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Abstract: Novel organometallic complexes Mn(benzene-1,2-diamine)(CO)3Br, Mn-1, Mn(3-methylben
zene-1,2-diamine)(CO)3Br, Mn-2, and Re(benzene-1,2-diamine)(CO)3Cl, Re-1, have been synthesized
and characterized by IR, UV/Vis, 1H-NMR, EA and HRMS. The structures of Mn-2 and Re-1 were
confirmed by X-ray crystallography. The three novel compounds were studied for their electro-
catalytic reduction of carbon dioxide to carbon monoxide using cyclic voltammetry in acetonitrile
solutions. Controlled potential electrolysis was used to obtain information on faradaic yield, with
product formation being confirmed by GC. Using earth-abundant manganese, compounds Mn-1 and
Mn-2 display turnover frequencies of 108 s−1 and 82 s−1, respectively, amid selective production of
carbon monoxide (faradaic yields ~85%), with minimal co-production of dihydrogen (<2%), and low
overpotential of 0.18 V. The rhenium congener, Re-1, displays no activity as an electrocatalyst for
carbon dioxide reduction under identical conditions.

Keywords: CO2 reduction; electrocatalyst; diamine; manganese compounds; CO formation

1. Introduction

Activation and utilization of carbon dioxide [1], a major greenhouse gas, has the
potential to address two key contemporary environment related problems: global warming
due to increasing CO2 emission and provision of carbon-neutral energy [2]. Electrocatalytic
conversion of carbon dioxide to carbon monoxide [3] is considered one of the viable
options for CO2 fixation [4], where liquid fuels [5] and other commodity chemicals can be
made from the resulting carbon monoxide in combination with hydrogen gas using the
Fischer–Tropsch technique [6].

Molecular organometallic electrocatalysts [7] for electroreduction of carbon dioxide [8]
have been extensively reviewed [9], and trends within d-block metals have been elab-
orated [10–12]. Considering the need for ultimate scale-up of the catalytic process for
CO2 reduction, designing catalysts using earth abundant transition metals [13], such as
Fe [14,15], Ni [16,17], and Co [18,19], has received significant interest. Manganese is one of
the most Earth abundant transition metals [20], and has been shown to replace rhenium [21]
in CO2 reduction catalysts [22,23]. Hence, a wide-range of ligands have been attached
to a manganese tricarbonyl halide core [24–26], including N-heterocyclic carbene [27,28],
non-aromatic diamine [29], pincer ligands [30], and P-coordinating ligands [31]. There are
a wide range of recent examples exploring structure-activity and mechanistic questions of
these organomanganese electrocatalysts [32–39].

Thus, we began a study of aromatic diamine ligands, attached to either a manganese or rhe-
nium tricarbonyl halide core. We report the novel compounds Mn(benzene-1,2-diamine)(CO)3Br,
Mn-1, Mn(3-methylbenzene-1,2-diamine)(CO)3Br, Mn-2, and Re(benzene-1,2-diamine)(CO)3Cl,
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Re-1 (Figure 1). The historical compounds Mn(benzene-1,2-diamine)(CO)4 [40] and Re(o-
benzoquinone diimine)(CO)3Cl [41] have each been reported on a single occasion, without
any analysis for carbon dioxide electroreduction. In addition to synthesis and charac-
terization, X-ray crystallography (Mn-2 and Re-1), electrochemistry, and electrocatalytic
studies for the reduction of CO2 to CO by three novel organometallic diamine complexes
are presented. The use of ligands bound to a metal via an amine group in successful
organometallic electrocatalysts for carbon dioxide reduction is reported herein [42].
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Figure 1. Structures of the novel organometallic complexes studied herein: Mn(benzene-1,2-
diamine)(CO)3Br, Mn-1, Mn(3-methylbenzene-1,2-diamine)(CO)3Br, Mn-2, and Re(benzene-1,2-
diamine)(CO)3Cl, Re-1.

Electrochemistry will be utilized to determine turnover frequency (TOF) and overpo-
tential from cyclic voltammetry (CV) of solutions of the compounds under an atmosphere
of CO2.

