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Abstract: Ruthenium complexes of phosphinocarboxamide ligands, and their use to form metallacycles
using halide abstraction/deprotonation reactions are reported. Thus, [Ru(p-cym){PPh2C(=O)NHR}Cl2;
R = iPr (1), Ph (2), p-tol (3)] and [Ru(p-cym){PPh2C(=O)N(R)C(=O)N(H)R}Cl2; R = Ph (4), p-tol (5)] were
synthesized from [(p-cym)RuCl2]2 (p-cym = para-cymene) and phosphinocarboxamides or phosphinodi-
carboxamides, respectively. Single-crystal X-ray diffraction measurements on 1–5 reveal coordination
to ruthenium through the phosphorus donor, with an intramolecular hydrogen bond between the
amine-bound proton and a metal-bound chloride. Six-membered metallacycles formed by halide ab-
straction/deprotonation of complexes 4 and 5 afforded [Ru(p-cym){κ2-P,N-PPh2C(=O)N(R)C(=O)NR}Cl]
[R = Ph (6), p-tol (7)]. These species exist as a mixture of two rotational isomers in solution, as demon-
strated by NMR spectroscopy.

Keywords: phosphinocarboxamide; metallacycle; ruthenium; P ligands; coordination chemistry

1. Introduction

Ligands incorporating both hard and soft donor atoms continue to attract attention [1]
and have found applications in coordination chemistry [1–3], biomedicine [4,5], enan-
tioselective catalysis [6,7] and supramolecular and self-assembled arrays [8]. Recently,
we reported the syntheses of functionalized phosphinocarboxamides (PCAs) and a new
family of phosphinodicarboxamides (PDCAs) through the catalytic hydrophosphination
of isocyanates (L-1–L-5) [9]. These compounds possess hard (N or O) and soft (P) donor
atoms that enable their binding to a wide range of metal centres in diverse coordination
modes [10]. Despite this, PCAs have found limited use as ligands [1–3,11] and PDCAs
have not been investigated in metal complexation reactions. Relevant co-ordination chem-
istry includes (i) the di-insertion of phenyl isocyanates into an amine bond using lan-
thanide metal centres to form Cp2Lnη2:η1-PyNCON(Ph)CONHPh] (Ln = Yb, Er, Y, Dy,
Gd; Py = 2-pyridyl), from which substituted ureas can be prepared [12]; (ii) the use of
primary phosphinocarboxamides in the syntheses of cis-[Mo(CO)4(PH2C(=O)NH2)2] [11]
and [Ru(p-cym){PH2C(=O)N(H)Cy}Cl2] (Cy = cyclohexyl) [2]; and (iii) the reaction of Fe(η5-
C5H4N(H)C(=O)PPh2)2 with PtX2(PPh3)2 (X = Cl, Br) that has allowed for the first selective
synthesis of M4L6 cage complexes, facilitated by hydrogen bonding interactions between
the PCA moiety and the halide ion [13].

Half-sandwich ruthenium complexes have been widely studied as potential cata-
lysts [14–23], due to their ease of interconversion to other Ru(0) and Ru(II) complexes [17].
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In particular, [(η6-arene)RuCl2(PR3)] (R = aryl or alkyl) [10] complexes are effective precur-
sors for a variety of catalytic and stoichiometric organic transformations [18,24]. Notable
examples include the transfer hydrogenation of ketones and benzaldehydes by [Ru(p-
cym){OC6H4-2-CH2NHC6H4-p-Me}Cl] [15,16,25], the isomerization of olefins such as al-
lylbenzene and 1-octene by [Ru(p-cym)LCl] {L = 4-(phenylazo)resorcinol} [14], and a wide
range of heteroatom insertion reactions involving cationic allenylidene and cumulenyli-
dene complexes such as [Ru=(C=C=CPh2)(η5-1,2,3-Me3C9H4)(CO)PPh3)]+ [21]. Thus, the
p-cymene-ruthenium(II) fragment is an ideal choice for probing the coordination chemistry
of new PDCAs, and for comparisons with the analogous PCA-containing complexes.

Herein, we describe the syntheses of [Ru(p-cym){PPh2C(=O)NHR}Cl2; R = iPr (1), Ph
(2), p-tol (3)] and [Ru(p-cym){PPh2C(=O)N(R)C(=O)N(H)R}Cl2; R = Ph (4), p-tol (5)]. This
study includes the first reported examples of PDCAs as monodentate and bidentate ligands,
with the latter coordination mode resulting in six-membered metallacycles.

