hydrogen atoms and solvents were
omitted for clarity.

2.3. Structural Stabilities and Favorable Spin States

To investigate the structural characteristics of 3,1-[Rh2(bhp)4], restricted DFT (B3LYP
functional) calculations of 3,1-[Rh2(bhp)4(DMF)] in DMF and 3,1-[Rh2(bhp)4]2 in the
gas phase were computed. The zero-point energy (ZPE) of optimized geometry of 3,1-
[Rh2(bhp)4]2 is 5.67 kcal/mol more stable than the double value of ZPE of optimized
geometry of 3,1-[Rh2(bhp)4]. Moreover, the basis set superposition error (BSSE)-corrected
aggregation energy between two 3,1-[Rh2(bhp)4] fragments in 3,1-[Rh2(bhp)4]2 was cal-
culated to be −9.69 kcal/mol. These results suggest that the desolvated 3,1-[Rh2(bhp)4]
is more stable in forming a dimer-of-dimers structure than the discrete dimer structure
in the solid state. In 3,1-[Rh2(bhp)4(DMF)], the BSSE-corrected binding energy between
3,1-[Rh2(bhp)4] and DMF fragments was estimated to be −11.23 kcal/mol, indicating that
3,1-[Rh2(bhp)4] in DMF solution is more favorable to form the DMF-adducted structure
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3,1-[Rh2(bhp)4(DMF)] than the dimer-of-dimers-type structure 3,1-[Rh2(bhp)4]2. These
calculated results are consistent with the experimentally obtained crystal structures.

The frontier molecular orbitals (MOs) of the optimized geometries of trans-2,2-[Rh2(bhp)4]
and 3,1-[Rh2(bhp)4] in CH2Cl2, 3,1-[Rh2(bhp)4(DMF)] in DMF, and 3,1-[Rh2(bhp)4]2 in
the gas phase are shown in Figure 2. In all the complexes, the highest occupied MO
(HOMO) and lowest unoccupied MO (LUMO) are mainly localized on the δ*(Rh2)/π(bhp)
and σ*(Rh2) orbitals, respectively. The orbital energies of HOMO and LUMO of trans-2,2-
[Rh2(bhp)4] and 3,1-[Rh2(bhp)4] are almost identical, between the complexes. The orbital
energies of LUMO of 3,1-[Rh2(bhp)4(DMF)] and 3,1-[Rh2(bhp)4]2 are more destabilized
than that of 3,1-[Rh2(bhp)4] because of the anti-bonding orbital interaction between the
σ*(Rh2) and p(Oaxial) orbitals.
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2.4. Electrochemical Properties

Cyclic voltammetry (CV) measurements were performed to investigate the electro-
chemical properties of trans-2,2- and 3,1-forms of [Rh2(bhp)4] in CH2Cl2 and DMF (see
Figure 3). In CH2Cl2, the CV diagram of trans-2,2-[Rh2(bhp)4] exhibited two reversible
redox waves at E1/2 = 1.15 and −1.28 V vs. SCE, whereas that of 3,1-[Rh2(bhp)4] showed
one reversible wave and one irreversible wave at E1/2 = 1.07 and −1.17 V vs. SCE, respec-
tively. From the results of the DFT calculations of trans-2,2- and 3,1-forms of [Rh2(bhp)4] in
CH2Cl2, the one-electron oxidation and reduction processes could be assigned to occur at
the δ*(Rh2)/π(bhp) and σ*(Rh2) orbitals, respectively, which are similar to those of other
paddlewheel-type Rh2 complexes [16,31]. Observed E1/2 values of trans-2,2- and 3,1-forms
of [Rh2(bhp)4] are more positive than those of trans-2,2-[Rh2(mhp)4] (E1/2 = 0.91 V and
−1.36 V vs. Ag/AgCl in CH2Cl2) [29] because of the electron-withdrawing effect of bro-
mide groups in bhp ligands. Similar CV features were also found when DMF was used as
the solvent instead of CH2Cl2, whereas observed potentials in DMF were relatively shifted
to positive direction than those in CH2Cl2; the E1/2 values of trans-2,2-[Rh2(bhp)4] in DMF
are 1.25 and −1.14 V vs. SCE, whereas those of 3,1-[Rh2(bhp)4] are 1.13 and −1.12 V vs. SCE.
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These results indicate that (i) 3,1-[Rh2(bhp)4] is more susceptible to one-electron oxidation
than trans-2,2-[Rh2(bhp)4], and (ii) the one-electron reduction process of 3,1-[Rh2(bhp)4] is
accompanied by structural changes, whereas that of trans-2,2-[Rh2(bhp)4] is not.
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2.5. Absorption Properties

