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Abstract: An ultrasound-assisted probe sonication route effectively prepared pure CuO and two-
dimensional CuO-ZnO nanocomposites (NCs) for different ratios of CuO and ZnO, and the exper-
imental and theoretical methods investigated the structural, photocatalytic, and electrochemical
properties. The XRD (X-ray diffraction) patterns revealed a crystallite size (D) range of 25 to 31 nm
for pure CuO and CuO-ZnO NCs. According to calculations, the sample’s optical energy bandgap
value (Eg) for the NCs is between 1.72 and 2.15 eV. Under UV light irradiation, the photocatalytic
discoloration of pure CuO and CuO-ZnO NCs on fast blue (FB) dye was assessed. Under the influence
of UV light, the CuO with 10% ZnO composite degrades 83.4% of the dye, which is greater than
pure CuO and other NCs. The electrochemical properties of the prepared NCs materials have been
studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The specific
capacitance values were found to be 248 Fg−1, 301 Fg−1, 352 Fg−1, and 277 Fg−1 for CuO, CuO + 5%
ZnO, CuO + 10% ZnO, and CuO + 15% ZnO, respectively, at 1 A/g current density. Galvanostatic
charge–discharge tests for these designed NCs show excellent capacitance performance in superca-
pacitors applications. These innovative results could be considered for expanding novel resources to
scale for dual applications in photocatalysis and supercapacitors.

Keywords: probe sonication; CuO-ZnO nanocomposites; dye discoloration; supercapacitor

1. Introduction

It is urgently necessary to accelerate the development of high-performance, low-cost,
environmentally friendly renewable energy storage and conversion technologies [1–3] to
meet the world’s fast-rising energy demands.

Devices that store energy include ultracapacitors and supercapacitors, which are
electrochemical capacitors. They have received more attention in recent years [4–8] because
of their distinguishing qualities like higher power density and longer cyclic life than
conventional batteries, as they are higher energy density capacitors, high-rate capacity,
rapid charge–discharge mechanism, and eco-friendly. The most important upcoming
energy storage technology is probably supercapacitors [9]. Due to their numerous uses in
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industries such as load cranes, forklifts, electric cars, electric utilities, and factory power
backups, supercapacitors have gained greater attention [10].

Electric double-layer capacitors (EDLCs) and pseudo-capacitors are the two cate-
gories of supercapacitors that are used to categorize them based on their charge storage
mechanisms and electrode material types. Ion adsorption at the electrode–electrolyte in-
terface allows for the electrostatic storage of charges in EDLCs. Activated carbon (AC),
carbon aerogels, carbon nanotubes, and graphene are employed as carbon-based electrode
materials [11,12]. Transition metal oxides, such as CuO, CuO, RuO2, MnO, NiO, and
CoO, are employed in pseudo-capacitors to store charges due to electrochemical redox
reactions [13–15] or conducting polymer electrode materials, such as polypyrrole, PANI,
are used [16,17]. Hybrid supercapacitors combine the advantages of EDLCs and pseudo-
capacitors, especially their high energy and power densities.

The unusual magnetic, catalytic, and electrical capabilities of metal oxide nanoparticles
have attracted the greatest attention [18]. RuO2 has become one of the transition metal
oxides with the most promising candidates. RuO2’s utilization is nevertheless constrained
by its increased cost and toxicity [19]. Therefore, it is crucial to create an environmentally
sound substitute.

The metal oxide copper oxide (CuO), which has excellent redox properties, is employed
in various applications. CuO is being studied due to its special qualities, like superior cat-
alytic activity, ease of synthesis, eco-friendly, variety in nanoscale morphologies, abundance
in nature, affordability, low toxicity, and favourable electrochemical properties [20–22].
CuO has been used in electrochemical processes as an electrode material for lithium-ion
batteries, supercapacitors, solar systems, heterogeneous catalysts, and selected gas sen-
sors [23]. Due to its enhanced electrochemical properties, it has been chosen as one of the
materials of a nanocomposite electrode system. In the current work, we have doped CuO
with various amounts of ZnO to enhance the catalytic characteristics of CuO nanoparticles.

Enhanced chemical, mechanical, and physical properties, a lower melting point, high
diffusion, structural stability, an increased surface area, and high surface energy are all
characteristics of CuO and ZnO in general [24]. CuO is usually used in combination with
large-bandgap semiconductors, such as ZnO and TiO2, in order to improve their photocat-
alytic activity under solar light irradiation [25]. When coupled, an n-type semiconductor
like ZnO with a broad bandgap energy of 3.37 eV and a p-type semiconductor like CuO
with a narrow bandgap energy of 2.5 eV result [26].