2. Results and Discussion

2.1. Synthesis and Characterization of [Ru(p-cym){PPh2C(=O)N(H)R}Cl2] [R = iPr (1), Ph (2),
p-tol (3)] and [Ru(p-cym){PPh2C(=O)N(R)C(=O)N(H)R}Cl2] ([R = Ph (4), p-tol (5)]

A solution of [Ru(p-cym)Cl2]2 and L-1 (PPh2C(=O)N(H)iPr) in a 1:2 ratio in dichloromethane
was stirred at room temperature overnight, which, after removal of solvent and extraction
into toluene afforded 1 as a dark red solid (Scheme 1). The use of phosphinocarboxamides
with nitrogen-substituted aromatic groups (L-2 and L-3) affords the analogous compounds
[Ru(p-cym){Ph2PC(=O)N(H)R}Cl2; R = Ph (2) and p-tol (3)] (Scheme 1). Pure samples
of 1–3 were isolated in moderate to excellent yields (1, 39%; 2, 53%; 3, 99%). These
compounds exist as bright-red crystalline solids and have been characterized by NMR
and IR spectroscopies, mass spectrometry, single-crystal X-ray diffraction and elemental
analyses (see Supporting Information for full details and the Further Observations section
for additional insights).
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Scheme 1. Synthesis and structure of 1–5. Reaction conditions: 0.5 eq. [Ru(p-cym)Cl2]2 and 1 eq.
L-1–L-5 at room temperature, 10 min.

In parallel, the phosphinodicarboxamides PPh2C(=O)NPhC(=O)NHR (R = Ph L-4,
p-tol L-5) [9] were reacted with [Ru(p-cym)Cl2]2 (Scheme 1) under similar conditions,
affording [Ru(p-cym){PPh2C(=O)N(R)C(=O)N(H)R}Cl2]; {R = Ph (4) and p-tol (5)}. Unlike
1–3, complexes 4 and 5 are sparingly soluble in low-polarity hydrocarbons such as benzene
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and toluene. Characterization using NMR spectroscopy in CD2Cl2 indicate only one species
in solution for compounds 1–5 (Tables 1 and S1 and Figures S6–S15). These compounds
possess bilateral symmetry in the p-cymene ligand as shown by 1H and 13C{1H} NMR
spectroscopic determinations in solution. Thus, in the 13C{1H} NMR spectra of 1–5, the
non-quaternary carbons of the p-cymene appear as two doublets, due to scalar coupling
with the phosphorus atom of the PCA/PDCA ligand (2JCP = 4 and 6 Hz; see Figure S8) [26].
While the carbonylic PCA/PDCAs fragments are upfield-shifted with respect to their
corresponding free ligand (L-1–L-5) (Table 1) (e.g., δC=O = 167 (1) vs. 175 (L-1) ppm), with a
downfield shift observed in the 31P NMR spectra, upon complexation (e.g., δP = 29.8 (1)
vs. −4.0 (L-1) ppm) (Figures S6–S15) [9,11,27–29]. Similar deshielding for the amide NH
signals, is also observed in the 1H NMR spectra of compounds 1–3 (e.g., δH = 8.63 (1) vs.
5.35 (L-1) ppm). This is most likely a consequence of intramolecular hydrogen bonding
interactions upon introduction of the [Ru(p-cym)Cl2] moiety (vide infra).

Table 1. Selected NMR spectroscopic data δ (ppm) for the free PCA/PDCAs L-1–L-5, and complexes
1–7.

Compound

31P Free
PCA/PDCA

Ligand a

31P PCA/PDCA
Complex b

13C{1H}C=O
PCA/PDCA
Complex b

1HNH PCA/PDCA
Complex b

1 −4.0 29.8 a 167.4 a 8.6 a

2 −0.2 37.2 167.6 10.1
3 −0.9 36.6 167.5 10.0
4 8.3 33.5 178.2/177.7 c 9.2
5 8.0 33.8 177.9/177.5 c 9.2
6 - 52.6 - d -
7 - 52.3 170.9/162.1c -

a Chemical shifts reported in ppm in C6D6. b Chemical shifts reported in ppm in CD2Cl2. c Chemical shifts for
Ph2P(C=O) and N(C=O) in ppm. d Signal not observed.

Crystals of compounds 1–5 suitable for single-crystal X-ray diffraction investigations
were obtained from toluene solutions at room temperature (Figures 1 and S1–S5 and see
the Supporting Information for additional crystallography details). In the solid-state, 1–5
feature a pseudo-octahedral geometry in a classical piano-stool arrangement, in which the
coordination sphere consists of an η6-bound p-cymene, two chloride ligands, and the P
donor from the PCA/PDCA ligand (Figure 1). In the particular case of the structures of
4 and 5, the core of the PDCA ligands is twisted compared to the free ligand, [9] which
most likely arises from π· · ·π stacking interactions between an aminic aryl group and the
phenyl phosphine fragment, and highlights the conformational flexibility of the PDCA
ligand [C17plane - C24plane = 3.545(2) Å (4); C23plane - C9plane = 3.540(2) Å (5)]. The
Ru–Cl and Ru–P distances for 1–5 (Table 2), are similar to related phosphorus-bound ruthe-
nium compounds [2,15,16,24,25,30] such as [Ru(p-cym){PH2(CO)NHCy}Cl2] and [Ru(p-
cym){PPh2C≡CPh}Cl2] (Ru–Cl; ≈ 2.40 Å, Ru–P; ≈ 2.35 Å) [2,24]. In the case of the crystal
structure determinations for 1, 4 and 5, additional interstitial molecules of solvent were
found (C6H6 and toluene, respectively) and could be sensibly modelled. In addition, com-
plexes 1–5 present intramolecular hydrogen bonding between the amidic proton and one
of the metal-bound chlorides in the solid state. Particularly, and due to the interaction
between H1 and Cl1, the distances Ru1–Cl1 and Ru1–Cl2 are not equivalent; this is most
noticeable in the determinations for 4 and 5 (Table 2).
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Figure 1. Molecular structures of PCA-coordinated compounds 1–3 (above) and PDCA-bound
complexes 4–5 (below), with anisotropic displacement ellipsoids set at 50% probability. Solvent of
crystallization and carbon-bound hydrogen atoms are omitted for clarity.