The visible absorption spectra in solution (CH2Cl2 and DMF) and diffuse reflectance
(DR) spectra in the solid state were measured for trans-2,2- and 3,1-forms of [Rh2(bhp)4].
As shown in Figure 4a, the spectral shape of trans-2,2-[Rh2(bhp)4] in CH2Cl2 is nearly
identical to that in DMF; an intense “A-band” and a shoulder “B-band” were observed at
approximately 780 nm [CH2Cl2: 783 nm (ε = 815). DMF: 780 nm (ε = 816)] and 450–460 nm,
respectively. Similar spectral characteristics were also observed in the DR spectrum of trans-
2,2-[Rh2(bhp)4] (see Figure 4b), although the band maxima of the DR spectrum are slightly
blue-shifted compared to those of the absorption spectra. On the other hand, the spectral
feature of 3,1-[Rh2(bhp)4] drastically changed depending on the solvent used; the A-band
in CH2Cl2 was observed at 783 nm (ε = 475), similar to trans-2,2-[Rh2(bhp)4], whereas that
in DMF was observed at 608 nm (ε = 260). The absorption coefficient of the A-band of
3,1-[Rh2(bhp)4] is relatively lower than that of trans-2,2-[Rh2(bhp)4]. The B-band of 3,1-
[Rh2(bhp)4] was observed at approximately 450–460 nm, which is nearly the same as that
of trans-2,2-[Rh2(bhp)4]. The shape of the DR spectrum of 3,1-[Rh2(bhp)4], which possesses
an A-band at 655 nm and a B-band at 450–460 nm, is apparently different from the shapes
of the absorption spectrum of 3,1-[Rh2(bhp)4] in CH2Cl2 and the DR spectrum of trans-2,2-
[Rh2(bhp)4], but similar to that of 3,1-[Rh2(bhp)4] in DMF. The previous literature reports
that the A-band of a paddlewheel-type Rh2 complex is blue-shifted when the ligands are
coordinated to the axial positions of the Rh2 core [32,33]. Therefore, it is considered that
nearly all the as-synthesized 3,1-[Rh2(bhp)4] in the solid state forms a dimer-of-dimers
structure by self-aggregation, as found in the crystal structure of 3,1-[Rh2(bhp)4]2 but does
not form a discrete dimer structure.
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To clarify the absorption spectral features of trans-2,2 and 3,1-forms of [Rh2(bhp)4],
TDDFT calculations of trans-2,2-[Rh2(bhp)4] and 3,1-[Rh2(bhp)4] in CH2Cl2, 3,1-[Rh2(bhp)4-
(DMF)] in DMF, and 3,1-[Rh2(bhp)4]2 in the gas phase were performed. The computed
results, such as the excitation wavelengths, oscillator strengths, and dominant excitation
characters are summarized in Tables S5–S7. The simulated excitation wavelengths of
the complexes generally reproduced the observed absorption wavelengths. That is, the
simulated excitation wavelengths of the A-bands of 3,1-[Rh2(bhp)4(DMF)] in DMF and 3,1-
[Rh2(bhp)4]2 were blue-shifted with respect to that of 3,1-[Rh2(bhp)4] in CH2Cl2, similarly to
their observed spectra. The excitation characters of A-band of trans-2,2-[Rh2(bhp)4] and 3,1-
[Rh2(bhp)4] in CH2Cl2 possess the π*(Rh2)→σ*(Rh2) excitations as the dominant characters,
whereas those of 3,1-[Rh2(bhp)4(DMF)] and 3,1-[Rh2(bhp)4]2 comprise π*(Rh2)→σ*(Rh2)
excitations as the dominant characters with δ*(Rh2)→σ*(Rh2) excitations as the minor con-
tribution. These results indicated that the main characteristics of A-band of 3,1-[Rh2(bhp)4],
3,1-[Rh2(bhp)4(DMF)], and 3,1-[Rh2(bhp)4]2 are commonly d(Rh2)→σ*(Rh2) excitation
characters. That is, it was clarified that the reason why the absorption wavelengths of
the A-band of 3,1-[Rh2(bhp)4(DMF)] and 3,1-[Rh2(bhp)4]2 were found at shorter wave-
lengths than that of 3,1-[Rh2(bhp)4] is owing to the stabilization and destabilization of
the orbital energies of σ*(Rh2), which are obviously changed by the axial coordination of
O-donor molecules.
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3. Materials and Methods
3.1. Chemicals and Instruments