Numerous synthesis techniques, ranging from simple thermal oxidation [27], elec-
trochemical [28], precipitation [29], and hydrolysis [30], to highly complex techniques
like so-gel [31], micro-emulsion system [32], Solvothermal method [33,34], and the mi-
crowave hydrothermal method [35,36], have been developed in response to the need for
high purity CuO for industrial applications. These techniques are designed to change
the nanomaterials’ composition, particle size, crystalline structure, form, and functional
stability to affect various aspects of the synthesized nanomaterial [37]. The characteristics
of nanomaterials can be changed by altering the starting material concentration and doping
agents employed in a particular synthesis technique. In the current work, we described the
sonochemical production of CuO nanoparticles. Due to its reaction control circumstances,
homogenous mixing, and management of the particle size distribution while being exposed
to ultrasound, this preparation process has established with individual attention [38].

ZnO was doped into CuO NPs at various concentrations to create composite materials
for photocatalytic and supercapacitor applications. The modified CuO-ZnO NCs elec-
trode is put to the test as a supercapacitor electrode, and each composite’s photocatalytic
activity was assessed by measuring how quickly direct green and rapid blue degraded
when exposed to UV light [39]. We believe these innovative results are significant because
they may promote the efficient fabrication of these and other similar metal oxide semi-
conductors and provide us with vital information for advancing our understanding of
photocatalytic activity.
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Dyes are the most commonly used types of organic materials in various applications,
including cosmetic, textile, ink, and leather industries, taking ~60–70% of dye production
worldwide. It is reported that introducing dyes into the water resources causes serious
threats to drinking water, aquatic life, and marine areas. In this regard, some significant
examples are the mutagenicity and carcinogenicity of azo dyes and their derivatives [40].
Therefore, removing dyes from effluents has been extensively studied for many years.
Although eliminating residual colors and organic dyes is a near-to-impossible task, many
attempts have been made to clean up effluents impregnated with such harmful chemi-
cals. Until now, a wide variety of physical/chemical techniques, such as photocatalysis,
adsorption, etc., have been examined. Adsorption has been frequently considered a highly
efficient approach to reducing contamination because of its simplicity, acceptable efficacy,
and neutrality toward chemicals existing in wastewater [41]. Application of this technique
in dye removal goes back to the early 20th century when dye molecules needed to be re-
moved one by one due to their hazardous impacts on water resources. The broad bandgap
(3.2 eV) semiconductor ZnO nanoparticle has a high exciton binding energy (60 meV) at
room temperature. Additionally, the presence of UV photon energy causes electrons to
be stimulated from the valence band (VB) to the conduction band (CB), which restricts
the technology’s potential use in applications for cleaning up pollutants. Therefore, it is
crucial to design and adjust the ZnO crystal structure and morphology and reduce the
electron–hole (e/h+) pair recombination rate using an appropriate dopant or additive for
feasible photo discoloration under visible light. The most appealing method for improving
the photocatalytic reactions and lowering the electron–hole pair recombination is the combi-
nation of two semiconductive materials. Among the different narrow bandgap metal oxide
semiconductor nanomaterials investigated, a narrow bandgap (1.3 eV) monoclinic CuO was
suitable to improve the photocatalytic performance of ZnO. This is due to CuO’s increasing
use in gas sensing, rechargeable lithium-ion batteries, supercapacitors, solar hydrogen
processing, catalytic processes, and photovoltaic applications. The energy gaps of ZnO
(3.2 eV) and CuO (1.3 eV) encompass the ultraviolet and visible spectra, which confirms
their effective candidacy for the catalytic discoloration of dyes. They are also produced
in an environmentally benign manner and are easily accessible [42]. Table 1 shows the
synthesis methods of CuO-ZnO nanocomposites and their applications in previous studies.

Table 1. Synthesis methods of CuO-ZnO nanocomposites and their applications.

Sl. No Synthesis Method Work Done Reference

1 Solution combustion Photoluminescence and catalytic
4-nitrophenol reduction [43]

2

Solid-state
preparation of

CuO/ZnO
Nanocomposites

Functional supercapacitor
electrodes and photocatalysts [44]

3 co-precipitation
method Photocatalytic and supercapacitors [45]

4 Chemical vapor
deposition Acetone sensor [46]

5 Hydrothermal
synthesis H2S gas sensor [47]

6 Green synthesis Photocatalytic and Sensor
Applications [48]

7 Hydrothermal
method

Photo discoloration of methyl
orange dye and antifungal study [49]

8 Sol-gel process Glucose sensing [50]

9 Vapor transport
method

Photo discoloration of resazurin
(Rz) dye [51]

10 Sol-gel method Photo discoloration of methyl
orange dye [52]
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2. Materials and Methods
2.1. Synthesis of the CuO–ZnO Hybrid Nanocomposite

The CuO-ZnO hybrid NCs were obtained from the sulphate precursors like CuSO4.5H2O
(99% Sigma Aldrich St. Louis, MO, USA) (0.25 M) and ZnSO4.7H2O (99%, Sigma Aldrich)
(5, 10, and 15 M) under ultrasound irradiation. By adding 0.5 M NaOH (99%, Sigma Aldrich
St. Louis, MO, USA), the pH of the solution above was adjusted to 12. Using a probe
sonicator (Model PRO-500, 20 kHz, 500 W STERICOX INDIA PRIVATE LIMITED Delhi,
India), the reaction mixture in the sonication flask was ultrasonically treated for 30 min.
The probe has a diameter of 13 mm, is composed of high-grade titanium, and operates
at a frequency of 40 kHz with 20 percent amplitude. After 30 min of sonication, the final
product obtained was filtered using Whatman filter paper and washed with distilled water
and absolute ethanol (99%, Sigma Aldrich). In the preheated furnace, the filtered residue
was dried for 6 h using an oven and calcinated at 500 ± 10 ◦C for 3 h.