TOF = 0.1992
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CO2 (g) + 2HA (CH3CN) + 2e−
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CO (g) + H2O (CH3CN) + 2A− (CH3CN)
E◦
′

= −0.12 (−0.0592 pKa) V vs. Fc+/Fc
(2)

where icat is the peak current of the catalyzed reaction and ncat is the number of electrons
involved in that catalytic process, while ip is the peak current of the compound under
non-catalytic conditions and np is the number of electrons involved in that process. F is the
Faraday constant, ν is the applied scan rate, R is the universal gas constant, and T is the
temperature in Kelvin. Subsequently, TOFs may be determined using Equation (1) [43].

Overpotential is also a useful metric for analysis of electrocatalysts, indicating how
much additional potential is required beyond the thermodynamic amount for a given
reaction. As we are exploring the reduction of carbon dioxide to carbon monoxide in the
presence of a proton source, we will use Equation (2), where the thermodynamic potential
is known to change with the strength of the acid chosen as the proton source [44].

2. Results and Discussion
2.1. Synthesis

Complexes Mn-1 and Mn-2 were synthesized by combining manganese pentacar-
bonyl bromide and the appropriate benzenediamine ligand in THF at reflux under an
inert atmosphere. Complex Re-1 was synthesized by combining rhenium pentacarbonyl
chloride and benzene-1,2-diamine in toluene at reflux under an inert atmosphere. Metal
pentacarbonyl halide to ligand ratios were 1:1 to avoid the formation of complex salts,
such as [Re(benzene-1,2-diamine)2(CO)3]Br [45]. Upon removal of THF/toluene by rotary
evaporation, resolvation in minimal acetone was followed by crystallization from pentane,
yielding dark green manganese compounds and a pale purple rhenium product.

2.2. Solid State Structure

Single crystals suitable for X-ray diffraction studies were grown via hexane vapor
diffusion into a dichloromethane solution of Mn-2, and via slow evaporation of a diethyl
ether solution of Re-1. Structures displayed tricarbonyl fac orientation (Figures 2 and 3),



Inorganics 2023, 11, 374 3 of 14

with an average metal–carbon bond length of 1.79 Å for Mn-2 and 1.91 Å for Re-1, and
metal–halide bond lengths of 2.55 Å and 2.51 Å, respectively.
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presence of fac-[Re(CO)3] with coordinated diamine and chloride ligand.

2.3. Spectroscopy

UV/Visible absorption spectroscopy reveals similar MLCT bands for Mn-1 and Mn-2,
with a molar attenuation coefficient ~20% greater for Mn-2 (Figure 4). Studies of tricarbonyl
halide diimine compounds saw blue-shifts of 30–60 nm for replacement of Mn with Re [46].
Specifically with phenanthroline ligands, blue-shifts of ~45 nm are concomitant with a
cathodic shift in reduction potential of ~250 mV [47]. As Re is switched to Mn herein, a
cathodic shift in reduction potential of 450 mV is observed (Table 1), allowing a possible
assignment of an MLCT to the absorption peak at 261 nm, a 98 nm blue shift (although
IL π to π* absorptions are common in this region). This Re-1 putative MLCT has a molar
attenuation coefficient of ~3-fold that of the manganese compounds, and is similar in
magnitude to Re tricarbonyl halide diimines (~5000 M−1 cm−1) [48]. A weak absorption
feature (88 M−1 cm−1) is seen for Re-1, occurring at ~180 nm red-shift compared to the
MLCT of the manganese compounds (Figure 4, inset), which is likely a low probability
MLCT [49], occurring at a wavelength very close to that seen for a much stronger MLCT
seen in Re(o-benzoquinone diimine)(CO)3Cl [50].
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Table 1. Reduction/oxidation potentials, infrared and UV/Vis data for Mn-1, Mn-2, and Re-1. IR
absorption peaks are attributed to CO stretching modes.

Complex Epc1 (V) a Epa1 (V) a
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CO
(cm−1)

MLCT
(nm) c

ε
M−1 cm−1

Mn-1 −2.30 0.60 2028, 1931, 1890 1950 359 1580

Mn-2 −2.35 0.62 2030, 1932, 1888 1950 355 1930

Re-1 −2.75 0.89 2025, 1915, 1861 1934 261, 543 4700, 88
a Potential at peak of first reduction/oxidation wave vs. Fc/Fc+ at 0.100 V s−1 in 0.100 M n-Bu4NPF6 in anhydrous
acetonitrile. b Recorded in solid state. c Recorded in acetonitrile.