Table 2. Selected bond lengths (Å) and angles (◦) for 1–5.

1 2 3 4 5

C1plane–Ru1 1.7010 (8) 1.7007 (10) 1.6989 (7) 1.7010 (11) 1.702 (2)
Ru1–Cl1 2.4183 (5) 2.4142 (6) 2.4171 (4) 2.3941 (7) 2.4302 (11)
Ru1–Cl2 2.4115 (5) 2.4151 (6) 2.4078 (4) 2.4296 (9) 2.3974 (10)
Ru1–P1 2.3476 (5) 2.3448 (6) 2.3517 (4) 2.3678 (7) 2.3635 (10)

H1· · ·Cl1 2.54 (3) a 2.3455 (6) 2.28 (2) 2.3723 (8) 2.44 (5)
Cl1–Ru1–P1 86.96 (2) 85.17 (2) 90.44 (2) 87.45 (3) 86.49 (4)
Cl2–Ru1–P1 87.35 (2) 86.87 (2) 83.29 (2) 89.33 (2) 89.70 (4)

a The distances H1· · ·Cl1 and H1· · ·Cl2 in 1 are very similar in length; H1· · ·Cl2 2.53(3) Å.

2.2. Synthesis and Characterization of [Ru(p-cym){κ2-P,N-PPh2C(=O)N(R)C(=O)NR}Cl]
([R = Ph (6), p-tol (7)]

With the intention to synthesize six-membered metallacycles via intramolecular cy-
clization, compounds 4 and 5 were reacted with K2CO3 and AgPF6 in CD2Cl2 at room
temperature (Scheme 2A), affording 6 and 7, respectively (Figures S16–S22). In contrast,
compound 2 showed no reaction under the same conditions. It is likely that the formation
of the four-membered metallacycle is prohibited due to the higher ring strain resulting
from the shorter PCA backbone.
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3 eq. K2CO3 and 1.3 eq. AgPF6, room temperature. (B) Ligand replacement reaction upon exposure
to CO. Reaction conditions: 1 eq. of 4 or 5, excess CO, room temperature.

The 31P NMR spectroscopic resonances for the cyclized products 6 and 7 are shifted
downfield with respect to the corresponding monodenate complexes 4 and 5 (Table 1).
This is in line with previously reported six-membered N,P-metallacycles, such as [Ru-
κ3-NNP-{HCl(CO)}]; and [NNP = 3-(di-tert-butylphosphino)-N-[(1-methyl-1H-imidazol-
2-yl)methyl]propylamine] (Figures S19 and S24) [27–29]. Our NMR spectroscopic studies
support the structure described in Scheme 2 (Figures S17, S18, S21–S23 and S26–S28); and
we propose that upon initial coordination (6–7), reaction with K2CO3 can deprotonate
the PDCA amide. However, it is not until one of the coordinated halides is removed
by AgPF6, that formal cyclization takes place. This assertion has been corroborated by
deprotonation experiments, in the absence of AgPF6. Further halide replacement by [PF6]−

has been ruled out by means of NMR spectroscopy and MS analyses (ion trap). Although
one resonance is observed in the 31P NMR spectra (Table 1), both 6 and 7 are observed
to exist as a mixture of two distinct isomers (6a–7a/6b–7b), as determined by 1H NMR
spectroscopy (Figures S16–S24 and Table S1). Additionally, 1H-1H COSY NMR spectra of
the cyclized products (6–7), allowed for the deconvolution of the signals associated with
the individual products, with distinctive correlations between the individual iPr fragments
(Figures S18 and S22). Integration of the 1H NMR signals from the p-cymene ring indicate
an isomer ratio of 60:40 for 6 and 87:13 for 7. In both cases, the major product shows a
complete loss of symmetry (as observed by 1H and 13C{1H} NMR spectra) on the p-cymene
fragment (Figures S18 and S22), with the minor product remaining bilaterally symmetrical
(6a–7a (symmetric) and 6b–7b (asymmetric)). The diffusion coefficients (D) of 2, 5 and
7, determined by DOSY NMR experiments (Table S1), allowed for the calculation of the
hydrodynamic radii. These values are in good agreement with the values obtained from
the crystal structures of 2 and 5, and the geometry optimized structures of 7 (vide infra).
An increase in the hydrodynamic radius is observed between 2 and 5 due to the increased
length of the ligand, with only a small change in hydrodynamic radius observed upon
cyclization (7). Similar to compounds 1–5, scalar spin–spin coupling is observed in the
13C{1H} NMR spectra of 6 and 7 between the p-cymene and the phosphorus of the PDCA
ligand [13C{1H} NMR] (Figure S22) [31]. With the signals for the non-quaternary aromatic
carbons, in the p-cymene fragment, as four distinctive doublets (2JCP = 3–6 Hz) (Figure S22).