Ultrasonic waves cause bubble formation in a solvent. These bubbles, on explosion,
release a huge amount of energy capable of breaking the molecular bonds between precur-
sor particles and finally producing finer particles [53,54]. The energy released during the
explosion of the bubbles can also result in the breakage of covalent bonds among atoms in
the solvent generating free radical species. Free radicals produced are extremely reactive
and can reveal a product’s formation. Under ultrasonic waves, the solvent water generates
•H and •OH radicals that are highly reactive, which on further reaction, produce H2 and
H2O2 as presented in Equations (1)–(3):

H2O→ H• + OH• (1)

H•+ H• → H2 (2)

OH• + OH• → H2O2 (3)

The H2 and H2O2 can influence oxidation–reduction reactions [55,56] and oxidize
sulphates, copper, and zinc into their respective oxides, CuO and ZnO, which recombine to
form the end product.

2.2. Preparation of Working Electrodes

The electrodes were created by 45 min of grinding in an agate mortar, a mixture of 70%
sample (0.35 g), 15% graphite powder (<20 µm, Sigma Aldrich), and 15% PTFE solution
(60 weight % dispersion in water) as a binder to form a uniformly thin sheet layer. This
layer was then adhered to nickel mesh and pressed at 20 MPa to provide high-quality
electrical contact with the nickel mesh and the active material (2 cm × 1 cm). To ensure
the electrode made contact with the electrolyte, it was dipped in a 1.0 M KOH solution for
around 30 min, and Teflon tape was used to insulate the electrode.

2.3. Electrochemical Measurements

A fabrication of a supercapacitor cell is powered by a specific blend of CuO and CuO-
ZnO composite electrodes with 1M potassium hydroxide (KOH). An indicator (platinum),
reference (Ag/AgCl), and working electrode were used for electrochemical measurements.
The CHI608E (CH Instrument) conducts impedance spectroscopy, cyclic voltammetry, and
galvanostatic charge–discharge methods. The following Equation (4) [57] was used to
determine the total capacitance “C” of the electrodes through a.c impedance spectroscopy
(frequency range: 10 mHz–10 kHz):
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The capacitance values from cyclic voltammetry were calculated using the following
mathematical relation [58]:
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potential window (V), ‘m’ is the mass of the active material (mg), S is the scan rate (mV s−1),
I (A) is the discharge current density, and ∆t (s) is the discharge time.

2.4. Characterizations

Philips X’pert-PRO X-ray diffractometer with graphite monochromatized Cu Kα
(λ = 1.5418 Å) radiation was used to obtain the PXRD patterns with a scan rate of 2 min−1

and 2θ ranging from 10◦ to 80◦. For cyclic voltammetric tests, the measurement was
performed on a CHI604E potentiostat with a tri-electrode system, consisting of a working
electrode, platinum wire, and Ag/AgCl as the working, counter, and reference electrodes,
respectively, and the electrolyte being a 1.0 M KOH solution. The potential range was
−1.0 V to 0.6 V (vs. Ag/AgCl electrode) and the scanning rate was 5 mV/s, 10 mV/s,
15 mV/s, 20 mV/s, and 25 mV/s, for the Galvanostatic charge–discharge measured at
a current density of 5 Ag−1 within the potential window of 0 to 0.6 V vs. Ag/AgCl. In
addition, with an AC amplitude of 5 mV and a frequency range of 1 Hz to 1 MHz, EIS
measurements were also carried out here.

3. Results and Discussion
3.1. PXRD Analysis

The pure CuO and ZnO-doped CuO blended NCs with varied compositions are
revealed in Figure 1a’s PXRD pattern. The recorded XRD peaks of CuO (110), (002), (111),
(202), (020), (113), (311), and (004) are complied with the reference pattern of the monoclinic
structure (JCPDS 05–0661) [59]. Based on the information in the JCPDS 36-1451 file [60],
the hexagonal wurtzite structure was identified as the crystal phase of the synthesized
ZnO particles. As seen in Figure 1, the (100), (110), (002), (101), (111), (102), (202), (020),
(110), (113), (103), (200), (112), (311), and (004) planes all exhibit the hexagonal wurtzite
structure. For pure ZnO, the planes are (100), (002), (101), (102), (103), (110), (200), (112),
and (201), respectively. Experimental diffraction peaks for both samples are clearly defined,
demonstrating the high quality and crystallinity of the powders [33,34]. The crystallite size
(D) is estimated using eq for CuO-ZnO hybrid NC. 7 (Scherrer’s formula). D is observed
between 25 and 30 nm.