IR spectroscopy of the carbonyl region displays three absorption peaks for all three
compounds studied, displaying near identical wavenumbers for Mn-1 and Mn-2, correlat-
ing well to near identical reduction and oxidation potentials. Re-1 has a mean
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CO some
16 cm−1 lower than the manganese compounds, indicative of stronger carbonyl binding due
to greater electron density upon the central metal (supported by the observation of a more
cathodic reduction). IR spectroscopy also displays the expected N-H bond absorbances in
the 3100–3300 cm−1 region (Figures S9–S11), further supporting structural assignment.

NMR spectroscopy in acetone-d6 also confirms structural assignment, most clearly
in the large downfield shift and loss of symmetry of the amine protons, seen in a single
broad peak at 3.98 ppm in free benzene-1,2-diamine. Upon attachment of the ligand to
the metal, the amine protons are seen as two equal integration irregular peaks at 6.58
and 4.88 ppm in Mn-1, and 6.88 and 5.50 ppm in Re-1 (Figures S12–S15). Attachment
of 3-methylbenzene-1,2-diamine ligand (broad doublet at 3.87 ppm in free ligand) sees
a similar shift upon attachment to manganese, yielding four equal integration irregular
doublets at 6.58, 6.38, 4.88, and 4.67 ppm for Mn-2 with approximate splitting constants of
5 to 10 Hz (Figure S14). 13C NMR of Mn-2 (Figure S15) displays the anticipated 6 unique
aromatic carbon atoms in the 140 to 127 ppm range, and a methyl carbon at 16.9 ppm
(typically weak carbonyl carbon signals are obscured by the solvent).
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The integration for the amine protons in Mn-1 and Re-1 is ~25% lower than anticipated,
a feature that is preliminarily ascribed to exchangeability of these protons (the four amine
proton peaks in the asymmetrical Mn-2 have only ~5% lower integration than expected).
While no additional peaks are visible, concerns have been raised that this observation
indicates that the benzene-1,2-diamine ligand is attached in a diimine manner. HRMS
displayed two major peaks of similar size, one corresponding to the loss of halide and
addition of an acetonitrile molecule, the second corresponding to just loss of halide [51].
No peaks were observed corresponding to compounds containing an o-benzoquinone
diimine. Rhenium was confirmed by HRMS as present in Re-1 due to the observation of
the predicted peak ratio due to the two primary rhenium isotopes. Elemental analysis
also confirms the diamine molecular assignment of the three compounds studied herein.
Table S1 details how alternative o-benzoquinone diimine compounds would not match
the elemental analysis results for our compounds, lacking a match to the experimentally
obtained values for hydrogen percentage. Additional evidence for diamine (rather diimine)
ligands is seen in the bond lengths observed in the Xray crystallographic structures of Mn-2
and Re-1, where C-N bond lengths are 1.45 to 1.47 Å, matching the 1.47 Å average seen in
amines, and far from the 1.28 Å average seen in imines [52].

2.4. Photochemistry

Organomanganese carbonyl compounds have long been reported as unstable upon
light exposure [53], such that we carried out all our reactions and analyses with our
compound in foil-wrapped glassware. Acetonitrile solutions of our three compounds were
tracked for decomposition by UV/Vis over 90 min of exposure to ambient lab lighting.
While Re-1 was unchanged, Mn-1 had a small amount degradation, ~3% change at λmax
of 359 nm, and a small feature grew in at ~770 nm beyond 60 min of exposure. Mn-2
was more prone to decomposition, with ~5% change at λmax of 355 nm, and a degree of
broadening of the main absorption feature (Figure S17).

Mn-1 and Mn-2 both display fluorescence upon excitation at their λmax wavelengths,
359 and 355 nm, respectively (Figure S18). Mn-1 emission is centered at 522 nm, while
Mn-2 emission is centered at 541 nm, indicating greater energy loss to relaxation prior to
emission, perhaps due to the lower symmetry molecule having more vibrational modes.
Both manganese compounds had a minor (~20% the intensity of the main peak) secondary
peak at longer wavelengths of 715 and 710 nm, respectively. Re-1 did not display any
fluorescence upon excitation at either 261 or 543 nm.