The existence of two rotational isomers for compounds 6 and 7 can be explained by
the restricted rotation of the p-cymene ring. DFT calculations demonstrate the existence
of two rotamers, with either the iPr (6a′/7a′) or Me (6b′/7b′) of the p-cymene ring lying
above the Cl ligand (Figure 2 and Figures S26–S28). These rotamers are computed to be
close in energy (∆G = −0.4 kcal mol−1 in 6 and −0.2 kcal mol−1 in 7), suggesting minimal
thermodynamic preference for either isomer. We propose, therefore, that the product
distribution is determined by kinetic control. The strong preference for one isomer in 7
is likely due to a strong conformational preference for complex 5 in solution, which gets
“locked in” when the complex cyclises on treatment with a halide abstractor and base. High-
temperature NMR measurements on 6 and 7 were hindered as the complexes display poor
solubility in CD3C6D5 and decompose in CDCl3 and CD3CN. Variable temperature NMR
studies (1H and 31P NMR spectroscopy) in CD2Cl2 (268–298 K) showed no coalescence,
indicating higher temperatures are required for interconversion.
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2.3. Ligand Displacement Studies

To test the stability of the Ru–P bond, solutions of 4 and 5 in CD2Cl2 were exposed to
an atmosphere of dry CO (Scheme 2B). NMR analysis indicated loss of the PDCA ligands
and formation of [{p-cymene}RuCl2(CO)] [32] (Figure S25). Similar behaviour has been
observed in [Rh(η3-TMPP)2][BF4]2 [TMPP = tris(2,4,6-trimethoxyphenyl)phosphine] that
when exposed to an atmosphere of CO, can reversibly coordinate, a useful feature that has
been used for chemosensing applications [33,34]. In contrast, no reaction was observed on
treating the metallacycle 6 with CO, suggesting that the chelate complex is more robust to
ligand substitution.

3. Materials and Methods

For full details on experimental procedures, see the Supporting Information.
Note: We observed that although compounds 1–3 display some stability, under aerobic

conditions, decomposing over the course of a few weeks; samples of 4–7 are susceptible to
spontaneous decomposition in solution/solid-state in the glovebox.

L-1–L-5 were prepared according to our previously reported methodologies [9].
Crystals suitable for single-crystal X-ray diffraction for 1–5 were grown from concen-

trated toluene (layered with hexane) or C6D6 extracts at room temperature, respectively.
The phosphine (L-1 12 mg; L-2 6.9 mg; L-3 5.2 mg; L-4 6.9 mg; L-5 7.4 mg, 0.016 mmol)

was dissolved in CD2Cl2 (0.4 mL) and added dropwise to a solution of [Ru(p-cymene)Cl2]2
(5 mg, 8.16 × 10−3 mmol) in CD2Cl2 (0.4 mL) with stirring, affording an orange solution.
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Volatiles were removed under vacuum, affording the target compounds 1–5. In the par-
ticular case of 2, the reaction was successfully scaled up, employing 50 mg (0.08 mmol) of
[Ru(p-cymene)Cl2]2, with full characterization described below. Figure 3 shows the general
numbering scheme used for the the p-cymene ligand in compounds 1–5.
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578.0715; found 578.0712 formula C26H33Cl2NOPRu. IR (ATR)
−
vmax/cm−1: 3237 (N-H),

1654 (C=O). Red crystalline solid, 5 mg, 39%.
[Ru(p-cym){PPh2C(=O)N(H)Ph}Cl2] (2). 1H NMR δ/ppm (400 MHz, CD2Cl2): 10.11

(s, 1H, NH), 7.88 (ddd, 3JHH = 10.0 Hz, 3JHH = 8.2 Hz, 3JHH = 1.4 Hz, 4H, PPh2
m), 7.5–7.47

(m, 4H, PPh2
o), 7.44 (d, 3JHH = 8.4 Hz, 2H, NPho), 7.42–7.38 (m, 2H, PPh2

p), 7.21 (t, J = 7.6
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m), 131.8 (d, 3JCP = 2 Hz, PPh2
o), 129.9 (PPh2
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(NPhm), 129.1(d, 2JCP = 7 Hz, PPh2

p), 124.9 (NPhp), 120.3 (NPho), 111.0 (C-6), 97.3 (C-3), 90.1
(d, 2JCP = 4 Hz, C-4), 86.9 (d, 2JCP = 5 Hz, C-5), 30.9 (C-2), 22.1 (C-1), 17.9 (C-7). 31P NMR
δ/ppm (162 MHz, CD2Cl2): 37.2 (s, 1P, RuPPh2). Anal. Calcd for C29H30Cl2NOPRu: C
56.96, H 4.95, N 2.29; Found C 55.48, H 5.01, N 2.30. HRMS/ESI+ m/z: [M+Na]+ calculated
634.0383; found 634.0387 formula C29H30Cl2NNaOPRu. IR (ATR)