D =
Kλ

βcosθ
(7)

wherein, ‘K’—constant, ‘l’—wavelength, and ‘b’—full width at half maximum (FWHM).
The crystallite size (D) for the CuO-ZnO hybrid nanocomposite was calculated from

the prominent peaks (101) and (111) and was evaluated to be in the range of 25–31 nm.
The straining that happened in the Cu2+ sites of the CuO host lattice due to Zn2+ inclusion
caused the increase in crystallite size observed. The rise in crystallite size may be attributed
to the small variation in ionic radii of Cu2+ (0.073 nm) and Zn2+ (0.074 nm) [61,62]. Addi-
tionally, a slight shift of the main diffraction peak (111) towards a lower (2θ) angle can be
observed with an increment in ZnO concentration, which could be due to the exchange
of Cu2+ ions of the CuO host lattice structure by Zn2+ ions. The exchange of Cu2+ ions by
Zn2+ can be established by studying the lattice parameters from the Equation (8) [63]:

1
d2

hkl
=

4
3

(
h2 + hk + k2

a2

)
+

l2

c2 (8)
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wherein; dhkl—interplanar distance, h, k, l—Miller indices; a, b, and c—lattice parameters.
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Figure 1. PXRD spectra of (a) CuO–ZnO hybrid nanocomposites (b) Non-calcined CuO NPs and
pure ZnO NPs (inset).

All samples displayed lower lattice parameters (c) values accredited to the exchange
of Cu2+ by Zn2+ ions of different ionic radii [64,65]. The slight shift in the peak towards the
side of the lower (2θ) angle and variations in the values of d-spacing and lattice parameters
confirm the doping of ZnO into the CuO lattice structure. Figure 1b shows the XRD
pattern of the non-calcinated CuO sample, which proves CuO particles were formed under
ultrasonic waves. The inset of Figure 1b shows the XRD pattern of the ultra-sonicated ZnO
sample. Table 2 shows the physical and optical properties of CuO-ZnO hybrid NCs.

Table 2. Physical and optical properties of CuO-ZnO hybrid NCs.

ZnO Doping
Concentration (%)

Crystal Size
(nm)
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Lattice Parameters (nm) The Band
Gap (eV)

Unit Cell
Volumea = b c

0 25 1.33 2.30 1.36 1.72 81.08A3

5 28 1.76 3.06 0.57 1.78 78.25A3

10 28 1.76 3.06 0.57 1.85 76.12A3

15 31 1.47 2.55 1.80 2.15 73.08A3

3.2. Morphological and EDAX Analyses

SEM pictures in Figure 2a–d show the morphology of synthesized CuO and CuO-
ZnO hybrid NCs with different compositions of zinc oxide (0%, 5%, 10%, and 15%). The
samples show agglomeration with a diameter of approximately ~10 µm. The amount of
agglomeration grew with an increase in ZnO concentration, as shown from the micrographs
in Figure 2a,b, and Figure 2c,d displays decorating of ZnO onto CuO nanoparticles.
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Figure 2. SEM micrographs of (a) CuO, (b) CuO + 5% ZnO, (c) CuO + 10% ZnO, and (d) CuO + 15%
ZnO.

The sample was comprised of Cu, Zn, and O elements with different weight percent-
ages as shown in Figure 3a–d. The EDX spectrum of the CuO (Figure 3a) displayed peaks
for Cu and O which confirms the formation of the CuO metal oxide. From Figure 3b–d, it is
evident that Zn is doped onto CuO. Figure 4 shows the DRS and energy bandgap spectra
of the samples.

The Kubelka–Munk equation F(R), widely used to transform diffused reflectance
into an equivalent absorption coefficient and utilized to examine particles (Figure 4a), is
provided by Equation (9) [66]:

F(R) =
(1− R)2

2R
(9)

where R—reflectance, F(R)—Kubelka–Munk function.
Equation (10) was used to compute the optical energy gap using the Tauc relation:

F(R) hn = A (hn − Eg) n (10)

where n = 1/2 and 2 is direct and indirect transitions.
The optical energy gap was calculated using the Tauc relation as in Equation (10)

thereby giving a direct band. The plots of (F(R)) 2 vs. hυ synthesized hybrid NCs were
displayed in Figure 4b. The samples and their optical energy gap Eg values of CuO, CuO
+ 5% ZnO, CuO + 10% ZnO, and CuO + 15% ZnO were 1.72, 2.38, 1.85, and 2.21 eV,
respectively (inset Figure 4b). The deduced bandgap energy value of CuO was ~1.72 eV,
which was found to be somewhat higher compared to the previously documented value of
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1.83–2.08 eV [55,56]. The method of synthesis used in the current work can be implicated in
the variation in bandgap values. An increase in the energy bandgap from 1.72 eV to 2.15 eV
was seen simply by increasing the ZnO concentration.
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This hypochromic movement can be due to the familiar Burstein–Moss effect [57].
Semiconductors with n-type doping generally exhibit this effect. The fermi level rises
during n-type doping in semiconductors as electrons fill the lower level of the conduction
band. This causes a shift towards shorter wavelengths in the band edge absorption. As
a result, a photon with a shorter wavelength than that of the undoped semiconductor is
released when photo-excited electrons and positive holes recombine.