6-bromo-2hydroxypyridine was purchased from Tokyo Chemical Industries (Tokyo,
Japan), and organic solvents were obtained from Wako Pure Chemical Industries (Osaka,
Japan) and used as received without further purification. [Rh2(O2CCH3)4(H2O)2] was
synthesized according to methods described in the literatures [34]. Electrospray ioniza-
tion mass spectroscopy (ESI-MS) were performed with a Bruker micrOTOF-II instrument
(Bruker, Billerica, MA, USA) in the positive-ion mode. Nuclear magnetic resonance spectra
(NMR) were recorded on a JEOL JNM-ECX500 spectrometer (JEOL, Tokyo, Japan) operating
at 500 MHz for 1H and 126 MHz for 13C in a DMSO-d6. Chemical shifts are referenced to
the residual DMSO signal. Elemental analyses were performed with a YANACO CHN
corder MT-6 instrument (Yanaco, Tokyo, Japan). Absorption spectra were measured with a
JASCO V-670 spectrophotometer (JASCO, Tokyo, Japan). Diffuse reflectance (DR) spectra
were acquired using a JASCO V-670 spectrophotometer equipped with an ISN-923 inte-
grating sphere (JASCO, Tokyo, Japan). Cyclic voltammetry (CV) measurements of the
[Rh2(bhp)4] (0.50 mM) in dried DMF and CH2Cl2 solutions containing 0.10 M TBAPF6
were performed using a HOKUTO DENKO HZ-7000 HAG1232m system (Meiden Hokuto
Coorporation, Tokyo, Japan) at a scan rate of 100 mV/s. The glassy carbon, platinum wire,
and saturated calomel electrode were employed as the working, counter, and reference
electrodes, respectively.

3.2. Synthesis of trans-2,2-form and 3,1-Form of [Rh2(bhp)4]

A mixture of [Rh2(O2CCH3)4(H2O)2] (95.6 mg, 0.20 mmol) and 6-bromo-2-hydroxy-
pyridine (348.0 mg, 2.0 mmol) in 15.0 mL chlorobenzene was refluxed under nitrogen
atmosphere for 24 h. After cooled to room temperature, the reaction solution was filtered,
and the filtrate was then evaporated under reduced pressure. Obtained residue was
separated by a silica-gel column chromatography (eluent: CH2Cl2/MeCN/EtOH = 17:2:1
v/v/v). The first and second fractions were evaporated to dryness, dried at 393 K under
reduced pressure, and obtained as an orange powder (trans-2,2-form: 114.2 mg, 63.6%) and
a yellowish green powder (3,1-form: 4.4 mg, 2.5%), respectively.