−
vmax/cm−1: 3227 (N-H),

1655 (C=O). Dark red powder, 53 mg, 51%.
[Ru(p-cym){PPh2C(=O)N(H)p-tol}Cl2] (3). 1H NMR δ/ppm (400 MHz, CD2Cl2): 10.03

(s, 1H, NH), 7.90–7.84 (m, 4H, PPh2
o), 7.57–7.47 (m, 6H, PPh2

m+p), 7.32 (d, 3JHH = 8.4 Hz,
2H, NPhm), 7.01 (d, 3JHH = 8.2 Hz, 2H, NPho), 5.28 (d, 3JHH = 6.9 Hz, 2H, H-5), 5.26 (d,
3JHH = 6.7 Hz, 2H, H-4), 2.53 (sept, 3JHH = 6.9 Hz, 1H, H-2), 2.24 (s, 3H, NPhCH

3), 1.83
(s, 3H, H-7), 1.03 (d, 3JHH = 7.0 Hz, 6H, H-1). 13C{1H} NMR δ/ppm (100 MHz, CD2Cl2):
167.5 (C=O), 136.2 (NPhCH

3
i), 134.7 (PPh2

o), 134.6 (NPhi), 131.8 (d, 4JCP = 2 Hz, PPh2
p),

129.7 (NPho), 128.9 (d, 3JCP = 10 Hz, PPh2
m), 120.2 (NPhm), 110.9 (C-6), 97.2 (C-3), 90.1 (d,

2JCP = 4 Hz, C-4), 86.9 (d, 2JCP = 5 Hz, C-5), 81.4 (d, 1JCP = 70 Hz, PPh2
i), 30.8 (C-2), 22.1

(C-1), 21.1 (NPhCH
3), 17.9 (C-7). 31P NMR δ/ppm (162 MHz, CD2Cl2): 36.6 (s, 1P, RuPPh2).

Anal. Calcd for C30H32Cl2NOPRu: C 57.60, H 5.16, N 2.24; Found C 56.86, H 5.21, N 2.22.
HRMS/ESI+ m/z: [M-Cl]+ calculated 590.0948, found 590.0961 formula C30H32ClNOPRu.

IR (ATR)
−
vmax/cm−1: 3180 (N-H), 1665 (C=O). Dark red powder, Quantitative yield, 11 mg.



Inorganics 2023, 11, 372 8 of 12

[Ru(p-cym){PPh2C(=O)N(Ph)C(=O)N(H)Ph}Cl2] (4). 1H NMR δ/ppm (400 MHz,
CD2Cl2): 9.25 (s, 1H, NH), 7.71 (t, 3H, J = 9.0 Hz, H-ArP), 7.54–7.49 (dd, J = 11.8, 7.1
Hz, 2H, H-ArN), 7.42–7.37 (m, 3H, H-ArN), 7.33–7.30 (m, 2H, H-ArP), 7.26–7.05 (m, 9H,
H-ArN/H-ArP), 6.98 (d, J = 7.4 Hz, 1H, H-ArN), 5.45 (d, 3JHH = 6.0 Hz, 2H, H-4), 5.15
(d, 3JHH = 6.0 Hz, 2H, H-5), 2.69 (sept, 3JHH = 6.7 Hz, 1H, H-2), 1.91 (s, 1H, H-7), 1.11 (d,
3JHH = 6.9 Hz, 2H, H-1). 13C{1H} NMR δ/ppm (100 MHz, CD2Cl2): 178.1 (C=O), 177.7
(C=O), 138.2 (d, 1JCP = 9 Hz, PPh2

i), 134.9 (d, J = 9 Hz, ArP), 131.3 (d, J = 2.5 Hz, ArP),
129.9 (ArN), 129.8 (ArN), 129.1, 128.7 (NPhi x2), 128.6 (ArN), 128.3 (d, J = 10.1 Hz, ArP),
124.7 (ArN), 120.7 (ArN), 120.1 ArN), 110.2 (C-6), 96.9 (C-3), 92.1 (d, 2JCP = 4 Hz, C-4),
86.5 (d, 2JCP = 5 Hz, C-5), 30.7 (C-2), 22.3 (C-1), 17.5 (C-7). 31P NMR δ/ppm (162 MHz,
CD2Cl2): 33.50 (s, 1P, RuPPh2). Anal. Calcd for C36H35Cl2N2O2PRu: C 59.18, H 4.83, N 3.83;
Found C 56.48, H 4.73, N 3.67. Despite repeated attempts, a satisfactory elemental analysis
for this compound could not be obtained; derived from the aforementioned spontaneous
decomposition. HRMS/ESI+ m/z: [M-Cl]+ calculated 695.1168, found 695.1158; formula
C36H35ClN2O2PRu. Quantitative conversion as determined by 1H NMR spectroscopy
using TMS as internal standard.