3.2.1. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis
(DTA) Analysis

TGA and DTA analyses were used to examine the thermal characteristics of CuO
and CuO-ZnO hybrid NCs in their as-prepared state (Figure 5a–d). Due to the loss of
free and coordinated water molecules in the samples, the first weight loss of around 30%
in the TGA curve up to 300 ◦C was followed by an endothermic peak at 165 ◦C [67].
Due to the loss of capping agent (PEG) and glycerol, the TGA curve shows additional
weight variations (20%) in the 210–600 ◦C temperature range. It should be emphasized
that the TGA curve’s apparent weight increases beyond 580 ◦C due to an instrument
artefact. Between 200–800 ◦C, there are no changes in the TGA curve, which suggests the
development of stable CuO-composite materials.
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Figure 4. DRS and energy bandgap spectra of samples (a,b); (A) CuO, (B) CuO + 5% ZnO, (C) CuO +
10% ZnO, and (D) CuO + 15% ZnO.

3.2.2. Photocatalytic Studies

ZnO has potential as a photocatalyst material because of its property of wide bandgap.
It has been reported that zinc oxide is an N-type semiconductor with a wide bandgap
of 3.37 eV and a large exciton binding energy of 60 meV. Pure ZnO nanoparticles absorb
around 355–392 nm while they emit around 392–524 nm which varies according to their
intrinsic defects and size. The fast blue (FB) in an aqueous solution was broken down by
the photocatalytic experiment of the CuO, CuO + 5% ZnO, CuO + 10% ZnO, and CuO +
15% ZnO photocatalysts under UV–visible light radiation. Photocatalytic experiments were
performed in a circular glass reactor using a 125 W medium-pressure mercury vapor lamp
as the UV light ≥ 370 nm wavelength source at room temperature. In each experiment,
100 mL of fast blue solution was combined with 0.1 g of the photocatalyst at a concentration
of 15 mg L−1. There was a 23 cm gap between the light source and the sample to prevent
heat from the light source. The reaction mixture was exposed to UV light in the open air
for 120 min, and 5 mL of the sample solution was taken out and measured every 15 min in
the 200–800 nm UV–visible range.
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Figure 5. Thermal analysis (TGA-DTA) of samples (a) CuO, (b) CuO + 5% ZnO, (c) CuO + 10% ZnO,
and (d) CuO + 15% ZnO.

Figure 6a–d shows the dye decomposition absorbance spectra with a maximum wave-
length of 610, 613, 614, and 613 nm for CuO, CuO + 5% ZnO, CuO + 10% ZnO, and CuO +
15% ZnO. The discoloration of FB aqueous solution evaluated the photocatalytic activity
of CuO NPs. As shown in Figure 7a,b, after 120 min of UV light, the photo discoloration
rate of FB dye decolorized up to 58.75%, 66.5%, 83.4%, and 74.3% for CuO, CuO + 5% ZnO,
CuO + 10% ZnO and CuO + 15% ZnO, respectively [68,69]. The discoloration percentage
of the dyes was determined using Equation (11):

%discoloration =
Co −Ce

Co
× 100 (11)

where Co—initial dye concentration and Ce—dye concentration after adsorption at time t
seconds. Further, C/Co values were also calculated by the following Equation (12):

log
C
Co

= −Kt (12)
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Figure 6. Absorbance spectra of FB dye under UV light (a) CuO, (b) CuO + 5% ZnO, (c) CuO + 10%
ZnO, and (d) CuO + 15% ZnO.

Co and C—dye concentrations at time t = 0 min and at the time of testing, respectively,
and k—first order rate constant. The determined data showed that log C/Co and k had
a linear relationship, supporting first-order kinetics. For CuO, CuO + 5% ZnO, CuO +
10% ZnO, and CuO + 15% ZnO, the slope k was estimated for FB under UV light and
was 4.060 × 10−3 m−1, 4.063 × 10−3 min−1, 4.068 × 10−3 min−1, and 4.065 × 10−3 min−1,
respectively.
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Figure 7. (a) % decolorization and (b) Plot of C/C0 vs. irradiation time of FB dyes under UV light
(dark room, CuO, CuO + 5% ZnO, CuO + 10% ZnO, and CuO + 15% ZnO).

On UV light illumination, both photocatalysts (ZnO and CuO) were excited, resulting
in the generation of electron–hole pairs. Since the valence band edge of ZnO is more
positive than that of CuO, the holes may migrate from the VB of ZnO to the VB of CuO
and react directly with organic contaminants. The conversion of •OH from H2O has a
potential of +2.38, which is lower than ZnO VB potentials. Simultaneously, water may
oxidize to a hydroxyl radical (•OH) while reacting with h+ at the (VB) of ZnO thereby
improving the photocatalytic efficiency. As a result, many electrons are collected at the CB
of ZnO because ZnO is more negative than CuO and tends to flow from the CB of ZnO
to the CB of CuO [68]. Furthermore, the electrons in CB of ZnO and CuO may not react
with the adsorbed O2 on the catalyst’s surface to generate O2

•− because ZnO and CuO’s
CB energy levels are more positive than the standard potential of O2/O2

•− (−0.33 eV). A
series of reactions take place when H2O and O2 are present. With the help of positive holes,
H2O is oxidized, and O2 is reduced with the help of the CB’s photoelectron. Reactive O2
species are produced, including H2O2, O2

−, and OH• and holes may actively involve the
decolorization of dye solution completely, as shown in Figure 8 [68–70].