Analysis data for trans-2,2-form. 1H NMR (500 MHz, DMSO-d6, δ): 7.24 (dd, J = 8.6,
7.5 Hz, 4H), 6.78 (dd, J = 7.3, 0.8 Hz, 4H), 6.35 (dd, J = 8.6, 1.0 Hz, 4H) ppm. 13C{1H}
NMR (126 MHz, DMSO-d6) δ = 177.87, 139.68, 138.88, 114.87, 114.25 ppm. ESI-MS calcd
for C20H12Br4N4O4Rh2Na [M + Na]+: 920.5555 m/z; found 920.5531 m/z. EA calcd (%) for
C20H12Br4N4O4Rh2: C 26.76, H 1.35, N 6.24; found C 26.76, H 1.51, N 6.34.

Analysis data for 3,1-form. 1H NMR (500 MHz, DMSO-d6, δ): 7.20 (m, 3H), 7.08 (dd,
J = 8.6, 7.1 Hz, 1H), 6.78 (dd, J = 7.3, 0.8 Hz, 2H), 6.75 (dd, J = 7.3, 1.2 Hz, 1H), 6.58 (dd,
J = 6.9, 1.2 Hz, 1H), 6.38 (dd, J = 8.6, 1.0 Hz, 1H), 6.30 (dd, J = 8.4, 0.8 Hz, 2H), 6.21 (dd, J = 8.8,
1.1 Hz, 1H) ppm. 13C{1H} NMR (126 MHz, DMSO-d6, δ): 180.08, 179.39, 179.35, 140.95,
140.10, 140.03, 139.20, 139.11, 139.02, 117.00, 116.36, 115.63, 114.55, 114.20, 113.99 ppm.
ESI-MS calcd for C20H12Br4N4O4Rh2Na [M + Na]+: 920.5555 m/z; found 920.5535 m/z. EA
calcd (%) for C20H12Br4N4O4Rh2: C 26.76, H 1.35, N 6.24; found C 26.69, H 1.46, N 6.11.

3.3. Crystallography

Single crystals of trans-2,2-[Rh2(bhp)4] suitable for X-ray diffraction were obtained by
slow diffusion of hexane into CH2Cl2 solution containing trans-2,2-form, whereas those
of 3,1-[Rh2(bhp)4]2 and 3,1-[Rh2(bhp)4(DMF)] were grown by slow diffusion of diethyl
ether into CH2Cl2 solution containing 3,1-form and slow evaporation of DMF solution
containing 3,1-form, respectively. Obtained single crystals were carefully mounted on a
MiteGen micromount using a paratone-N oil and then were quickly transferred to the cold
nitrogen-steam for data collection. X-ray diffraction data of trans-2,2-[Rh2(bhp)4] and 3,1-
[Rh2(bhp)4(DMF)] were collected on a Rigaku HyPix-6000 detector system (Tokyo, Japan)
with a graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at 150 K, whereas that of
3,1-[Rh2(bhp)4]2 was collected on a Rigaku Mercury CCD detector system (Tokyo, Japan)
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with a graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at 150 K. Data processing
were performed with CrysAlisPro software (version 1.171.42.49) [35]. The structures were
initially solved with SHELXT-2018 program [36] and were then refined with full-matrix
least square on F2 using SHELXL program [37] in the Olex 2 software (version 1.5) [38]. All
non-hydrogen atoms were refined using anisotropic displacement parameters, whereas
hydrogen atoms were placed in calculated positions and refined as riding model. In the
refinement of trans-2,2-[Rh2(bhp)4], the residual electron density of disorder solvents was
removed by using the solvent mask routine of the Olex 2. Crystallographic data of final
refined structures are summarized in Table 1. These crystallographic data can be obtained
free of charge from Cambridge Crystallographic Data Centre (CCDC); deposition numbers
of trans-2,2-[Rh2(bhp)4], 3,1-[Rh2(bhp)4]2, and 3,1-[Rh2(bhp)4(DMF)] are CCDC-2328797,
2328798, and 2328799, respectively.