[Ru(p-cym){PPh2C(=O)N(p-tol)C(=O)N(H)p-tol}Cl2] (5). 1H NMR δ/ppm (400 MHz,
CD2Cl2): 9.20 (s, 1H, NH), 7.68 (t, 3JHH = 9.2 Hz, 4H, PPh2

m), 7.34–7.30 (m, 4H, PPh2
p),

7.25 (d, 3JHH = 8.5 Hz, 2H, NHPhm), 7.19 (td, 3JHH = 7.8, 3JHH = 2.0 Hz, 4H, PPh2
o), 7.05

(d, 3JHH = 8.3 Hz, 2H, NHPho), 6.88 (d, 3JHH = 8.2 Hz, 2H, NPho), 6.83 (d, 3JHH = 8.4
Hz, 2H, NPhm), 5.44 (d, 3JHH = 5.4 Hz, 2H, H-4), 5.17 (d, 3JHH = 6.2 Hz, 2H, H-5), 2.70
(sept, 3JHH = 7.0 Hz, 1H, H-2), 2.29 (s, 3H, NHPhCH

3), 2.24 (s, 3H, NPhCH
3), 1.90 (s, 3H,

H-7), 1.11 (d, 3JHH = 7.0 Hz, 6H, H-1). 13C{1H} NMR δ/ppm (100 MHz, CD2Cl2):177.9
(C=O), 177.5 (C=O), 151.8 (PPh2

i), 138.9 (NPhi), 135.7 (NHPhCH
3

i), 135.2 (NPhCH
3

i), 135.0
(d, 3JCP = 9 Hz, PPh2

m), 134.5 (NHPhi), 131.1 (d, 4JCP = 3 Hz, PPh2
p ), 130.4 (NPho) 129.7

(NHPho), 128.6 (NPhm), 128.2 (d, 2JCP = 10 Hz, PPh2
o), 120.0 (NHPhm), 110.1 (C-6), 96.9

(C-3), 92.1 (d, 2JCP = 4 Hz, C-4), 86.5 (d, 2JCP = 6 Hz, C-5), 30.8 (C-2), 22.3 (C-1), 21.3
(NPhCH

3), 21.1 (NHPhCH
3), 17.45 (C-7). 31P NMR δ/ppm (162 MHz, CD2Cl2): 33.76 (s, 1P,

RuPPh2). Anal. Calcd for C38H39Cl2N2O2PRu: C 60.16, H 5.18, N 3.69; Found C 60.12,
H 5.43, N 3.20. HRMS/ESI+ m/z: [M-Cl]+ calculated 723.1476, found 723.1489; formula
C38H39ClN2O2PRu. Quantitative conversion by NMR using TMS as internal standard.
Dark red/orange powder, 15 mg.

Typical procedure for the formation of metallacycles 6 and 7. A solution containing 4 or
5 (0.016 mmol) in CD2Cl2 (0.6 mL) was added to a mixture of K2CO3 (6.8 mg, 0.048 mmol)
and AgPF6 (5.4 mg, 0.02 mmol) (as solids), and transferred to a J. Young’s tap NMR tube.
The heterogeneous mixture was agitated via sonication at room temperature for 10 min,
and filtered, affording an orange-red solution. Removal of volatiles in vacuo afforded full
conversion to the cyclized products 6 and 7, respectively. Quantitative conversion was
determined by 1H NMR spectroscopy using TMS as the internal standard. Figure 4 shows
the general numbering scheme used for the the p-cymene ligand in compounds 6 and 7.
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tained; derived from the aforementioned spontaneous decomposition. HRMS/ESI+ m/z: 
[M-Cl]+ calculated 695.1168, found 695.1158; formula C36H35ClN2O2PRu. Quantitative con-
version as determined by 1H NMR spectroscopy using TMS as internal standard. 