ZnO/CuO + hν→ h+ + e− (13)

FBad + h+→ FB+ (14)

H2Oad + h+→ *OH + H+ (15)

HO−ad + h+→*OH (16)

*OH + FB→ intermediates→ CO2 + H2O (17)

O2 + e− →O−*2 (18)

O*−2 + H+→ HO2 (19)
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HO2
* + FB→ intermediates→ CO2 + H2O (20)

O*−2 + H+ + HO2*→ H2O2 + O2 (21)

H2O2 + hν→ *OH (22)
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Figure 8. Mechanism for the photocatalytic discoloration of FB dye under UV light for CuO + 10%
ZnO nanocomposite.

Consequently, the amount of CuO + 10% ZnO photocatalyst determines the dye’s
photo discoloration activity. Under UV light, the decolorization activity of FB dyes was
investigated by varying the catalyst dose from 20 to 60 mg and maintaining the concen-
tration (20 ppm) (Figure 9a). Over a 120 min period, a specific dose of catalyst (60 mg)
improved the rate of dye photo discoloration. A further increase in the catalyst quantity
to 60 mg reduced the activity due to the effects of screening and light scattering [71,72].
Consequently, experimental procedures with FB dye concentrations ranging from 10 to
25 ppm were used to determine the ideal dye concentration. As the concentration of CuO +
10% ZnO in the dye increases, less dye molecule adsorption occurs on the photocatalyst
surface. Thus, the 20 ppm dye concentration exhibits better photo discoloration activities,
as shown in Figure 9b [73–75].
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Figure 9. Rate of photo discoloration of FB under UV light (a) different dye concentrations and
(b) different ppm of CuO + 10% ZnO.

The recyclability of the prepared catalysts is a significant consideration when determin-
ing the catalyst’s practical application and scalability. The photocatalysts were separated
by centrifugation without washing after each run for the recycling ability process, and the
degraded FB supernatant was removed before adding fresh FB solution. Five recycling
experiments were conducted to determine the CuO + 10% ZnO sample’s durability and
recyclability for photocatalytic discoloration Figure 10a. The CuO + 10% ZnO catalyst
could demonstrate visible-light-induced photocatalytic activity in five subsequent cycling
experiments without regeneration. The concentration of FB was shown to drop in each
cycle. Despite this, some photocatalytic activity was lost after recycling. For the second
through five runs, the activity in the first run was higher than that seen in these sequential
uses at the end of a 2 h visible light irradiation. The catalyst maintained some activity,
as seen by the final run’s observation of a 10% discoloration of FB, even though it was
speculated that the intermediates from the decomposed FB may have blocked the active
sites [76–78]. In Figure 10b, it was found that, without scavengers, the photocatalytic
discoloration of FOR on CuO + 10% ZnO was ~83.4% after 2 h. A total of 2 mg AgNO3 as a
scavenger of O2

−• was added in the photocatalytic system causing the photo discoloration
of FB on CuO + 10% ZnO to decrease significantly, reducing the discoloration to 28%. This
revealed that O2−• largely influenced the photocatalytic breakdown of FB over CuO + 10%
ZnO. As a hole scavenger, 2 mg of ethanol was used. The FB was degraded by this addition
by up to 34.26%, with little difference from the unquenched test. As a •OH scavenger,
2 mg benzenic acid was introduced to the photo discoloration system, which caused a 41%
FB discoloration [79–82]. According to the results of the quenching tests, O2

−• was the
reason for the discoloration of FB by CuO + 10% ZnO under UV light, with •OH and holes
species being much less significant. Table 3 illustrates the comparison of photocatalytic
activity of the CuO-ZnO nanocomposites with recent reports. In the present study, the
modified CuO-ZnO NCs exhibited good photocatalytic activity as measured by the rate of
discoloration of direct green and rapid blue when exposed to UV radiation.
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Figure 10. (a) Recyclability and (b) Scavenging examinations of FB under UV light of CuO + 10%
ZnO.

Table 3. Comparison of photocatalytic performance of CuO-ZnO nanocomposites with recent reports.