2.5. Electrochemistry

All complexes exhibit a single irreversible reduction peak during cyclic voltammetry
(CV), occurring at −2.30 V vs. Fc+/Fc under an argon atmosphere for Mn-1 (Figure S1),
with the reduction potential of Mn-2 being slightly (50 mV) more negative than Mn-1
(Figure S2), indicative of a very modest increase in electron density, due to methylation
upon the benzene ring [54] of the diamine. Support for this assignment can be found in
the carbonyl group IR absorbance, where wavenumbers vary by just 2 cm−1 for the most
labile CO. The reduction of Re-1 occurs a further 300 mV more negative, indicating more
challenging reduction, and suggestive of more electron density upon the Re atom (as also
indicated by the IR spectra of the carbonyl groups). Reductions are irreversible at the scan
rates studied, appearing to be two-electron processes (based upon exhaustive controlled
potential electrolysis of the compounds) and are assigned to loss of the halide ligand and
formation of an anion [55].

The oxidation potential of the manganese compounds are almost identical at ~0.6 V
vs. Fc+/Fc, while the oxidation of Re-1 occurs almost 300 mV more positive (Figure S3).
All oxidations are irreversible and show large currents (greater than one or two electron
processes) indicative of compound decomposition.
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2.6. Electrocatalysis

All complexes were studied in acetonitrile under an atmosphere of CO2 in the presence
of a proton source, trifluoroethanol (TFE). Addition of TFE to a solution of Mn-1 yielded
enhancement in current at ca. −2.5 V (Figure 5), broadly similar to the effect seen with
Mn-2 (Figure S4). The proposed catalytic mechanism (Scheme S1) suggests that initial
reduction yields a catalyst that then cycles via a two electron two proton catalytic cycle,
hence an enhancement of current is commonly interpreted as a catalytic process [8]. The
reduction feature of Mn-1 (and Mn-2) occur at the same potential under a CO2 atmosphere;
however, there is a change from a distinct peak under argon to a plateau under carbon
dioxide, suggestive that the reduced complex binds substrate but no catalytic conversion
occurs. This reduction feature is then seen to increase with increased concentration of TFE,
an effect that is broadly absent in a similar study with Re-1 (Figure S5), and completely
absent in the catalyst-free control experiment (Figure S6).
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Figure 5. Cyclic voltammetry of 1.010 mM of Mn-1 (blue) with subsequent additions of trifluo-
roethanol, TFE: 0.10 M, 0.20 M, 0.50 M, 1.00 M, 1.50 M, 2.00 M. Recorded in 0.100 M Bu4NPF6 in dry
CO2-saturated acetonitrile on a 3.00 mm diameter glassy carbon electrode vs. Fc+/Fc at 0.100 V/s.

The addition of an external proton source to a solution of Mn-1 yields an increase in
current due to the electrocatalytic reduction of carbon dioxide to carbon monoxide (vide
infra). Homogeneous organometallic CO2 reduction electrocatalysts require either an inter-
nal proton source [56] or deliberate addition of an external proton source. The catalytically
active species, obtained from electrochemical reduction, binds carbon dioxide but is unable
to cleave one of the subsequent C-O bonds without the addition of a proton [57]. The cat-
alytic current produced increases with increasing proton concentration (affected by either
increased acid concentration or increased acid strength) [58]. A study of Mn-2 under a CO2
atmosphere with additions of water showed only a limited catalytic current (Figure S7);
hence, our study focused upon the use of a stronger proton source, TFE. Additionally, a
catalyst concentration study of Mn-2 in the presence of a fixed concentration of TFE shows
a near linear response to increasing catalyst concentration, indicating a first-order process
(Figure 6), and that catalysis is dependent upon the presence of the organomanganese
electrocatalyst. The transfer of the working electrode used in a CO2/TFE study (with each
manganese catalyst) into a catalyst-free solution containing CO2 and TFE displayed no
catalytic process, supportive of assignment of homogeneous catalysis.
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electrode vs. Fc+/Fc at 0.100 V/s.

The icat/ip can be determined from CV data in the acid-independent region of cataly-
sis [59], where icat and ip are the peak current of the catalyzed and non-catalyzed reactions,
respectively. Entry into a true acid-independent region (by sufficient addition of acid to
obtain a plateau in current) was not possible for our catalysts, due to solubility of the
compounds becoming a problem at high values of added TFE. One solution to this prob-
lem would be to use less of a stronger (more acidic) proton source, although our concern
preventing this was the competing reduction of the acid (or, rather, the carbonic acid that
is made in situ) to hydrogen, due to our catalysts only being active at negative potentials
where such competing reduction is an issue. However, the largest addition of TFE where
no precipitation occurred (2.0 M) can be used as a proxy for the acid independent region
by providing a reasonable minimum value for an icat/ip, and hence a minimum value for a
TOF for our catalysts.