[Ru(p-cym){PPh2C(=O)N(p-tol)C(=O)N(H)p-tol}Cl2] (5). 1H NMR δ/ppm (400 MHz, 
CD2Cl2): 9.20 (s, 1H, NH), 7.68 (t, 3JHH = 9.2 Hz, 4H, PPh2m), 7.34–7.30 (m, 4H, PPh2p), 7.25 
(d, 3JHH = 8.5 Hz, 2H, NHPhm), 7.19 (td, 3JHH = 7.8, 3JHH = 2.0 Hz, 4H, PPh2o), 7.05 (d, 3JHH = 8.3 
Hz, 2H, NHPho), 6.88 (d, 3JHH = 8.2 Hz, 2H, NPho), 6.83 (d, 3JHH = 8.4 Hz, 2H, NPhm), 5.44 
(d, 3JHH = 5.4 Hz, 2H, H-4), 5.17 (d, 3JHH = 6.2 Hz, 2H, H-5), 2.70 (sept, 3JHH = 7.0 Hz, 1H, H-
2), 2.29 (s, 3H, NHPhCH3), 2.24 (s, 3H, NPhCH3), 1.90 (s, 3H, H-7), 1.11 (d, 3JHH = 7.0 Hz, 6H, 
H-1). 13C{1H} NMR δ/ppm (100 MHz, CD2Cl2):177.9 (C=O), 177.5 (C=O), 151.8 (PPh2i), 138.9 
(NPhi), 135.7 (NHPhCH3i), 135.2 (NPhCH3i), 135.0 (d, 3JCP = 9 Hz, PPh2m), 134.5 (NHPhi), 131.1 
(d, 4JCP = 3 Hz, PPh2p ), 130.4 (NPho) 129.7 (NHPho), 128.6 (NPhm), 128.2 (d, 2JCP = 10 Hz, 
PPh2o), 120.0 (NHPhm), 110.1 (C-6), 96.9 (C-3), 92.1 (d, 2JCP = 4 Hz, C-4), 86.5 (d, 2JCP = 6 Hz, 
C-5), 30.8 (C-2), 22.3 (C-1), 21.3 (NPhCH3), 21.1 (NHPhCH3), 17.45 (C-7). 31P NMR δ/ppm (162 
MHz, CD2Cl2): 33.76 (s, 1P, RuPPh2). Anal. Calcd for C38H39Cl2N2O2PRu: C 60.16, H 5.18, N 
3.69; Found C 60.12, H 5.43, N 3.20. HRMS/ESI+ m/z: [M-Cl]+ calculated 723.1476, found 
723.1489; formula C38H39ClN2O2PRu. Quantitative conversion by NMR using TMS as in-
ternal standard. Dark red/orange powder, 15 mg. 

Typical procedure for the formation of metallacycles 6 and 7. A solution containing 
4 or 5 (0.016 mmol) in CD2Cl2 (0.6 mL) was added to a mixture of K2CO3 (6.8 mg, 0.048 
mmol) and AgPF6 (5.4 mg, 0.02 mmol) (as solids), and transferred to a J. Young’s tap NMR 
tube. The heterogeneous mixture was agitated via sonication at room temperature for 10 
min, and filtered, affording an orange-red solution. Removal of volatiles in vacuo afforded 
full conversion to the cyclized products 6 and 7, respectively. Quantitative conversion was 
determined by 1H NMR spectroscopy using TMS as the internal standard. Figure 4 shows 
the general numbering scheme used for the the p-cymene ligand in compounds 6 and 7. 

 
Figure 4. General numbering scheme for cyclization compounds 6a and b (R = Ph) and 7a and b 
(R= p-tol). * indicate multiplets in the NMR spectrum. 
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60:40. (6b as main product) Characterization for 6a and 6b: 1H NMR δ/ppm (400 MHz, 
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[Ru(p-cym){κ2-P,N-PPh2C(=O)N(Ph)C(=O)NPh}Cl] (6). Mixture of 2 products, ratio
60:40. (6b as main product) Characterization for 6a and 6b: 1H NMR δ/ppm (400 MHz,
CD2Cl2): 7.81–7.71 (m, Ph), 7.66–7.63 (m, 2H, Ph), 7.58–7.53 (m, Ph), 7.51 (d, J = 7.7 Hz, 6H,
NPh), 7.47–7.37 (m, Ph), 7.23 (d, J = 7.6 Hz, 4H, NPh), 7.03 (s, 2H, Ph), 5.69–5.62 (m, 4H,
6b-iPr-C6H4-Me), 5.64 (d, 3JHH = 6.1 Hz, 2H, 6a-H5), 5.46 (d, 3JHH = 6.1 Hz, 2H, 6a-H4),
2.78 (sept, J = 6.8 Hz, 1H, 6a-H2), 2.21 (s, 3H, 6a-H7), 1.85 (sept, J = 6.86 Hz, 1H, 6b-H2),
1.64 (s, 3H, 6b-H5), 1.30 (d, J = 6.9 Hz, 6H, 6a-H1), 0.83 (d, 3JHH = 6.9 Hz, 3H, 6b-H1), 0.78
(d, 3JHH = 6.9 Hz, 3H, 6b-H1’). 13C{1H} NMR δ/ppm (100 MHz, CD2Cl2): 135.4 (d, J = 11
Hz, Ph), 134.3 (d, J = 36 Hz, Ph), 133.9 (d, J = 2 Hz, Ph), 133.7 (d, J = 10.1 Hz, Ph), 131.7
(d, J = 20 Hz, Ph), 130.9 (d, J = 10 Hz, Ph), 130.1 (NPh), 129.4 (d, J = 11 Hz, Ph), 129.2 (d, J
= 11 Hz, Ph), 126.5 (NPh), 108.8 (6b-C4), 102.4 (6a-C6), 97.7 (6a-C3), 97.3 (6b-C3), 90.5 (d,
2JCP = 3 Hz, 6b- iPr-C6H4-Me), 88.3 (d, 2JCP = 6 Hz, 6b-iPr-C6H4-Me), 87.2 (d, 2JCP = 3 Hz,
6b-iPr-C6H4-Me), 85.6 (d, 2JCP = 4 Hz, 6b-iPr-C6H4-Me), 79.4 (6a-C5), 78.6 (6a-C4), 31.9
(6a/6b-C2), 22.2 (6b-C1), 21.4 (6a-C1), 20.9 (6b-C1’), 19.3 (6a-C7), 17.9 (6b-C5). 31P NMR
δ/ppm (162 MHz, CD2Cl2): 52.59 (s, 1P, RuPPh2). HRMS/ESI+ m/z: [M+H]+ calculated