S. No Material Pollutant Irradiation Source Discoloration
Efficiency (%) References

1 CuO-ZnO Methylene blue Halogen lamp 82 [83]

2 ZnO/CuO/SnO2 Fast green Visible light 93.68 [84]

3 Chitosan/CuO-ZnO Rapid green Solar light
UV light

60.23
91.21 [85]

4 Silane-TiO2 Methylene blue UV light 82 [86]

5 CuO-ZnO Rapid blue UV light 83.4 Present work

Cyclic voltammetry (CV) to determine the capacitive performance and electrochemical
properties of supercapacitor electrodes is a helpful approach for CuO, CuO-ZnO, CuO +
10% ZnO, and CuO + 15% ZnO (Figure 11). Three combinations of electrode systems allow
for the performance of CV analysis (−0.6 V to +1.0 V (vs. Ag/AgCl)). Figure 11a–d depicts
the behavior of CuO and CuO-ZnO composites in 1 M KOH as an electrolyte at various
scan speeds (10, 20, 30, 40, and 50 mV/s) [87]. Good electrode stability is demonstrated
by the electrodes’ anodic and cathodic peak positions not significantly changing with the
growth cycles [88].

Figure 12 shows a sequence of a cyclic voltammogram (at a scanning rate of 10 mVs−1)
of CuO, CuO + 5% ZnO, CuO + 10% ZnO, and CuO + 15% ZnO electrodes for 25 cycles,
respectively. It can be observed that the locations of anodic and cathodic peaks of both
electrodes did not nearly vary with growing cycles. Thus, it can be supposed that the
electrodes have a stable cycle and considerable structural modifications did not take place
while charging and discharging [89].
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Figure 11. Cyclic voltammogram of (a) CuO, (b) CuO + 5% ZnO, (c) CuO + 10% ZnO, and (d) CuO +
15% ZnO samples at various scan rates vs. the Ag/AgCl electrode.

According to the Randles–Sevcik equation for a reversible process, Ref. [90] the height
current is symbolized by Equations (23) and (24):

ip = 2.69× 105 × n3/2 ×A×D1/2 ×C0 × v1/2 (23)

where n—number of electrons, A—extent of the electrode, D—diffusion co-efficient, ν—
scanning rate, and C0—initial concentration;

C0 =
ρ

M
(24)

where ρ—is the theoretical density and M—is the molar mass of samples.
The relation between the cathodic peak current (ip) and the square root of the electrode

sample scan rate (v1/2) is depicted in Figure 13a–d. The CuO and CuO-ZnO electrode
reactions are constrained by hydrogen diffusion, as shown by the strong linear relationship
between ip and 1

2 . Using Equation (1) and the slope of the fitted line in Figure 13, the
proton diffusion coefficient (d) for CuO, CuO + 5% ZnO, CuO + 10% ZnO, and CuO +
15% ZnO electrode materials calculated to be 1.470 × 10−5 cm2s−1, 1.344 × 10−4 cm2s−1,
1.739 × 10−4 cm2s−1, and 6.525 × 10−5 cm2s−1. Out of which, electrode CuO + 10% ZnO is
comparatively greater than the other electrode materials [91–93].
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Figure 12. Cyclic voltammogram of (a) CuO, (b) CuO + 5% ZnO, (c) CuO + 10% ZnO, and (d) CuO +
15% ZnO electrodes for 25 cycles at 10 mV/s.
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Figure 13. Relationship between the anodic peak current (ip) and the square root of the scan rate
(υ1/2) for (A) CuO, (B) CuO + 5% ZnO, (C) CuO + 10% ZnO, and (D) CuO + 15% ZnO.
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3.2.3. Impedance Spectroscopy Analysis

In Figure 14a–d, the impedance spectra of charge transfer and bulk resistance demon-
strated the properties of the prepared electrodes. The creation of a double layer at the
electrode–electrolyte interface was confirmed by a nearly vertical line followed by a line
with an approximate unity slope in the lower frequency range [94]. We exposed the differ-
ent parameters, such as charge-transfer resistance (Rct) and electrode capacitance (Cdl),
which are tabulated (Table 4) alongside the total capacitance values using an equivalent
circuit fitted to a Nyquist plot (Figure 15). The high capacitance and low resistance of an
electrode made of CuO and 10% ZnO may result from the electrode’s nanocomposite pores
being well-matched to the ions in the electrolyte. Table 4 show the EIS data’s for the CuO,
CuO + 5% ZnO, CuO + 10% ZnO, and CuO + 15% ZnO electrodes.
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Figure 14. Nyquist plot of CuO, CuO + 5% ZnO, CuO + 10% ZnO, and CuO + 15% ZnO electrodes.

Table 4. EIS data’s for CuO, CuO + 5% ZnO, CuO + 10% ZnO, and CuO + 15% ZnO electrodes.

Name of the Electrode Charge-Transfer Resistance
(RCt) (Ω)

The Capacitance of Double
Layer (Cdl) (F)

CuO 12.52 0.00156
CuO + 5% ZnO 10.61 0.00325
CuO + 10% ZnO 8.34 0.00786
CuO + 15% ZnO 11.96 0.000947
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The impedance spectra in Figure 14 were additionally analyzed using a fitting tech-
nique with the help of the modified Randal’s equivalent circuit that includes Rs (solution
resistance), Cdl (double-layer capacitance), Rct (charge-transfer resistance), and W is War-
burg component, as shown in Figure 15 [94–96]. The Rs indicates the resistance of the
electrode and current collector.