The icat/ip for Mn-1 was 8.3 and for Mn-2 it was 7.7 (Figure 7). These values may
then be used in Equation (2) to find a turnover frequency (TOF) for the catalyst being
studied [60], yielding values of 108 s−1 for Mn-1 and 82 s−1 for Mn-2. CV of Mn-1 vs.
Mn-2 under catalytic conditions (in the presence of proton source and CO2) indicates that
Mn-1 is the better catalyst, with an icat/ip value that is ~8% greater than for Mn-2. Given
an electron donating methyl group on the ligand platform, Mn-2 was expected to produce
a higher catalytic current than that of Mn-1 through a mild electronic effect that would
enhance electron density upon the metal center and increase nucleophilic attacks upon
the CO2 (Scheme S1) [61]. This lack of improvement suggests that the binding of CO2
by the catalyst is not rate-determining, but rather that the rate-determining step may be
reductive cleavage of the Mn-CO (intermediate D to intermediate A, Scheme S1), a step
that would be slower when metal center electron density is increased. With increased
electron density on the metal, the Mn-CO bond would be stronger in Mn-2 due to greater
back-bonding from metal to ligand, as compared to the case of Mn-1. The TOF values for
our manganese compounds are somewhat low compared with the majority of published
systems, with catalysis occurring at a disappointingly negative potential [62]. However,
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this initial example of diamine ligand use in carbon dioxide electrocatalyst design, as a
proof of concept, could lead to exploration of the use of similar ligand platforms.
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Our use of a weak acid proton source, namely trifluoroethanol (TFE) allows us to use
Equation (2), with an estimated pKa of 35.4 for TFE [63], to arrive at a thermodynamic
potential of −2.22 V. The potential at half peak height of the catalytic peak is used as a
proxy for the E1/2 in irreversible systems (which the catalytic peak represents); in our case,
a value ca. −2.4 V is observed, which represents a relatively low overpotential of ca. 0.18 V.

The limited electrocatalysis observed with Re-1 is consistent with examples where Re
catalysts have TOF values around an order of magnitude lower than the analogous Mn
compound [64]. In particular, in our case, Re-1 appears to reduce at too negative a potential,
such that should any Re-CO adduct be forming, its reduction potential lies too negative
(at/beyond the solvent window). Given that there is only a small increase in current at the
edge of our solvent window (Figure S5), it is not possible to obtain an accurate icat/ip for
Re-1, although it is likely <1.5.

CV of solutions of each catalyst in acetonitrile under argon with 2.00 M TFE displayed
no peak, indicating that there is no competing proton reduction directly of the TFE [65]. Ad-
ditionally, a CV of an acetonitrile electrolyte solution containing the same increments of TFE
additions and saturated with carbon dioxide displays only a minor response (Figure S6),
indicative of a negligible direct electrode response [66].

Controlled Potential Electrolysis (CPE) was performed upon all three compounds,
as well as upon “catalyst-free” control experiment conditions, with the electrocatalysis
products being quantified by headspace Gas Chromatography (GC) [67]. Comparison to
authentic samples of CO and H2 (Figure S19) allowed the confirmation and quantification of
the formation of carbon monoxide under these conditions with both manganese compounds.
The performance of Mn-1 and Mn-2 are equivalent after electrolysis for 90 min, displaying
faradaic yields of ~85% for CO production, with minimal co-production of H2 (Table 2).
An effective turnover of ~7.5 for the manganese catalysts, where turnover is moles product
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divided by moles catalyst, establishes true catalysis with these manganese compounds,
and given our 90 min CPE, equates to a turnover number (TON) of 5 h−1. Re-1 is inactive
under the study conditions, producing ~2% the CO of the manganese compounds. CPE
confirms the lack of activity of Re-1 that is implied by our earlier CV analysis.

Table 2. CPE data for Mn-1, Mn-2, and Re-1, compared to catalyst-free conditions a.