Table 1. Crystallographic data of trans-2,2-[Rh2(bhp)4], 3,1-[Rh2(bhp)4]2, and 3,1-[Rh2(bhp)4(DMF)].

trans-2,2-[Rh2(bhp)4] 3,1-[Rh2(bhp)4]2 3,1-[Rh2(bhp)4(DMF)]

Chemical formula C20H12Br4N4O4Rh2 C42H28Br8Cl4N8O8Rh4 C23H19Br4N5O5Rh2
Formula weight 897.80 1965.44 970.89
Crystal system monoclinic triclinic orthorhombic

Space group P 21/n P-1 P 212121
a (Å) 10.7274(3) 11.7389(3) 9.7976(4)
b (Å) 15.1958(4) 14.1558(4) 12.1892(6)
c (Å) 15.1861(4) 18.6200(4) 23.3582(10)

α (deg) 90 109.831(2) 90
β (deg) 103.275(3) 94.751(2) 90
γ (deg) 90 109.617(2) 90
V (Å3) 2409.36(12) 2673.30(13) 2789.6(2)

Z 4 2 4
Dcalc (g cm−3) 2.475 2.442 2.312

µ (mm−1) 8.040 7.471 6.957
F(000) 1688.0 1856 1848.0

R1 (I > 2σ(I)) 0.0374 0.0319 0.0465
wR2 (I > 2σ(I)) 0.0879 0.0667 0.1007

R1 (all data) 0.0443 0.0465 0.0608
wR2 (all data) 0.0904 0.0716 0.1055

GOF on F2 1.069 1.013 1.064

3.4. Calculation Details

DFT calculations were performed using the hybrid B3LYP functional [39] with SDD
for Rh atoms, aug-cc-pVDZ for N and O atoms, and cc-pVDZ for other atoms by using the
Gaussian 16 version C.02 program package [40]. Molecular structures were fully optimized
without any symmetry constraints and were then checked by frequency analyses. The
polarizable continuum models (PCM) were employed to take account of the solvent effects
for the calculations of geometry optimizations, frequency analyses, and MO analyses of
3,1-[Rh2(bhp)4(DMF)] (ε = 37.219 for DMF) and trans-2,2- and 3,1-forms of [Rh2(bhp)4]
(ε = 8.93 for CH2Cl2). The aggregation energy and binding energy were estimated with
counterpoise method for removing the basis set superposition error (BSSE). Vertical singlet
excitation energies, oscillator strengths (f ), and assignments of excitation characters were
computed with a time-dependent DFT (TDDFT).

4. Conclusions

In this study, two paddlewheel-type Rh2 complex isomers coordinated with bhp
ligands, trans-2,2- and 3,1-forms of [Rh2(bhp)4], were successfully prepared and charac-
terized. SCXRD analyses revealed that crystal structure of 3,1-form changed significantly
depending on the kinds of solvent used for crystallization processes; dimer-of-dimers-type
tetrarhodium complex, i.e., 3,1-[Rh2(bhp)4]2, and a conventional paddlewheel-type dimer
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complex with an axial DMF ligand, i.e., 3,1-[Rh2(bhp)4(DMF)], are observed, whereas that
of trans-2,2-form takes a conventional paddlewheel-type dimer structure with no axial coor-
dination ligands. DFT calculations revealed that 3,1-[Rh2(bhp)4] prefers to be coordinated
by DMF solvent or to form the self-aggregated dimer-of-dimers structure rather than the
formation of discrete structure with no axial coordination ligand in the solid state. We
confirmed that there were no significant differences in the absorption features of trans-2,2-
[Rh2(bhp)4] in solution (CH2Cl2 and DMF) and solid states. By contrast, spectral feature
of 3,1-[Rh2(bhp)4] drastically changes; the A-band in CH2Cl2 was observed at 783 nm,
whereas those in DMF and in solid state were observed at 608 nm and 655 nm, respectively.
TDDFT calculations clarified that this spectral difference is caused by the changes in the
coordination environments as illustrated in Scheme 2.
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