As observed in the resistance plot, the charge-transfer resistance (Rct) and double-layer
capacitance (Cdl) values measure the two-dimensional figure at high frequencies. These
plots show that the charge-transfer resistance is low in electrode C, followed by a rise in the
electrode’s capacitance. From this knowledge, we clarify that electrode C’s electrochemical
behavior is superior to other electrodes [97–99].

3.3. Charge–Discharge Studies

Galvanostatic charge–discharge has been utilized to evaluate the electrochemical
behavior of the prepared electrodes (Figure 16). By using Equation (6) [95], the obtained
specific capacitance of electrodes a–d at 1 A/g current density are 258 Fg−1, 282 Fg−1,
368 Fg−1, and 318 Fg−1, respectively.
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Figure 16. Galvanostatic charge–discharge of (a–d) electrodes at different current densities.

Figure 17 shows the corresponding specific capacitance as a function of current density,
which reveals that the specific capacitance decreases for the electrodes with increased
current densities. Table 5 illustrates the comparison of capacitance performance of the
CuO-ZnO nanocomposite with recent reports. The results clearly show that the CuO-ZnO
nanocomposite in the current study has good performance.



Inorganics 2023, 11, 370 20 of 25Inorganics 2023, 11, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 17. Variation of the specific capacitance of the electrodes A, B, C, and D as a 
function of current density. 

3.4. Cyclic Stability 
The cycling efficiency of a supercapacitor cell is the most important parameter for the 

application. The electrochemical cycling stability of the prepared electrodes was carried 
out. The charge–discharge measurement was repeated 2000 times at a constant 5 A/g cur-
rent density (Figure 18). 

 
Figure 18. Variation of the specific capacitance of electrodes A, B, C, and D as a func-
tion of voltammetric cycles at 5 A/g current density. 

4. Conclusions 
For different ratios of CuO and ZnO, two-dimensional CuO-ZnO nanocomposites 

(NCs) and pure CuO were successfully prepared using the ultrasound-assisted probe son-
ication method. The structural, photocatalytic, and electrochemical properties were then 
examined using experimental and theoretical methods. For pure CuO and CuO-ZnO NCs, 
the XRD (X-ray diffraction) patterns showed a crystallite size (D) range of 25 to 31 nm. The 
sample’s optical energy bandgap value (Eg) for the NCs was estimated to be between 1.72 
and 2.15 eV. The photocatalytic discoloration of pure CuO and CuO-ZnO NCs on fast blue 
(FB) dye was evaluated under UV light irradiation. The CuO with 10% ZnO composite 
degraded 83.4% of the dye when exposed to UV radiation, which was more than pure 

2 4 6 8 10

150

200

250

300

350

400

Sp
ec

ifi
c C

ap
ac

ita
nc

e (
F/

g)

Current density (A/g)

 A
 B
 C
 D

0 500 1000 1500 2000

220

240

260

280

300

320

340

360

C
ap

ac
ita

nc
e 

(F
/g

)

Cycle number

 A
 B
 C
 D
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current density.

Table 5. Comparison of capacitance performance of CuO-ZnO nanocomposites with recent reports.

S. No Material Capacitance (F/g) References

1 ZnO-CuO 260.7 [99]

2 Carbon-TiO2 277 [100]

4 Graphene-ZnO 156 [101]

5 CuO-ZnO 368 Present work

3.4. Cyclic Stability

The cycling efficiency of a supercapacitor cell is the most important parameter for the
application. The electrochemical cycling stability of the prepared electrodes was carried out.
The charge–discharge measurement was repeated 2000 times at a constant 5 A/g current
density (Figure 18).
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4. Conclusions

For different ratios of CuO and ZnO, two-dimensional CuO-ZnO nanocomposites
(NCs) and pure CuO were successfully prepared using the ultrasound-assisted probe
sonication method. The structural, photocatalytic, and electrochemical properties were
then examined using experimental and theoretical methods. For pure CuO and CuO-ZnO
NCs, the XRD (X-ray diffraction) patterns showed a crystallite size (D) range of 25 to 31 nm.
The sample’s optical energy bandgap value (Eg) for the NCs was estimated to be between
1.72 and 2.15 eV. The photocatalytic discoloration of pure CuO and CuO-ZnO NCs on fast
blue (FB) dye was evaluated under UV light irradiation. The CuO with 10% ZnO composite
degraded 83.4% of the dye when exposed to UV radiation, which was more than pure CuO
and other composites. Cyclic voltammetry and electrochemical impedance spectroscopy
examined the electrochemical characteristics of the synthesized NCs materials (EIS). At
1 A/g current density, the specific capacitance values for CuO, CuO + 5% ZnO, CuO +
10% ZnO, and CuO + 15% ZnO were determined to be 248 Fg−1, 301 Fg−1, 352 Fg−1, and
277 Fg−1, respectively. During galvanostatic charge–discharge tests, these developed NCs
exhibited good capacitance performance in supercapacitor applications. These ground-
breaking findings might be considered for scaling up unique resources for dual applications
in photocatalysis and supercapacitors.
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