Q (C) µmol CO FE b CO (%) µmol H2 FE b H2 (%)

Mn-1 35 ± 1.4 157 ± 5 86 ± 3 2.9 ± 0.9 1.6 ± 0.8

Mn-2 33 ± 2 148 ± 6 85 ± 4 2.6 ± 0.7 1.5 ± 0.7

Re-1 2.2 ± 0.6 3.1 ± 0.5 27 ± 5 2.4 ± 0.4 21 ± 4

Catalyst-free 1.6 ± 0.4 0.6 ± 0.4 7 ± 4 5.4 ± 0.8 65 ± 10
a 0.500 mM (20.0 µmol) of catalyst in each case, in 1.50 M TFE, 0.100 M Bu4NPF6 in dry CO2-saturated acetonitrile
on a carbon rod electrode at−2.20 V vs. Fc/Fc+ for 90 min (mean of three trials). b FE = Faradaic efficiency = charge
to form product/total charge passed.

CPE was stopped after 90 min for convenience and a desire to not cause pressure leaks
in our reaction vessel during electrolysis. The organomanganese compounds were still
active at this 90 min time point. Currents drop to around 80% of their initial value within a
few minutes of initiation of electrolysis, and are from then mostly stable, slowly dropping
to around 70–75% by the 90 min mark. If catalysis had ceased, then current would drop to
zero, as it almost does for Re-1 and catalyst-free CPE. CV of the electrolysis solution upon
completion of CPE still retains the catalytic peak, albeit somewhat diminished, to around
70% of the initial current value, indicative of some loss of organomanganese catalyst. An
example FTIR spectra of a post electrolysis solution of Mn-2 clearly displays a tricarbonyl
pattern (Figure S11). The pattern has peaks that are 1–2 cm−1 different from solid Mn-2,
which could be an artefact of instrument precision or solvation, but does not preclude the
formation of Mn(3-methylbenzene-1,2-diamine)(CO)3(CH3CN) [68].

3. Experiment/Characterization

Materials: All the reagents were used as received from the following: tetrabutylammo-
nium hexafluorophosphate (Bu4APF6, Sigma, St. Louis, MI, USA), anhydrous acetonitrile
(Sigma), manganese pentacarbonyl bromide (Mn(CO)5Br, Strem), rhenium pentacarbonyl
chloride (Re(CO)5Cl, Sigma), benzene-1,2-diamine (TCI), 3-methylbenzene-1,2-diamine
(Acros Organics).

Synthesis: All reactions were carried out in an inert atmosphere of argon using stan-
dard Schlenk techniques. All reactions involving manganese complexes were protected
from light during reaction, storage and electrochemistry (using aluminum foil wrap).

Mn(benzene-1,2-diamine)(CO)3Br (Mn-1): Mn(CO)5Br (0.2020 g, 0.733 mmol) and
1,2-phenylenediamine (0.0800 g, 0.740 mmol) were combined in tetrahydrofuran (30 mL),
and the mixture was purged in argon for 10 min before being stirred at reflux for one hour.
A color change occurred during reflux, changing from the faint orange to black/green. The
tetrahydrofuran was removed by use of a rotary evaporator until dryness, and acetone
(2 mL) and pentane (50 mL) were added, forming a green precipitate. The product was
cooled in an isotemperature freezer (−20 ◦C) and then filtered and rinsed with pentane.
The final green solid was dried under reduced pressure for approximately 24 h, obtaining
an 76% yield. IR (solid,
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CO): 2028 cm−1, 1931 cm−1, 1890 cm−1. MS (m/z): calc: 246.9915,
found: 246.9913 (M-Br)+, calc: 288.0181, found: 288.0176 (M-Br+MeCN)+. UV/Vis in MeCN
(ε, M−1 cm−1): 359 nm (1580). 1H NMR (300 MHz, (CD3)2CO, ppm) δ: 7.49 (2H, s), 7.30
(2H, s), 6.58 (2H, m), 4.88 (2H, m). Anal. Calc. for C9H8BrN2O3Mn: C, 33.06; H, 2.47; N,
8.57. Anal. Found: C, 33.34; H, 2.65; N, 8.42.

Mn(3-methylbenzene-1,2-diamine)(CO)3Br (Mn-2): Mn(CO)5Br (0.2010 g, 0.730 mmol)
and 2,3-diaminotoluene (0.0901 g, 0.738 mmol) were combined in tetrahydrofuran (30 mL),
and the mixture was purged with argon for ten minutes before stirring at reflux for one hour.
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A color change occurred during reflux from pale orange to dark green. The tetrahydrofuran
was removed by rotary evaporator until dryness, and acetone (2 mL) and pentane (50 mL)
were added, forming a brown/green precipitate. The product was cooled in an isotemp
freezer (−20 ◦C) and then filtered and rinsed with pentane. The final brown/green solid
was dried under reduced pressure for approximately 24 h, obtaining an 86% yield. IR
(solid,
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sence of a reduction peak ca. −1.2 V [69]. CVs were collected under the flow of ultra-high 
purity argon or bone-dry carbon dioxide gases. Controlled Potential Electrolysis (CPE) 
experiments were performed using a two-compartment cell: one compartment containing 
a carbon rod working electrode (effective surface area = 5.5 cm2) and an Ag/AgNO3 
pseudo-reference electrode, the other compartment containing a carbon rod counter 