695.1168, found 695.1175; formula C36H35ClN2O2PRu. IR (ATR)
−
vmax/cm−1: 1616 (C=O),

1584 (C=O). Dark orange powder, 10 mg, 88%.
[Ru(p-cym){κ2-P,N PPh2C(=O)N(p-tol)C(=O)Np-tol}Cl] (7). Mixture of 2 products,

ratio 87:13. (7b as main product). Characterization for 7b: 1H NMR δ/ppm (400 MHz,
CD2Cl2): 7.80–7.70 (m, 7H, H-ArP), 7.64 (tq, J = 7.5, 2.04 Hz, 1H, H-ArP), 7.53 (td, J = 7.6,
3.0 Hz, 2H, H-ArP), 7.33 (t, 3JHH = 8.1 Hz, 5H, H-ArN), 7.10 (d, 3JHH = 8.3 Hz, 3H, H-ArN),
5.64-5.69 (m, 3H, iPr-C6H4-Me), 5.62 (d, 3JHH = 6.3 Hz, 1H, iPr-C6H4-Me), 2.42 (s, 3H, H6),
2.39 (s, 3H, H7), 1.85 (sept, 3JHH = 6.9 Hz, 1H, H2), 1.65 (s, 3H, H5), 0.84 (d, 3JHH = 7.0 Hz,
3H, H1), 0.79 (d, 3JHH = 7.0 Hz, 3H, H1’). 13C{1H} NMR δ/ppm (100 MHz, CD2Cl2): 170.9
(d, 1JCP = 51 Hz, Ph2P-C=O), 162.1 (d, 3JCP = 3 Hz, C=O), 142.5 (quat-N), 139.6 (quat-N),
135.4 (d, J = 11 Hz, ArP), 133.8 (d, J = 3 Hz, ArP), 133.6 (d, J = 10 Hz, ArP), 132.2 (quat-N),
131.4 (ArN), 130.8 (d, J = 10 Hz, ArP), 130.5 (quat-N), 129.4 (d, J = 11 Hz, ArP), 127.1 (d, J
= 45 Hz, ipso-P), 126.3 (d, J = 51 Hz, ipso-P), 126.2 (ArN), 108.8 (d, 2JCP = 2 Hz, C4), 97.1
(C3), 90.6 (d, 2JCP = 4 Hz, iPr-C6H4-Me), 88.1 (d, 2JCP = 6 Hz, iPr-C6H4-Me), 87.1 (d, 2JCP
= 2 Hz, iPr-C6H4-Me), 85.6 (d, 2JCP = 4 Hz, iPr-C6H4-Me), 31.1 (C2), 22.1 (C1), 21.5 (C7),
21.4 (C-6), 20.8 (C1’), 17.9 (C5). 31P NMR δ/ppm (162 MHz, CD2Cl2): 52.34 (s, 1P, RuPPh2).
HRMS/ESI+ m/z: [M+H]+ calculated 723.1476, found 723.1477; formula C38H39ClN2O2PRu.

IR (ATR)
−
vmax/cm−1: 1594 (C=O), 1509 (C=O). Dark orange powder, 10 mg, 85%.

Typical procedure for reactivity with CO. An NMR tube containing a solution of 4
(0.016 mmol) in 0.6 mL of CD2Cl2, was charged with an atmosphere of CO via three freeze–
thaw cycles. The resulting sample was studied via multinuclear NMR spectroscopies (1H,
13C{1H} and 31P NMR); showing formation of the corresponding free phosphine/PDCA
(L-4) and [{p-cymene}RuCl2(CO)], in accordance with the reported literature [9,32].

4. Conclusions

We have described the synthesis of ruthenium(II) complexes coordinated by PCAs
and PDCAs, and the first reports of PDCAs as both monodentate and bidentate ligands. In
the case of the metallacycles 6 and 7 a mixture of two isomers is obtained, as evidenced by
NMR spectroscopy. Whilst the monodentate coordination motif in these complexes can be
displaced by CO, chelates 6 and 7 are robust to ligand displacement reactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics11090372/s1, The Electronic Supplementary Information
(ESI) available is as follows: full experimental details for the synthesis, characterization, and analysis
(References [9,35–46] are cited in the Supplementary Materials).
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