CO): 2025 cm−1, 1915 cm−1, 1861 cm−1. UV/Vis in MeCN (ε, M−1 cm−1): 261 nm (4700),
543 nm (88). 1H NMR (400 MHz, (CD3)2CO, ppm) δ: 7.50 (2H. m), 7.31 (2H, m), 6.88 (2H,
d), 5.50 (2H, d). MS (m/z): calc: 379.0093, found: 379.0106 (M-Cl)+, calc: 420.0358, found:
420.0365 (M-Cl+MeCN)+. Anal. Calc. for C9H8ClN2O3Re: C, 26.12; H, 1.95; N, 6.77. Anal.
Found: C, 26.37; H, 1.88; N, 6.82. Crystals suitable for X-ray diffraction were obtained by
evaporation of diethyl ether solution of the complex at −20 ◦C, CCDC 1893660.

Electrochemistry: All cyclic voltammograms (CVs) were obtained by using a CHI
Model 600E Potentiostat 3-electrode cell with a glassy carbon 3 mm diameter working
electrode, platinum wire counter electrode, and silver external reference electrode (10 mM
AgNO3 in electrolyte solution). The electrolyte solution for all experiments was 0.10 M tetra-
n-butylammonium hexafluorophosphate (Bu4NPF6) in anhydrous acetonitrile (Aldrich).
The potentials (E) at the working electrode in all CV’s are reported with respect to the
ferrocenium/ferrocene couple in electrolyte solution. The ferrocenium/ferrocene couple
data was collected daily at the end of each experiment, confirming potential and that
appropriate resistance compensation had been applied. All CVs reported are background
corrected, i.e., the scan with only electrolyte present was subtracted from the raw data.
All background scans confirmed the sufficient removal of O2 as seen (Figure S20) by the
absence of a reduction peak ca. −1.2 V [69]. CVs were collected under the flow of ultra-high
purity argon or bone-dry carbon dioxide gases. Controlled Potential Electrolysis (CPE)
experiments were performed using a two-compartment cell: one compartment containing a
carbon rod working electrode (effective surface area = 5.5 cm2) and an Ag/AgNO3 pseudo-
reference electrode, the other compartment containing a carbon rod counter electrode
(effective surface area = 8.0 cm2). Head-space gas was tested after 90 min of electrolysis.

Instrumentation: NMR spectra were recorded on a 300 or 400 MHz Bruker NMR
spectrometer. Mass spectra were recorded on an Agilent 6500 Series Q-TOF LC/MS in
acetonitrile solution. Electronic absorption spectra were recorded on a Shimadzu UV-2600
UV-visible spectrometer. FTIR data was obtained using a Perkin Elmer 100 spectrometer, at
1.0 cm−1 resolution. Elemental analysis was carried out by Atlantic Microlabs (Norcross,
GA, USA).
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4. Conclusions

Two new earth abundant metal-based catalysts, Mn(benzene-1,2-diamine)(CO)3Br
(Mn-1) and Mn(3-methylbenzene-1,2-diamine)(CO)3Br (Mn-2) have been synthesized and
characterized, which rapidly catalyze the reduction of carbon dioxide to carbon monoxide
at low overpotential. The novel Re congener Re(benzene-1,2-diamine)(CO)3Cl (Re-1) has
been synthesized and characterized, but lacks such electrocatalytic activity. The reduction
of Re-1 occurs 0.40 V more cathodic than the manganese complexes, likely indicating that
if Re-1 were to undergo a similar mechanism, a catalytic peak further cathodic than the
one seen for the manganese compounds would occur. We would likely not be able to see
such a process due to competing direct reduction and the cathodic limit of the solvent
window. [23,70] Use of diamine ligands could lead to an expansion of ligand options for
organomanganese carbon dioxide reduction electrocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11090374/s1, References [71–73] cited in Supplementary Materials.
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